
Code Search API, Base of Parallel
Code Refactoring System For Safety

Standards Compliance

Peter Jurnečka, Petr Hanáček and Matej Kačic

FIT BUT, Bozetechova 1/2 Brno, Czech Republic, {ijurnecka, hanacek,
ikacic}@fit.vutbr.cz, www.fit.vutbr.cz

Received 3 February 2014; Accepted 27 April 2014;
Publication 2 June 2014

Abstract

New technologies of multi-core and massively parallel processors are becom-
ing common parts of today’s desktop computers. These state-of-the-art
technologies allow programming of parallel applications and systems, how-
ever, creating parallel applications puts higher demands on programmers’
skills, project maintenance and modification of existing source codes. Program
flaws entered on source codes could have fatal consequences, specifically in
aviation or medicine systems, due to possible fatal impacts in case of systems
failure.

This paper describes the current status of aviation and medicine software
safety standards, points out the common requirements of all these standards,
specially the requirement for reliability. Reliability can be easily achieved
using design patterns with verified reliable source code modules. In our
research, we propose system for implementation of concurrency and syn-
chronization design patterns into existing code. We have created parallel
source code search API which is described in this paper, and which is
planned to be used in our parallel code refactoring system for safety standards
compliance. This API enables us to define appropriate places in source codes
for introduction of parallel design patterns into existing parallel source codes.
In next design iteration, the proposed system will provide suggestions of
refactoring operations of found source codes, based on static code analysis
and formal description of parallel design patterns.

Journal of Cyber Security, Vol. 3 No. 1 , 47–64.
doi: 10.13052/jcsm2245-1439.313
c© 2014 River Publishers. All rights reserved.



48 P. Jurnečka et al.

Keywords: software safety, parallel design patterns, code searching.

1 Introduction

Parallel or multithreaded applications are becoming more widespread. New
technologies such as multicore processors and massively parallel processors of
graphics cards have become widely available and usable in desktop computers.
However, programming of parallel systems puts higher demands on the
skills of programmers, and greater demands are also by the maintenance and
modification of existing projects.

Area in which any mistake can have fatal consequences is aviation or
medicine. Aviation safety standards [1, 2] play an important role, because
failures may have fatal impact. When we speak about software in aviation,
we mean software for avionics, which is a term used for electronic systems
used in airborne environments, derived from words aviation and electronics.
Examples of avionic systems used in aircrafts are flight control systems
(autopilot), navigation systems or anticollision systems. Safety of the software
is part of a whole system safety.

The purpose of the Food and Drug Administration (FDA) software valida-
tion standards [3, 4] is to consider its applicability to the validation of medical
device software. The standards recommend an integration of software life
cycle management and risk management activities. The software developer
should determine the specific approach and level of effort to be applied
based on these standards. On the other hand, FDA validation standards do
not recommend any specific life cycle model or specific technique.

Avoiding mistakes is the goal of software standards in these areas. Other
way to avoid mistakes is to facilitate the work of programmers by using design
patterns and refactoring. Currently, much research has been done in the field of
design patterns and refactoring of existing source code. However, the research
of automated refactoring has not addressed design patterns of parallel and
distributed systems.

Common requirement of all these standards is the requirement for relia-
bility which can be achieved with design patterns. In our research, we propose
system for implementation of parallel design patterns in existing code. The
proposed system provides suggestions of refactoring operations based on static
code analysis with code search API and formal description of parallel design
patterns.

The main idea of proposed system is to use formally specified parallel
design patterns in suggesting refactoring operations in editing of source



Code Search API, Base of Parallel Code Refactoring System 49

code. The aim of our research is to create a system that automatically assist
the programmer in source code refactoring in implementing parallel design
patterns into existing parallel source code. Source code created with use
of design patterns is more efficient, easily manageable and therefore more
reliable. To create such system we must combine parallel design patterns,
refactoring and static code analysis.

2 Code Searching Problem

The issue of searching source codes has been given a great amount of research.
There are different approaches used, each approach has its advantages, but in
our context of the definition of insertion places of design patterns neither
cannot be used, because none of these existing solutions do not search parallel
source code and therefore has no information about access of program threads
to each source code statement. This is our main contribution delivered by this
article.

First existing code search solution is XL C++ Browser from [5], which is
a distributed static analyzer for the C++ programming language. Key features
of this technology are its support for semantic queries - queries that make use
of the C++ semantics to interpret information about programs. It uses rules for
describing the relations between the program symbols and it has capability to
browse remote databases across network.

Steven P. Reis in his Semantics Based Code Search [6] describes his
system which uses the vast repositories of available open source code to
generate specific functions or classes that meet user specifications. He lets
users specify what they are looking for as precisely as possible using keywords,
class or method signatures, test cases, contracts, and security constraints. His
Code Search system then uses an open set of program transformations to map
retrieved code into what the user asked for.

This approach was implemented in prototype system for Java with web
interface. Limitation of this solution is, that it is very tightly bound to java
and generalization of search engine to other languages and implementation of
thread info is more difficult than creating a new API.

Lemos in his article Applying TestDriven Code Search to the Reuse of
Auxiliary Functionality [7] states that software developers spend considerable
effort implementing auxiliary functionality used by the main features of
system (e.g. compressing/decompressing files, encryption/description of data,
scaling/rotating images). With the increasing amount of open source code
available on the Internet, time and effort can be saved by reusing these utilities



50 P. Jurnečka et al.

through informal practices of code search and reuse. However, when this type
of reuse is performed in an ad hoc manner, it can be tedious and errorprone:
code results have to be manually inspected and extracted into the workspace.
In his paper he introduces the use of test cases as an interface for automating
code search and reuse and evaluate its applicability and performance in the
reuse of auxiliary functionality. He calls his approach TestDriven Code Search
(TDCS). Test cases serve two purposes: (1) they define the behavior of the
desired functionality to be searched, and (2) they test the matching results for
suitability in the local context. He presents CodeGenie, an Eclipse plugin that
performs TDCS.

CodeGenie is most similar to the proposed solution, however as discussed
above, CodeGenie does not search parallel source code and does not include
information about threads and their access to source code statements.

Last found solution is Sourcerer [8]: Search Engine for Open Source Code
Supporting Structure Based Search: The paper [8] focuses on the current
research goals and search capabilities of Sourcerer. Sourcerer enables searches
that are based not just on keywords but also on the structural properties and
relations among program elements. Current version of Sourcerer works with
the open source projects implemented in Java. The first release of Sourcerer,
as of time of submission of that paper, is publicly available in its development
version at http://sourcerer.ics.uci.edu/.

Sourcerer is closest to our approach. But because it uses large relational
database as data storage and is closed only to Java and also has no information
about threads, it is not usable in our context. Therefore we propose own code
search API and system, which will be used to define the search queries for
parallel source code. This queries will find suitable places in the code which
we can propose to add a design pattern.

3 Our Solution

Our Code Search API provides interface for easily searching for specific code.
It is one of base parts of our parallel code generating and refactoring system
for safety standards compliance, which consists of two parts, design pattern
code generator and the new code structure proposer. The code generator
generates source code from existing source code using formally described
design patterns. The code structure proposer founds appropriate places in
code for applying design patterns using Code Search API and selected design
patterns are then used to generate new source code containing code snippets
from the original code.



Code Search API, Base of Parallel Code Refactoring System 51

As mentioned before, Code Search API provides interface, which is used
for queuing existing source codes. This interface is used in our proposed design
pattern specification language. Each design pattern is described with pair (prec,
spec) where prec stands for precondition and spec for pattern specification.

Precondition defines places, where concrete design patterns should be
placed. This is done using our proposed Code Search API, which provides
robust language for static parallel code analysis used for determining appro-
priate design pattern usage. Whole static code analysis is running on our code
searching framework which provides easy access to all classes, functions,
properties in project including thread usage information for each of theese
statements.

Pattern specification (spec) uses XML which consists of two main parts:
entities (denoted by <entities>) and relations between them (denoted by
<relations>). Part <entities> contains a definition of entities that exist
in design patterns. Each entity can represent class, method, variable or
property. Entities may contain attributes which determine the connection of
the design pattern specification spec with each statement from the set of
preconditions prec.

Main idea behind our Code Search API is extension of abstract syntax
tree with thread usage information. This thread info contains information
about threads for each line of code in source files. Source code is parsed
into syntax tree and during this iteration, ThreadStartFilter filter is applied on
each statement. If selected statement creates new thread, then new thread
is added into Thread List. We have implemented C# prototype, and for
example, our ThreadStartFilter returns all known thread starting statements
(e.g. Thread.Start(), Task.Factory. CreateAndStart(), Background Worker ).

4 Metamodel used for Modelling AST

There are multiple approaches for storing source code in a queryable reposi-
tory, some are based on abstract syntax trees (ASTs) and others on relational
databases. We did not want to create an entirely new metamodel for Code
SearchAPI, but rather extend an existing one that met our requirements. It had
to be sufficiently expressive as to allow structure-based analyses, and it had
to be efficient and scalable enough to include thousands lines of source code.
We settled on an adapted version of Ossher et al.’s [10] SourcerrerDB which
was based on Chen et al.’s [11] C++ entity-relationship (ER) metamodel.
While in principle as expressive as an DB-based metamodel, our object
metamodel is better suited to define search queryes which are a cornerstone



52 P. Jurnečka et al.

of CodeSearchAPI. In addition, we agreed with their decision to focus on
what they termed a top-level declaration granularity, as it provides a good
compromise between the excessive model size of finer granularities and
the analysis limitations of coarser ones. The metamodel we present here is
an extended and modified version of Sourcerer metamodel [10]. As shown
on Figure 1. our revised metamodel adds support for thread information
and removes Java bindings, which are not usable in our environment. This
metamodel is used to model the structure and reference information extracted
from .Net C# projects. Each source code file contains the entities defined within
it, the relations originating from those entities, and the comments associated
with them.

Figure 1 Extended syntax tree with thread and type info, collected by Code Search API



Code Search API, Base of Parallel Code Refactoring System 53

Base of our system is taken part of Sourcerer DB metamodel: table entites
and relations. Our classes based on theese tables are created using Sourcerers
proposed algorithms. On this basis, we have build our extended data structure,
which contains classes: Extended Entity, Thread, Thread Info. Code Stats class
serves as common unique entry point for all queries, and enables simple unified
approach to search queries creation. The folowing paragraphs describe each
class of our system, their creation and their purpose in our system.

4.1 Entity Class

Class Entity is taken from the design of Sourcerer. However, in our solution,
we have removed specific java entity types ajd java bindings unusable in our
system and we also have simplified the system for linking entities to files.
The majority of entity types used in our metamodel correspond to explicit
declarations in the .Net C# source code and shoul also be enough for all
major object oriented languages. The entity types are: NAMESPACE, CLASS,
INTERFACE, ANNOTATION, FIELD, INITIALIZER, CONSTRUCTOR ,
METHOD, PARAMETER, LOCAL VARIABLE, ARRAY, TYPE, PRIMI-
TIVE, ENUM, ENUM CONSTANT, INSTRUCTION. Each entity is uniquely
identified by its Fully Qualified Name (Fqn : String), file that it comes from,
and its location in that file. Each entity is further annotated, when appropriate,
with its modifiers (such as public or static).

4.2 Relation Class

Class Relation is also taken from the design of Sourcerer, however in our
application we have removed relation types, which are not usable in our
search queries. Table 1 contains the relation types in our metamodel. All of
the relations are binary, linking a source entity with a target entity. A relation
is identified uniquely by its type, and the FQNs of its source and target entities
and source code location. As a result, any time the same relation is generated
more than once, such as a method calling another method multiple times in
loop in its body, those relations are collapsed into one.

4.3 Thread Class

Thread class is a special kind of Entity used to tracking of the threads in the
application. Each thread is basically a special kind of method, which is called
parallel with the main method of the program. As mentioned above, during
the creation of AST the ThreadStartFilter is applied to each command and



54 P. Jurnečka et al.

Table 1 Relation Types
Relation Description
CONTAINS Physical containment
IMPLEMENTS Interface implementation / extension
TYPE OF Field type
RETURNS Method return type
READS Field access
WRITES Field access
CALLS Method invocation
INSTANTIATES Constructor invocation
THROWS Throws declaration or explicit throw
ANNOTATED BY Annotation
USES Any reference
PARAMETRIZED BY Associated type variables
OVERRIDES Function overrides

if it detects a new thread this thread is tracked using this special entity type
Thread. For our purpose (search queries for automated insertion of paralle
design patterns) we need to divide Entites into 3 groups: those never touched
with any thread, those used with one thread and those used with two or more
threads. This division simplifies the process of Thread detection. If some new
thread is created in loop, or in recursive function call, we automaticly create
two instances of new thread, because that is the worst case. As mentioned
before, Thread as subclass of Entity is uniquely identified by its Fully
Qualified Name and location in source code. When we during AST traversal
come to already tracked location on source code, we create new Thread and
continoue, only when there is only one Thread object created, Otherwise we
skip this code as already covered. In this state of our research, we do not
take into account thread differences, caused by parameters used by thread
creation code.

4.4 ThreadInfo Class

ThreadInfo class is used for the definition of relation between Threads and
Entities. They tell us that selected thread touches variable in this function
call. ThreadInfo class are markes all Relatons associated with each line of
thread source code line. ThreadInfo classes are created during the construction
of Thread entities, by taking all Relations related to main thread function.
If the main thread function calls other functions, also those relations are
marked.



Code Search API, Base of Parallel Code Refactoring System 55

4.5 ExtendedEntity and CodeStats Classes

ExtendedEntity and CodeStats classes simplify the definition of search queries.
CodeStats class is a single common entry point for all queries. ExtendedEntity
classes create tree structure and are formed during the creation of Entities
during first pass of code parsing and creation of AST. If the type of Entity
is class or method or property the ExtendedEntity is created. ExtendedEntity
class extends Entity with three additional navigation properties which are
Methods, Variables and Threads. Property Methods is used only when Extend-
edEntity points to class and contains references to all methods and constructors
within class. PropertyVariables contains information about all shared variables
within selected ExtendedEntity. Property Threads links ExtendedEntity with
ThreadInfo and is its main purpose is to make querying easier. As we shoved
in next chapter, this metamodel is sufficient for our proposed specification of
design patterns and their automatic insertion into existing source codes.

5 Results

We have applied this system to set of six synchronization patterns from the
POSA catalogue [9]. In almost all cases it is possible to find reasonable
precondition. Next paragraphs provide short description, UML diagram and
found preconditions of selected patterns described by Microsoft LINQ queries
into our CodeSearch API data model. Possibility of definition of query using
our CodeSearch API showes, that CodeSearch API can be used in next
iteration of our code refactoring research. To give ourselves coarse outline,
in next subchapters we also provide easily readable version of preconditions
of selected synchronization design patterns. All these patterns are used for
avoiding synchronization problems between threads.

5.1 Thread Safe Interface

As shown on Figure 2 Thread - Safe Interface pattern divides the functions of
the component to the public available interface and private implementation
methods. Public interface acquires the lock, calls corresponding private
method and then releases the lock.

To ensure proper synchronization of client threads call functions of only
the public interface. Interface function obtains necessary locks and calls the
appropriate implementation of the function that no longer cares about locking
and can freely call other implementation functions. Deadlock (selfdeadlock)
cannot occur because the lock is obtained only once at the beginning in the



56 P. Jurnečka et al.

Figure 2 Thread - Safe Interface design pattern

Figure 3 Thread - Safe Interface precondition code

public interface and the recursive function calls do not obtain the lock more
times, which also improves the performance of the application.

From this description we can define the preconditions of this pattern, which
are: There exists an object with one or more functions or properties, which are
used by more than one thread and this function or property does not acquire any
lock. As we can see on next code snippet, this precondition uses ThreadInfo,
from CodeSearch API, and function GetLocks(ClassMember x) which gets
locks used by selected member of class. On Figure 3. we can see Microsoft
LINQ source code version of precondition of this pattern.

5.2 Future

As shown on Figure 4 the Future pattern immediately after calling the
constructor returns the "virtual" data object, called the Future. Future object
contains information about the state and the calculation of the results is
dispatched on service thread. The future object returns the result only if it
is valid.

If the client thread wants to read the future value of the object before there
is a valid result, the future object suspends client thread until a valid result



Code Search API, Base of Parallel Code Refactoring System 57

Figure 4 Future design pattern

Figure 5 Future design pattern precondition code

is written in the future object. Future object can also contain nonblocking
function available for checking the validity of stored value.

From this description we can define the preconditions of this pattern,
which are: There exists object X, this object contains function or parameter
with execution time longer than user defined threshold. Or, there exists
object X with constructor with execution time longer than user defined
threshold, and first call of parameter or function of this object is far away
from its construction. As we can see on next code snippet, this precondition
uses function AvgFunctionLen(ClassMember x) which gets average function
length of selected member of class, which is computed by counting executed
instructions. For safety and calculability reasons AvgFunctionLen counts only
to UInt16.MaxValue. On Figure 5. we can see Microsoft LINQ source code
version of precondition of this pattern.

5.3 Guarded Suspension

As shown on Figure 6 Guarded Suspension design pattern instead of termi-
nation of the blocked functions suspends the thread, so that other threads can
access shared component and thus change the value of the guard conditions
and the release threads of the blocked functions.



58 P. Jurnečka et al.

Figure 6 Guarded Suspension design pattern

The main contribution of Guarded Suspension design pattern is that it
minimizes the costs associated with parallelization and also increases the
availability of shared components. If threading model is designed to make
suspension on OS layer, the price of the suspension and the synchronization
is minimal.

From this description we can define the preconditions of this pattern,
which are: There exists function that is dispatched in separate thread, and
this function contains condition which aborts functions thread without any
other computation. As we can see on next code snippet, this precondition
uses function InstrCounter(ClassMember x) which creates pairs instructionId,
instruction. For safety and calculability reasons InstrCounter counts only to
UInt16.MaxValue. On Figure 7 we can see Microsoft LINQ source code
version of precondition of this pattern.

Figure 7 Guarded Suspension design pattern precondition code



Code Search API, Base of Parallel Code Refactoring System 59

Figure 8 Scoped Locking design pattern

Figure 9 Scoped Locking design pattern precondition code

5.4 Scoped Locking

As shown on Figure 8 the Scoped Locking design pattern outlines the critical
section with lock statement which automatically gets a lock at the entrance,
and automatically releases the lock on any way from the lock frame. Scoped
Locking design pattern increases the robustness of parallel software by
eliminating common programming errors associated with synchronization of
multiple threads. Locks are obtained automatically when the thread enters the
critical section, and automatically released when it leaves out. Implementation
of this design pattern depends on the programming language. For example,
the Java programming language contains the synchronized keyword which
instructs the compiler to automatically generate the appropriate instructions
serving locking and unlocking locks.

From this description we can define the preconditions of this pattern,
which are: Number of shared variables among the program is small, and
access to these variables is not secured with any locks. As we can see on
next code snippet, this precondition uses ThreadInfo, from CodeSearch API,
and function GetLocks(ClassMember x) which gets locks used by selected
member of class. On Figure 9 we can see Microsoft LINQ source code version
of precondition of this pattern.

5.5 Immutable Value

As shown on Figure 10. Immutable Value design pattern defines the design
objects whose instances are immutable. The internal state of an object is set
in the constructor, and no further changes are allowed.



60 P. Jurnečka et al.

Figure 10 Immutable Value design pattern

Figure 11 Immutable Value design pattern precondition code

In an immutable object are only read only parameters. The absence of
any possibility of changing the object removes any need for synchronization
and thus simplifies and improves efficiency the work of the program. By
eliminating the need to copy objects we also improve program performance.

From this description we can define the preconditions of this pattern, which
are: All variables, that are only read in program execution, or are written only
one time. As we can see on next code snippet, this precondition uses function
GetWritesCount(Variable x) which gets number of writes into this variable
during program execution. On Figure 11 we can see Microsoft LINQ source
code version of precondition of this pattern.

6 Conclusions

The importance of safety standards of software systems is increasing as the
use of software grows because of its convenience and flexibility. Software
safety standards are very important in aircraft, military, automotive or medical
devices. Common requirement of all standards is reliability. Reliability can
be easily achieved with design patterns. We are creating system for imple-
mentation of parallel design patterns into existing code. Our system will



Code Search API, Base of Parallel Code Refactoring System 61

provide suggestions of refactoring operations based on static code analysis
and formal description of parallel design patterns. For this purpose, we have
created custom CodeSearch API, which queries will be used in design patterns
definitions, for defining appropriate places for design patterns suggestions. The
last part of article gives us of an overview of application of created CodeSearch
API on a set of six synchronization patterns from the POSAcatalogue [9]. In all
cases it was possible to find reasonable precondition using our Search API. In
next iteration we focus our research on better customizable XML description
language, an finalization of whole refactoring system, so we can then provide
full robust parallel design patterns refactoring system for safety standards
compliance.

This work has been supported by the European Regional Devel-
opment Fund in the IT4Innovations Centre of Excellence project
(CZ.1.05/1.1.00/02.0070) and by BUT FIT grant FIT-S-11-1: “Advanced
secured, reliable and adaptive IT” and by Research Plan No. MSM0021630528.

References

[1] Howard C. (2011). DO-178B safety certification and other software
security tools drive avionics software designs. 2011. Available at:
http://goo.gl/ZkzyF

[2] Federal Aviation Administration. Advisory Circular 20-115B. 1993.
Available at: http://goo.gl/C6d1k

[3] General Principles of Software Validation; Final Guidance for Industry
and FDA Staff, Available at: http://goo.gl/HjIKb

[4] Guidance for the Content of Premarket Submissions for Software
Contained in Medical Devices, Available at: http://goo.gl/JqkYr

[5] SHARMAN, J. ET AL. (1992) Architecture of the XL C++ browser,
CASCON ’92 Proceedings, P: 369–379, IBM Press

[6] REISS, P. STEVEN, (2009) Semantics-Based Code Search, ICSE 09
Proceedings, IEEE

[7] LEMOS, OTAVIO AUGUSTO LAYYARINI, ET AL. (2009) Applying
Test-Driven Code Search to the Reuse of Auxiliary Functionality, SAC
09 Proceedings, ACM

[8] SUSHIL B., ET AL. (2006) Sourcerer: A Search Engine for Open Source
Code Supporting Structure-Based Search, OOPSLA 06 Proceedings,
ACM



62 P. Jurnečka et al.

[9] BUSCHMANN, F. ET AL. (2007) Pattern-Oriented Software Architec-
ture:APattern Language for Distributed Computing. John Wiley & Sons,
Inc., New York, NY USA, ISBN: 978-0-470-05902-9.

[10] J. Ossher, S. Bajracharya, E. Linstead, P. Baldi, and C. Lopes, “Sourcer-
erDB: An aggregated repository of statically analyzed and cross-linked
open source Java projects,” in Proceedings of the International Workshop
on Mining Software Repositories. Vancouver, Canada: IEEE Computer
Society, 2009, pp. 183–186.

[11] Y.-F. Chen, E. R. Gansner, and E. Koutsofios, “A c++ data model
supporting reachability analysis and dead code detection,” IEEE Trans.
Softw. Eng., vol. 24, no. 9, pp. 682–694, 1998

Biograpies

Peter Jurnečka. He received his M.Sc. from Brno University of Technology
in 2009. He is currently a Ph.D. student at Faculty of Information Technology,
Brno University of Technology. His research interests are in information
technology security and safety, especially in using parallel design patterns
for safety standards compliance.

Petr Hanáček. He graduated at Brno University of Technology. He is currently
an Associate Professor at Faculty of Information Technology, Brno University
of Technology. His research interests are in security of information systems,
applied cryptography and wireless systems.



Code Search API, Base of Parallel Code Refactoring System 63

Matej Kačic. He received his M.Sc. from Brno University of Technology in
2010. He is currently a Ph.D. student at Faculty of Information Technology,
Brno University of Technology. His research interests are in information
technology security, especially in wireless systems.




