
Making Static Code Analysis More Efficient

Pomorova O.V. and Ivanchyshyn D.O.

System Programming Department, Khmelnytskyi National University, Instytutska
Str. 11, Khmelnytskyi, 29016, Ukraine, E-mail: o.pomorova@gmail.com,
dmytro ivanchyshyn@ukr.net

Received 19 March 2014; Accepted 27 April 2014;
Publication 2 June 2014

Abstract

Modern software is a complex high-tech product. Users and customers put
forward a number of requirements to such products. Requirements depend
on software purpose. However, reliability, fault tolerance, security and safety
requirements are topical for all software types. One of the approaches for
realization of such requirements in the implementation stage of software life
cycle is a static source code analysis (SCA). The efficiency assessment task
of the SCA tools is an actual problem. This paper presents the method of
the efficiency evaluating of the software static source code analysis. It allows
increasing the quality and reliability of software in general. The result of this
work is a method of efficiency improving at the debugging stage and approach
for selection of the static code analysis tools for software of various types.

Keywords:Source code analysis, security, vulnerabilities, weaknesses, static
analysis efficiency, efficiency metrics.

1 Introduction

The company Veracode provides a “cloud” service for the analysis of software
vulnerabilities. Every year it presents a detailed analysis of the vulnerabilities,
which were discovered in software. Veracode State of Software Security
(SoSS) Report Volume 5 examines data collected over an 18 month period
from January 2011 through June 2012 from 22,430 applications [1]. This report

Journal of Cyber Security, Vol. 3 No. 1 , 77–88.
doi: 10.13052/jcsm2245-1439.315
c© 2014 River Publishers. All rights reserved.

78 Pomorova O.V. and Ivanchyshyn D.O.

Figure 1 Compliance with Security Policies upon First Submission

examines application security quality, remediation, and policy compliance
statistics and trends. It shows that 70% of applications failed to comply with
enterprise security policies on first submission. Web applications are assessed
against the Open Web Application Security Project (OWASP) Top 10 and only
13% complied on first submission. Non-web applications are assessed against
the Common Weakness Enumeration (CWE/SANS) Top 25 and 31% complied
on first submission. Only 30% of applications complied with enterprise defined
policies (Figure 1). Therefore, the vast majority of applications are returned
to the testing stage for further debugging.

Detection and correction of software defects (debugging) are two of
the most difficult and time-consuming stages in the process of software
development. Up to the 95% of debugging time is spent on the detection
of defects and only 5 % is spent for defect correction [2]. So one of the actual
issues for today is improving of the efficiency of software error detection.
Reducing the time for identification of defects in software source code will
significantly decrease the general time and resources that are spent in the
debugging stage of the software lifecycle.

One advantage of our approach is the ability to consider and to identify
actual vulnerability to a particular type of software at the implementation stage.
It allows us to increase the quality and reliability of software in general. This
paper presents an analysis of the weaknesses classification and identification
problems and describes the ability to apply such information in the realization
stage of the software lifecycle. The result of this work is an efficient method
of improving the debugging stage and an approach for the selection of static
code analysis tools for software of various types.

2 Static Code Analysis (SCA)

One of the methods of source code verification is static code analysis. SCA is
the process of evaluating a system or component based on its form, structure,
content, or documentation [3]. From a software assurance perspective, static

Making Static Code Analysis More Efficient 79

analysis addresses weaknesses in program code that might lead to vulner-
abilities. SCA is performed without actually executing programs and can
be applied on the early stages of software lifecycle. Such analysis may be
manual, as in code inspections or automated through the use one or more
tools. Automated static code analyzers typically check source code but there
is a smaller set of source code analyzers that check byte code and binary
code. There are especially useful when source code in not available. Static
code analyzers are used to uncover hard to find implementation errors before
run-time, since they may be even more difficult or impossible to find and
assess during execution. These tools can discover many logical, safety and
security errors in an application without the need to execute the application.

2.1 Static Security Analysis (SSA)

One of the SCA categories is static security analysis (SSA). It attempts to
identify errors and security weaknesses through deep analysis of source code
[4]. SSA is primarily aimed at developers and QA engineers who wish detect
software defects early in the development cycle in order to reduce time and
cost. It also assists developers in hardening their application against security
attack. SSA provides an effective way to discover defects, especially in code
that is hard to exercise thoroughly with tests.

Many coding errors and patterns of unsafe usage can be discovered through
static analysis. The main advantage of static analysis over dynamic analysis
is that it examines all possible execution paths and variable values, not
just those that are provoked during testing. This aspect of static analysis is
especially valuable in security assurance, since security attacks often exercise
an application in unforeseen and untested ways. SSA can detect different
error conditions: buffer overflows and boundary violations, misuse of pointers
and heap storage, memory leaks, use of uninitialized variables and objects,
unsafe/incorrect use of functions, etc.

2.2 Static Code Analysis Efficiency

Static code analysis efficiency is a complex property that reflects the quality
of the results, the degree of automation of the analysis and the complexity
of its organization, resource-intensive, applicability to different class and
size of programs [5]. The obtained results (based on the number of true
positive (TP), false positive (FP), and false negative (FN) in the analyzer’s
reports) (2.1, 2.2). Other parameters are the importance of revealed defects,
the properties of programming languages, type of software, features of the

80 Pomorova O.V. and Ivanchyshyn D.O.

software algorithm and coding style, the impact of environment and external
influences.

The F score metric provides weighted guidance in identifying the most
efficient static analysis tool by capturing how many of the weaknesses were
found (true positives) and how much noise (false positives) was produced. An
F score is harmonic mean of the Precision and Recall values (2.3):

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F Score = 2 × Precision × Recall

Precision + Recall
(3)

These parameters are universal and can be applied both for SCA and for
SSA efficiency assessment.

2.3 Static Security Analysis Tools

SSA has a number of usage features. The security Department of the U.S.
National Institute of Standards and Technology provides a list of SCA tools
that can be used for detecting and reporting weaknesses that can lead to security
vulnerabilities. The following SCA tools were select for this paper: Gimpel
PC Lint ($389), PVS – Studio ($4585), Red Lizard Goanna Studio ($999),
and CppCheck (freeware).

Three sets of test samples for quality of the SCA assessment were
selected. The first set was taken from the website of the U.S. department
of Homeland Security. The second set was taken from the website of the
Security Department of U.S. National Institute of Standards and Technology.
They included test samples designed specifically for SCA tools testing [6].
The examples are small, simple C/C++ programs, each of which is meant to
evaluate some specific aspect of a security scanner’s performance. The third
test set contained applications with only one type of defect. The widespread
defect in the source code CWE (Common Weakness Enumeration) 476 CWE
null pointer dereference was selected. Each of the tools has a rule for
identifying of such class of defects. The third test set is aimed at detection
the differences between the methods used by developers to identify the stated
defects. Table 1 shows the F score metric results obtained for the three
test sets.

Making Static Code Analysis More Efficient 81

Table 1 SCA Results
F score CppCheck PVS-Studio Goanna PC-Lint
Test set 1 0,74 0,39 0,21 0,44
Test set 2 0,31 0,31 0,35 0,33
Test set 3 0,75 0,67 0,67 0,67

The efficiency of SCA tools varies significantly and changes greatly for
different test sets. In addition, the list of defects detected by each analyzer
was different. Modern investigations of other SCA tools efficiency also shows
similar results [7, 8]. Therefore:

The efficiency of the tools depends on the usage scenario
SCA tools don’t identify all defects in existing software

Consequently, it is hard for software developers and QA managers to
choose one of the available SCA tools. In addition, tools have to be up to
date with respect to the spectrum of threats, weaknesses, vulnerabilities and
long-term costs.

2.4 Improving of the SCA Efficiency

Today there are a number of investigations on improving the efficiency
of SCA. There are a number of regulations to ensure the quality of the
static analysis of the application in the development of military software.
Michael Howard proposes a list of recommendations for improving SCA
efficiency [9]:

Multiple tools should be used to offset tool biases and minimize false
positives and false negatives and minimize false positives and false
negatives.
Analysts should pay attention to every warning and error.
Warnings from multiple tools may indicate that the code needs closer
scrutiny (e.g. manual analysis).
Code should be evaluated early, preferable with each build, and re-
evaluated at every milestone.

In addition, analysts should make sure that code reviews cover the most
common vulnerabilities and weaknesses, such as integer arithmetic issues,
buffer overruns, SQL injection, and cross-site scripting (XSS). Sources for
such common vulnerabilities and weaknesses include the Common Vulnera-
bilities and Exposures (CVE) and Common Weaknesses Enumeration (CWE)
databases, maintained by the MITRE Corporation. MITRE, in cooperation

82 Pomorova O.V. and Ivanchyshyn D.O.

with the SANS Institute, also maintains a list of the “Top25 Most Dangerous
Programming Errors” that can lead to serious vulnerabilities. Static code
analysis tool and manual techniques should at a minimum address this
Top 25. The better static code analysis tools are expensive. Other ways
to improving the efficiency of SCA is to use multiple tools to offset tool
biases and minimize false positives and false negatives. However, this is cost
prohibitive.

The practical implementation of the recommended steps has a number of
problems. Different SCAtools has different defects classification systems. It is
hard to compare results obtained from different tools. Also, the bases of some
analyzers do not cover the most common vulnerabilities and weaknesses. All
of which make it impossible to fully use all benefits of the static analysis
technology.

3 An Efficient Method for Static Code Analysis

3.1 Problems with Weaknesses Classifications

Every few years a «Top 25 Most Dangerous Software Errors» is constructed
from the CWE. This is a list of the most widespread and critical errors that can
lead to serious vulnerabilities in software. The higher a defect is located in the
CWE ranking, the more important its detection by SCA tools. However, the
rating is developed for all existing types of software, which complicates its
practical application. For example, currently the most important is weaknesses
in the list is CWE-89 (cross-site scripting). This problem is related to web
services and it is not relevant to application or system software. Thus, for a
particular type of software it is appropriate to apply special an importance
rating of the defects (Table 2).

One approach to solving this problem is to carry out an analysis of
NVD (national vulnerabilities database). The task was to identify the most
common and critical defects for certain categories of software. NVD is the
U.S. government repository of standards based vulnerability management
data represented using the Security Content Automation Protocol (SCAP).
NVD includes databases of security checklists, security related software
flaws, misconfigurations, product names, and impact metrics. Figure 2 shows
the number and criticality of all weakness obtained from NVD database.
Table 2 presents weaknesses ratings with different criteria: relevance, most
important weaknesses for all types of software, relevance only for operating
systems.

Making Static Code Analysis More Efficient 83

Table 2 The Most Important Weaknesses
No Top CWE 2011 Relevance Most important Relevance in OS
1 CWE-89 CWE-79 CWE-119 CWE-399
2 CWE-78 CWE-119 CWE-89 CWE-20
3 CWE-120 CWE-89 CWE-264 CWE-119
4 CWE-79 CWE-264 CWE-79 CWE-264
5 CWE-306 CWE-20 CWE-20 CWE-189
6 CWE-862 CWE-399 CWE-94 CWE-200
7 CWE-798 CWE-94 CWE-399 CWE-362
8 CWE-311 CWE-22 CWE-22 CWE-94
9 CWE-434 CWE-200 CWE-189 CWE-16
10 CWE-807 CWE-189 CWE-200 CWE-310
11 CWE-250 CWE-287 CWE-287 CWE-287
12 CWE-352 CWE-352 CWE-352 CWE-79
13 CWE-22 CWE-310 CWE-310 CWE-255
14 CWE-494 CWE-255 CWE-255 CWE-22

Figure 2 Number and Criticality of Weaknesses from NVD Database

For operating systems, the distribution of weaknesses varies depending
on the operating system: Windows, RedHat, Novel, Solaris, Apple or others
(Figure 3).

84 Pomorova O.V. and Ivanchyshyn D.O.

Figure 3 Distribution of Weaknesses for OSs

Figure 3 shows that for different types of software the distribution of
defects varies significantly. It is reasonable to use different SCA tools for
particular types of software.

3.2 Improving the Efficiency of SCA

The first step is to determine the type of software (ST) (Figure 4). The analysis
of the NVD database shows that for different types of software there is a
different list of most widespread weaknesses.

The second step, the informational sources (IST) are chosen. From the set
of sources that contain information about the defects identified in the software,
the most appropriate sources for subject area are selected. For example, for
SSA such source can be the NVD.

Development of the defects list for a given type of software (STw) is the
third step. Based on the analysis of the prevalence and criticality of defects
given in IST the rating of the most important of defects is formed. The list
includes weaknesses that have to be identified by SCA tools.

The fourth step is formation of the test samples set (TST) that cover the
list of weaknesses (STw). For each weakness the test samples set that will be
used for SCA checking is formed. For example, for buffer overflow weakness
CWE-120 a set of test samples are given in Table 3.

The fifth step is the static analysis of test samples set by SCA tools. The
result of the stage is a log-file with defects that have been detected.

Parsing of the log-files is the sixth step. The number of false positive, false
negative, and true positive, is calculating in this stage.

Making Static Code Analysis More Efficient 85

Figure 4 Types of software

Figure 5 Method of the Static Code Analysis Efficiency Assessment

The last step is an analysis of the efficiency of the SCA. This step includes
the calculation of Precision, Recall and F score metrics. They are based on
the number of true positives (TP), false positives (FP), and false negatives
(FN) in the analyzer’s report. The F score metric is a final result that can be
used for different SCA tools comparison. Figure 5 presents the steps for our
method.

86 Pomorova O.V. and Ivanchyshyn D.O.

Table 3 Set of tests for buffer overflow weakness
Error type Error name CWE number
Arrays Direct overflow CWE-119

Off-by-one errors CWE-193
Unbounded copy CWE-120

Strings Direct overflow CWE-119
Null termination CWE-170
Off-by-one errors CWE-193
Truncation error CWE-222
Unbounded copy CWE-120
Strcpy check
strcat check
gets check
strncpy check
strncat check
fgets check

Integer Overflow CWE-190
Sign errors CWE-195
Truncation errors CWE-197

The user choses only the type of software and the information sources. The
result is the most appropriate static code analysis tool for concrete software
project.

4 Conclusion

Our investigation shows the existence of significant differences in the results
produced by static code analysis tools. The efficiency of modern SCA tools
depends on the usage scenario. In terms of software security, it depends on
consideration of information about actual vulnerabilities. Such data can be
obtained from databases like the NVD. Therefore, it is advisable to integrate
information about known vulnerabilities and weaknesses in source code into
the code analysis process.

Consequently, for software quality improvement and security assurance
it is necessary to pay attention to the problem of the choosing appropriate
SCA tools. The efficiency of a tool has to be evaluated and the information
about actual vulnerabilities ought to be taken into account even at the software
lifecycle stage of implementation. The proposed method provides a solution
to this problem.

Making Static Code Analysis More Efficient 87

The problems of informational sources choosing for particular type of
software, test sets development for defects checking and automatic parsing of
log files are needed further investigations.

References

[1] Veracode Inc., State of Software Security Report: Volume 5, April
2013, 44 p.

[2] Ian Sommerville, Software Engineering (9th Edition), 2010.
[3] R. Lopes, D. Vicente, N. Silva. Static Analysis tools, a practical approach

for safety-critical software verification. Critical Software SA Parque
Industrial de Taveiro. Coimbra, Portugal, 2009, 12 p.

[4] Intel Corporation, Improve C++ Code Quality with Static Security
Analysis (SSA), 2013, 11 p.

[5] National Security Agency Center for Assured Software. On Analyzing
Static Analysis Tools. July, 2011.

[6] Build Security In. Source Code Analysis Tools - Example Programs:
https://buildsecurityin.us-cert.gov/bsi/articles/tools/code/498-BSI.html

[7] Thomas Hofer. Evaluating Static Source Code Analysis Tools, School of
Computer and Communications Science, Ecole Polytechnique Federal
de Lausanne, March 12, 2010

[8] R. Plösch,A. Mayr, G. Pomberger, M. Saft.AnApproach for a Method and
a Tool Supporting the Evaluation of the Quality of Static Code Analysis
Tools. Proceedings of SQMB 2009 Workshop, SE 2009 conference,
Kaiserslautern, Germany, July 2009.

[9] Howard, M. A Process for Performing Security Code Reviews, IEEE
Security & Privacy, July-August 2006, pp. 74–79.

88 Pomorova O.V. and Ivanchyshyn D.O.

Biographies

Oksana Pomorova. Doctor of Technical Science, Head of System Pro-
gramming Department, Full Professor in Khmelnitsky National University
(Ukraine). Received the PhD degree in Kyiv Institute of Automatics (2002),
the degree Doctor of Technical Science in 2008 in the National University
“Lviv Polytechnic” (Ukraine), specialty 05.13.13 - “Computers, Systems and
Networks”. IEEE member from 2005. Teaching - Computer Modeling, Tech-
nology of Software Design, Artificial Intelligence Systems. Guest lectures:
Department of Computer Systems and Networks, Yuriy Fedkovych Chernivtsi
National University (Ukraine); Kielce University of Technology (Poland).
Research Interests: Intelligent Methods and Means of Computer Systems
Diagnosing, QualityAssessment of Critical Software; Modeling and Design of
Knowledge Bases for Testing and Diagnosing Specialized Computer Systems.

Dmytro Ivanchyshyn. He defended his master’s thesis in Khmelnitsky
National University. Now studying in postgraduate at the Faculty Program-
ming, Computer and Telecommunication Systems and working as teacher
trainee of System Programming Department. His research interests are:
Software Quality Assurance and Testing, System Security

