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Abstract

Jamming is an easy to execute attack to which wireless sensor networks are
extremely vulnerable. If the application requires reliability, jamming needs
to be detected and reported in order to cope with this attack. In this article,
we investigate different approaches to identify jamming. Available jamming
detection schemes primarily suffer from the usage of fixed thresholds as
well as required effort. We adapted a variance-based estimate of signal-to-
noise ratio measurements, called significance analysis, to the minor resources
and computing efforts of wireless sensor nodes. As a start, we used real
measurement data for theoretical analysis of the methods under investigation.
Independently of the location of the jamming device, our significance analysis
approach provides an immediate indication of jamming and can in theory be
run with almost least effort, i.e., with O(14). On top of that, we implemented
this approach on our state of the art sensor node and tested it in a real world
outdoor setting. Our jamming detection engine monitors the wireless channel
with a sampling rate of 10 ms. It returns a jamming detection decision within
less than 5 ms while though achieving a detection accuracy in between 84 to
99 percent.
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1 Introduction

Wireless sensor networks (WSNs) are more and more considered as a basis for
new applications e.g. in the area of automation control or critical infrastructure
protection. Such applications require a significant level of reliability. Jamming
is an attack which needs to be considered as extremely dangerous. It can be
easily executed by anybody since it does not need any detailed knowledge
about the system to be attacked [10] nor expensive equipment. In addition
its effect is significant since it immediately distorts the expected system
behaviour.

Many projects [2–5, 11, 15–16] have proven fixed thresholds to be
unsuitable for jamming detection in wireless networks no matter which
channel characteristic is monitored. Beside physical conditions around the
node, the distance to the jammer predominantly influences the changes in
channel characteristics by jamming, e.g. the signal strength of the jammer
obviously decreases with the distance to network under attack but still remains
noticeable. Such behaviour can also be seen in Figures 2(a) and 2(b) in
the next chapter. Since the location of a jammer is hardly to predict [7],
sensor nodes cannot be pre-configured for reliable jamming detection, even
if the jamming characteristic is known. Instead, sensor nodes must learn
distinguishing regular from irregular (jamming) channel conditions. This is a
difficult task since normal operation within the WSN, e.g., during contention
phases, can look like jamming and by that cause false positives.

The contributions of this papers are:

• Introduction of different mathematical approaches which are suitable to
detect jamming without prior knowledge on thresholds, i.e., self adaptive
approaches.

• Analysis of the computational complexity of these approaches in order to
evaluate whether or not they can be used on resource constraint wireless
sensor nodes.

• Theoretical evaluation of a suitable metric, called significance analysis,
using real measurement data.

• Realization and validation of significance analysis for real-time detection
of jamming on wireless sensor nodes in practice.

• Discussion of approaches to reduce the number of false positives and
false negatives.

In the next section we overview existing approaches and assess application
of those in WSNs. Section 3 analyses and compares computational and
memory effort of feasible solutions. Based on that, we introduce our low
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effort approach for online jamming indication. Section 4 evaluates simulation
results based of data taken from real measurements in the laboratory. Based on
that, we present implementation detail as well as achieved detection rates of
our significance analysis on state of the art sensor nodes. Finally, we discuss
trouble-shooting issues and provide concluding remarks.

2 Related Work

Applying wireless communication, WSNs by nature are vulnerable to dis-
turbances or even blockages of the wireless channel. Such interference may
of course occur due to changes in environmental physics, such as objects
moving or changing weather conditions, especially humidity and rain [1].
However, interference on wireless channels can also be willingly provoked
by an attacker. Such behaviour is usually called jamming. Many different
jamming models as well as respective counter measures have been researched
in depth in the past. Among others, random, reactive [16], periodic [4, 8] or
constant [14] jamming models are applied for both single and multi-channel
[9] attacks. Analysis of existing models in unison have agreed reactive, either
random or periodic, jamming models to be the most effective ones for WSNs
due to their jamming performance and energy efficiency.

Almost the same number of different counter measures using different
basic metrics have been proposed. In the following we overview and assess
the usage of these metrics. Xu et al. [16] evaluated the usage of different
packet-based metrics. The Packet Send Ratio (PSR) basically indicates the
number of packets sent during certain time period. This is equivalent to
the analysis of time needed to access the wireless channel, usually given
as Carrier Sensing Time (CST) when using CSMA MAC protocols. Thereby,
a node detects a possible jamming attack if it can only access the channel
with packet rates below certain threshold. This approach certainly performs
poor if jamming and channel characteristics are unknown and hence, suitable
thresholds cannot be fixed. Xu et al. [16] and Cakiroglu et al. [3] further
have tested the packet-based metrics Packet Delivery Ratio (PDR) and Bad
Packet Ratio (BPR). PDR counts the number of packets successfully sent or
the number of acknowledgements received respectively. Jamming may then
be detected if the ratio of successfully transmitted packets in percentage falls
below certain threshold. Despite suitable processing effort this metrics implies
usage of acknowledgement-based communication, which causes significant
effort especially in case of good channel conditions. By that it cannot be
expected suitable for resource constraint devices like WSNs. Similarly to the
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PDR-based method, the BPR-based approach calculates the percental ratio
between correct (good) and erroneous (bad) packets received. Obviously, this
method can be used at the receiver side only. However, these approaches
cannot reflect usage of WSNs in heavily interfered environments where packet
losses result from ordinary operation. Both approaches further suffer from
the usage of predefined thresholds. Similar problems and a substantial effort
prevent from using Bit Error Rate (BER) as metric as proposed by Strasser
et al. [12].

The metric best reflecting the physical conditions of the wireless channel
is based on the Received Signal Strength (RSS). Using RSS the ratio between
received signal power and received noise level, usually called Signal-to-
Noise-Ratio (SNR), can be determined. From our point of view, SNR is the
most suitable metric for jamming detection since any interference, whether
or not caused by jamming, is reflected by changes of SNR. The challenge
of analysing SNR for jamming detection is distinguishing abnormal (or
anomalous) SNR from usual behaviour by assessing the actual SNR value.
Jamming detection techniques based on SNR for wireless networks have
been proven functional in several projects. Cabrera et. al. [2] determined
a threshold-based jamming detection scheme for application in MANETs,
called anomaly index. This approach probabilistically rates SNR drops at
single nodes in a distributed decision process at respective cluster heads but
still requires to set jamming thresholds at the cluster head. To get rid of the
necessity to configure fixed thresholds, which is infeasible due to the unknown
location of the jammer and unforeseeable channel characteristics, the network
must “learn” usual SNR by itself. The most common SNR-based approaches
exploit the standard deviation [11] or the variance of SNR readings [4, 13] to
rate the occurrence of interference based on previous trend of SNR. Despite
partially outstanding detection performance, these approaches cannot be used
in sensor networks due to effort required, as we will show in the next section.
We will also introduce our significance analysis approach that circumvents
presented disadvantages when using variance of SNR as metric for jamming
detection.

3 Math & Computational Effort

To determine jamming by changing SNR requires to contrast actual SNR
values with expected ones. We indicate the significance of changes in the
SNR as the degree of deviation from the expected range of values learnt from
previous trend. This expected range of values is determined by the average
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of previous values to a lesser or greater degree of the variance of those.
Determining the average and the variance of previous readings is not very
complex according to mathematics, but it originally is unsuitable for sensor
networks due to the calculation and memory effort. This especially holds true
when it is used for jamming detection, where every new SNR value has to be
processed immediately. Hence, the effort for processing one single SNR value
is to be determined. In the following, we introduce the math and respective
effort in detail and point out the main drawbacks. We finally show how to
adapt these calculations to the needs of limited devices like sensor nodes.

3.1 Standard Variance

The variance indicates the range of values where the next reading is most
likely in. We propose to apply a maximum likelihood estimate to determine
the variance of previous readings σm, see Equation 1. The variance originally
requires to use all previous (here n) readings for calculating the average value x
and the differences of x to all n previous readings xi. In summary, processing
a new reading requires 2n additions, n subtractions and squares, plus one
division and one root extraction operation. Hence, the calculation effort of a
single run is O(4n + 2), which finally equals to O(n). In addition, the standard
variance requires a large amount of memory due to the necessity to store all
previous n values. Even though we do not consider the additional overhead
required for memory access, the standard variance is unsuitable for sensor
networks due to both calculation and memory efforts. Since we intend using
the variance of the SNR for online jamming detection, both parameters need
to be significantly reduced to be applicable for sensor networks. Hence, we
adapted the standard calculation to sensor needs by applying the parallel axis
theorem and a customised sliding window derivative.

σm =

√√√√ n∑
i=1

(xi − x̄)2; x̄ =
1
n

n∑
i=1

(xi) (1)

3.2 Reducing Calculation and Memory Effort

Obviously, on the fly processing of SNR readings must be very fast and may not
depend on the number of values (n) used. The parallel axis theorem substitutes
x by the average formula given in Equation 1. It allows processing consecutive
sensor readings without the need to have all previous values available. Instead,
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only the sum of measurements and the sum of measurements squares need to
be refreshed and stored, see Equation 2.

σm =

√
( 1

n

n∑
i=1

x2
i ) − x̄2 =

√
( 1

n

n∑
i=1

x2
i ) − ( 1

n

n∑
i=1

xi)2 (2)

Applying the parallel axis theorem fixes the calculation effort to eight
operations O(8) per processing. It only requires to 2 additions, 2 divisions
and 2 squares plus one subtraction and one root extraction. Even the memory
effort is very low. It requires to store three numbers only, i.e., the sum of
measurements, the sum of measurements squares and the entire number of
processed readings. Unfortunately, these sums are the main drawback of this
approach. The SNR usually varies below 100 dB and hence, the squares of
SNR readings may be very huge. Further the number of processed SNRs can
rapidly increase and result in huge sums used for calculating the variance with
the parallel axis theorem. The microcontroller used on sensor nodes usually
apply a 16 bit or a 20 bit architecture. Due to its energy efficiency we use
the 16 bit MSP430 microcontroller from Texas Instruments on our nodes.
Consequently, the 16 bit architecture limits the size of the sums to 65536.

3.3 Adaptation to Sensor Node Needs

To keep the sums adequately low, we propose to include only a certain
number of previous readings specified by an adaptable sliding window s in
the calculation. The sliding window approach provides two benefits. It allows
to influence the size of the sums as well as to properly adapt the number
of considered measurements to the application. For example, SNRs of past
days may be not of interest for jamming detection, whereas the readings
of the last ten minutes may be much more important for comparison and
evaluation. Note, we also have considered reducing the SNR value by a factor
before processing, e.g., dividing SNR values by 10 or 100. By that, we may
unnecessarily introduce processing overhead since we cannot guarantee the
availability of hardware-accelerated floating point arithmetic.

Obviously, the sliding window approach falls back into O(s) computational
effort and requires to store s numbers in memory. Applying the parallel axis
theorem allows to get rid of stored measurements as already shown, but is
in principle unsuitable for the sliding window method, which requires these
measurements. To allow efficient processing on sensor nodes, we propose
combining both methods in σs by estimating the measurements within the
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Table 1 Comparison of computational and memory effort of approaches introduced. Despite
of best effort, rapidly growing sums prevent from using the parallel axis theorem on 16 or 20
bit architectures

Method Calculation Memory
Variance O(4n+2) = O(n) n numbers
Parallel Axis Theorem O(8) 2 numbers
Significance indicator O(14) 3 numbers

sliding window. The important values of the parallel axis theorem are the
sum of measurements and the sum of measurement squares, as mentioned.
Originally, these sums are updated at every sensing interval by processing
on the next sensor reading. To apply the sliding window method, the current
measurement is added to the sums whereas the expected values are subtracted.
The expected values are given by the average of the previous window,
see Equation 3. For estimating the sum of measurements and the sum of
measurement squares within the window, our approach additionally introduces
only two division, two addition and two subtraction operations per single
processing. In comparison to the original parallel axis theorem, the calculation
effort of our approach is O(14). It also gets by with storing 3 numbers only,
which are both sums and the size of the sliding window. Table 1 presents the
efforts of discussed approaches in at nutshell.

σs =

√√√√1
s

(
n−1∑

i = n−s−1

x2
i + x2

n − x̄2

)
−
(

1
s

(
n−1∑

i=n−s−1

xi + xn − x̄

))2

(3)

3.4 How to Apply Estimated Significance of Changes

The variance of previous SNR readings (within the sliding window) provides
the basis to give a statement about actual SNR readings. It enables to decide
whether actual readings meet expected parameters or not. It further allows to
assess how far new readings deviate from the expected scope. Therefore the
system determines the significance indicator, which states by what multiple
the actual reading diverges from the variance. Due to the parameters learnt
from the variance of the measurements within the sliding window, the
indicator automatically detects significant deviations without the need for
predefined thresholds. That way, we expect enabling sensors to apply equal
SNR processing for location-independent jamming detection.
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4 Assessment of the Significance Analysis Approach

To give a proof of concept, we applied our approach on large data sets
taken from our colleagues work presented in [4]. They set up a wireless
network topology collecting Signal-to-Noise Ratio (SNR) measurements at
different devices. Please note, their work originally focuses on general wireless
networks instead of wireless sensor nodes. Used nodes were equipped with
Mini ITX boards, with 512 MB RAM and a 80 GB hard disk. They are also
equipped with Atheros NMP 8602 802.11 a/b/g wireless cards, controlled by
the Madwifi MAC driver (version 0.9.4), on Ubuntu Linux.

4.1 Experimental Setup

Figure 1 represents the network topology used. The sender sent UDP traffic
to the receiver at a constant rate of 18 Mbps. All measurements collected at
the sender, the receiver and a monitor have been recorded for later processing.
Sender, receiver and monitor all operate on channel 56. The network interface
of the monitor was set to monitor mode, hence received all packets sent on
this channel. Jamming is performed by using two further nodes, i.e., the evil
sender and the evil receiver. These two nodes operated on channel 52, which
is adjacent to channel 56 and hence, produces interference. The solid lines in

Figure 1 Network layout taken from [4]
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Figure 1 represent a dedicated wired backbone for running the experiments.
The evil sender periodically transmitted data with different inactive phases at
a transmission power and rate of 13 dBm and 6 Mbps, respectively.

4.2 Evaluation Results

Figure 2(a) shows the impact of the evil communication on the SNR at
the (not-jamming) sender and Figure 2(b) at the (not-jamming) receiver
respectively. These figures also show short influences, from second 44.0 to
45.5 and long influences, from second 46.2 to 47.2. These result from the
normal protocol behaviour between evil sender and evil receiver. Due to
this behaviour jamming detection in wireless networks is challenging. Based
on their measurements our colleagues successfully tested their intrusion,
or jamming, detection algorithms. For further details please refer to their
work in [4]. However, even though their approach provides good detection
results, necessary calculation and memory effort of the algorithms used are
far from being useable for WSN. Therefore, we tested our approach based
on significance indication, which requires significantly lower effort, on the
same data sets of SNR measurements. Figures 3(a) and 3(b) clearly show that
our significance indication reliably detects all deviations in the SNR value.
In addition, it reacts faster than the variance method, see the more detailed
Figures 4(a) to 4(d) showing a short jamming period. This holds true on each
falling edge of the SNR values independently of the position of the jamming
device. From our point of view the detection speed is of high importance since

Figure 2 Influence of jamming to Signal-to-Noise Ratio (SNR) at sender and receiver. It
clearly shows the impact of jamming on SNR to vary according to the distance of the jammer.
The SNR readings at the receiver, which is located in close distance to the jammer, consider-
ably show larger drops than those at the sender. These drops consequently also lead to local
amplitudes in the variance
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Figure 3 Measured Signal-to-Noise Ratio (SNR) and results of the low-cost significance
indicator approach based on SNR readings at sender and receiver

it can give the network under attack time to initiate proper counter measures.
We are aware of the fact that there is not much a sensor node can do under
jamming. But, storing sensed data, changing the wireless channel, trigger an
alarm that jamming is ongoing are potential counter measures, and help to
provide data for forensics and may be even a basis for a network manager to
start counter measures, such as go and search the jamming device. On the one
hand the high sensitivity of our significance approach is positive since it allows
for detecting jamming from various positions within the WSN avoiding to set
thresholds, which depend on the location of the jamming device. On the other
hand triggering a jamming alarm whenever contention leads to a variation
in the SNR value is unwanted since it leads to a significant number of false
positives. In order to avoid false positives we are analysing the duration of the
changes of the significance value. If it drops down to its initial value within
the next values the change is not interpreted as jamming, since a jamming
attack is considered to last longer. Our experiments figured out that drops in
significance values lasting longer than ten percent of applied window size
most probably identified a jamming period. Figures 4(a) to 4(d) display very
short time slot with single or short drops in SNR with the associated variance
and significance indication values. These figures clearly show that the duration
of the significance value can be used as an indicator for jamming, due to its
sensitivity. In case of jamming, i.e. second 45.16 from sender (Figure 4(a)),
the significance indicator value stays high, whereas it drops down quickly in
case of accidental increase of the SNR value. In contrast to this the variance
method does not really allow to differentiate between accidental changes in
the SNR value and intentional changes, i.e., jamming attacks. This is due to
the fact that the variance analysis values do not change back quickly enough.
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Figure 4 SNR, variance and significance indicator during single SNR drop and a short
jamming period. Whereas the variance lags behind SNR changes, the significance indicator
directly responds to each change

Figures 4(a) to 4(d) clearly show that they stay high even after a quick recovery
of the SNR value.

A high significance indicator reflects the difference between the expected
SNR value and the actually measured one. In other words, the significance
indicator value is zero as soon as the measured value is close to the expected
one. Since the expected SNR value changes slowly over time, i.e., it increases
only gradually from measurement to measurement, the size of the sliding
window influences the sensitivity of the significance indicator approach. In
contrast to the immediate reaction of the significance indicator approach,
the variance analysis only indicates changes in the expected SNR value. By
that the indicated deviation between two measurements is much smaller. In
addition with continuous change in SNR values, the expected SNR and the
variance converge to the actual SNR value. When the variance has reached
its local maximum, the change of the SNR is fully reflected by the values of
sliding window determining the variance. Thereafter only new changes may
be registered and the variance value moves slowly back.
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4.3 Handling False Positives & False Negatives

The size of the sliding window examined to determine whether or not the
jamming indication value drops back or not, has a significant impact on
the speed with that the indication value drops down. For a window size of
10 samples the values of both approaches drop down to the initial value, but
with different speed. The significance indicator drops down almost immedi-
ately whereas the variance analysis needs several milliseconds. If the window
size is prolonged to 25 values, see Figures 4(c) and 4(d), both approaches
react slower in case that the SNR value has changed for longer than single or
few measurements. For improving the correctness of the significance indicator
approach this behaviour is beneficial, since the value stays high longer than
with shorter windows, i.e., it can be taken more seriously. For extremely
short variations in the SNR value the significance indicator value still reacts
immediately, in other words, there we do not loose accuracy.

There is another not yet reflected aspect when deciding whether changes
in the SNR shall be interpreted as jamming or not. The type of MAC
protocol is an important factor. In normal contention based MAC protocols our
considerations are valid, but are they still true when the MAC protocol applies
a certain type of schedule? In such environments even very short periods of
interference (dips in the SNR) might be due to jamming. What we mean is
that a sophisticated jammer could try to block a selected time slot, i.e., to
interrupt the connection of a single device. As additional means to detect such
situations, we propose to specify the type of MAC and to record in which
MAC time slot variances of the SNR are recorded. If it becomes apparent that
a specific time slot is more often affected than others, jamming might be the
correct interpretation independently of the adaptation speed of the significance
indicator value.

5 Significance Analysis Based Jamming Detection

To give a real proof of evidence of our approach, we certainly needed to
implement the presented mathematical approach on a state of the art sensor
node rather than using data measured in a laboratory network set-up only.
Therefore all details and experimental results provided in this section result
from implementing the significance analysis on our own sensor node platform
presented in the next subsection.
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5.1 Applied Sensor Node Platform

Our own sensor node platform used for implementing the jamming detection
approach was originally developed for monitoring vital and environmental of
fire-fighters in action (Piotrowski et al.2010). In this platform we have three
different radio transceivers in parallel, these are:

• TI CC1101: Low cost transceivers working in the 868 MHz band
• TI CC2500: Low cost transceivers working in the 2.4 GHz band
• TI CC2520: ZigBee TM Transceiver working in 2.4 GHz band

We applied two pin and logic compatible transceiver chips working in
different radio frequency bands, i.e. the first in the European 868 MHz
band and the second in the 2.4 GHz. The third transceiver (ZigBee) is also
working in the 2.4 GHz band and provides 802.15.4 support. It was applied
to be able to communicate with other known node platforms. The sensor
node is empowered by the MSP430F5438 Microcontroller from TI. The
complete sensor node is depicted in Figure 5. Due to it’s redundancy in
radio connectivity, our platform provides the ideal basis to implement and test
different jamming scenarios with one setting of nodes. All results presented
in this section have been measured on this platform.

Figure 5 Top view of the applied sensor node platform in comparison to the size of a 1
Euro coin

5.2 Concept of Jamming Detection

The concept presented here is based on several components, which are depicted
in Figure 6. RSSI values from the radio module (RF module) are used as input
data. The first component of the jamming detection is a significance analysis
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Figure 6 Concept of jamming detection

based on the mathematical approaches presented in the previous section 3.3.
The result of this component are the significance changes in the RSSI values.
We assume a large change in significance value to be caused by an active
jammer. This information is used to generate an event to be evaluated by a
following peak detection algorithm. In most peak detection algorithms a fixed
threshold is used, but is not acceptable in this context. To decide between week
and strong deflection, we use a dynamic threshold which is calculated with
the Heaviside function given in equation 4.

Θ(x)peak = (
1
s

n−1∑

i=n−s−1

xi + xn − x̄) − (
max(xn, xn−1, ...., xn−s−1)

2
), x ∈ N (4)

The last component of the jamming detection engine is the decision control,
which finally signals whether jamming is ongoing or not. The flowchart of
the engine is shown in Figure 7. First the engine checks whether an event
was generated by the peak detection. If that is true then the old (avgold) is
compared to the new (avgnew) average value of the RSSI input data. This
branch corresponds to the formula 5. The second branch is used to solve two
problems. The first challenge is that a short interference phase determines
only the start of the jamming activity but not the end. The second challenge
occurs if a long interference phase exist. During this phase fluctuations in the
RSSI average value can cause that the alarm is reset. To distinguish between
short and long phase we use a counter and a fixed threshold (tphase). The
threshold depends on the size of the sliding window of significance ssign and
is calculated by tphase= 1.25 ssign. In case merely a short phase of interference
appears, the trend of RSSI values is checked, otherwise no further calculations
are performed.

Θ(x)decision =
(
(
1
s

n−2∑
i=n−s−2

xi + xn − x̄) − (
1
s

n−1∑
i=n−s−1

xi + xn − x̄)
)

(5)
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Figure 7 Flowchart of decision control module

5.3 Experimental Setup

The experimental setup is shown in Figure 8. We used two sensor nodes
for a simple communication between sender and receiver and one node as a
jammer. The position of the jammer varies between near sender (position 1),
between sender and receiver (position 2) and near receiver (position 3). The
data communication and the jamming activity is performed using the 2.4 GHz
band on channel 15. To exchange control informations the 868 MHz band is
used in parallel. For the experiment we implement two different application
for the platform. The first application, called CommApp, periodically sends
data packets with a data rate of 250 kbps and a payload of 60 Bytes from
sender to receiver. The sending interval is 50 ms. Furthermore, the application
periodically reads actual RSSI values from the CC2520 (2.4 GHz) transceiver
at every 10 ms and forwards it as input for the jamming detection engine.
To analyse the results we forward all important information in CSV format
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Figure 8 Experimental set-up of jamming scenarios and node positions

over the UART interface to a logging and control application running on
the laptop. Collected data are the current RSSI value, intermediate data of
jamming detection, packet delivery rate (PDR), jammer activity, number of
received preambles and packets.

The second application, called JammApp, implements three types of jam-
ming, i.e., constant-, periodic- and random jamming. To generate a disturbing
signal with CC2520 radio we use a special transmit mode, which send pseudo
random data [6]. The state of JammApp can be set to active or inactive and
can toggle in periodic or random intervals. Before the activity of the jammer
changes, the JammApp sends its state over the control channel via 868 MHz
to all sensor nodes. This is needed to be able to check and synchronise the
detection results with the actually attack state for evaluation purposes. The
actual jamming scenario remains undisturbed by that.

The Figure 9 shows the impact of the communication and jammers on
the wireless channel. The first graph (a) is a normal communication between
sender and receiver without malicious impact. The graph (b) to (d) illustrate
the impact of respective three different types of jamming. To test our detection
algorithms we collected data for each scenario over a 30 min time period. For
all scenarios following parameters are used:

Clock rate MSP430: 4 MHz
Sample rate: 10 ms
Sliding window of significance analysis: ssign = 8
Sliding window of peak detection: speak = 2

5.4 Implementation Details
Resources used
An overview of the memory consumption is given in Table 2. The table
illustrates the size of code (text) and the required memory space (data)
of the jamming detection mechanism. The individual functions have been
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Figure 9 Monitored RSSI values of communication (a), constant jammer (b), periodic jammer
(c), random jammer (d)

Table 2 Static analysis - memory requirements
Function Memory in [Byte]

Text Data
Significance Init() Significance Eval() 33 326 16
PeakDetection Init() PeakDetection Eval() 22 198 17
DecisionControl Init() DecisionControl Eval() 18 358 14
Total 955 47

disassembled from the binary files to determine the amount of memory
needed. The total text size of the detection engine is 955 bytes only, which
is quite acceptable also for sensor nodes. The biggest amount of memory is
used for the decision control, which is due to the additionally implemented
mechanisms as mentioned above. The space required for the storing values
for calculations during runtime is even much lower. We here need 47 bytes
for variables only. This gives a total of about 1 KB (1002 bytes) of required
memory, which is in a tolerable range even for the limited memory resources of
sensor nodes.

Online jamming detection tool
To configure the test scenarios we implemented two applications. Both used
the virtual serial com port to communicate with the sensor node platform to
actively control the scenarios during run-time. The first application, shown on
the left side of Figure 10, allows us to set the wireless channel and the transmit



150 S. Kornemann et al.

Figure 10 Graphical user interface of remote interface from sensor node (left) and jammer
(right) application

power of the radio transceiver of connected sensor node. Furthermore it allows
for plotting and storing the current values of detection analysis in real-time.
The second application is build for the configuration of the JammApp. Here,
the type and activity of the jammer can be set in addition to the pure radio
configuration.

Runtime
The time needed to perform the algorithms was measured by gathering
required clock cycles. The interrupts of the used timer were configured such
that a cycle corresponds to one microsecond in time, at a processor clock rate
of 4 MHz. The results are shown in Table 3. A single detection run may require
up to 4944 cycles. Thus, a single detection cycle runs approximately 4.9 ms
at aclock rate of 4 MHz. If the constant jammer is active, the required time
decreases to 4.2 ms (4237 cycles) only. This is due to less processing of data
in the decision control, since most of the decision control functionality is only
activated when significant changes are detected, i.e. the constant jammer is
the best to be recognized very quickly.

Experimental results and detection rates
The most crucial goal of each jamming detection method is the effectiveness
and accuracy of detecting attacks correctly. Therefore we have separated the
number of active jamming phases in relation to the correctly detected jamming
phases from the measured data.
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Table 3 Captured data and accuracy of jamming detection applying various positions of the
jamming device

Criteria Node Jammer position 1 (near Sender)
Constant Periodic Random

RSSI in dBm Receiver –88.36 –97.39 –98.1
Sender –63.29 –84.17 –84.66

runtime in clock cycles Receiver 4423 4727 4716
Sender 4361 4941 4812

Detected attacks in % Receiver 100 65.72 53.9
Sender 100 99.67 89.09

PDR in % Receiver 97.08 99.16 98.94
Criteria Node Jammer position 2 (in between)

Constant Periodic Random
RSSI in dBm Receiver –82.86 –91.11 –91.17

Sender –66.79 –86.19 –86.66
runtime in clock cycles Receiver 4287.3 4916.91 4806.31

Sender 4243.69 4944.53 4811.25
Detected attacks in % Receiver 100 99.92 90.06

Sender 100 99.82 87.62
PDR in % Receiver 1.01 47.58 46.78
Criteria Node Jammer position 3 (near receiver)

Constant Periodic Random
RSSI in dBm Receiver –65.17 –82.24 –83.11

Sender –78.42 –94.97 –95.52
runtime in clock cycles Receiver 4237 4928 4820

Sender 4289 4779 4728
Detected attacks in % Receiver 100 99.98 91.19

Sender 100 91.89 84.47
PDR in % Receiver 0.42 47.47 46.54

First, the attacks of the constant jammer are evaluated. The detection rates
for all scenarios with a constant jammer are 100 %. Sender and receiver
have thus achieved the same results, although different distances have been
tested, i.e., the different positions of the jamming device. That outcome slightly
changes when considering the results while the periodic jammer was active.
Here not all activities have been recognized correctly and the results are
coupled with the distance to the jamming device, as pre-assumed before
testing. If the jammer is located in-between sender and receiver at the same
distance to both sensor nodes (position 2), then both nodes detect almost all
attacks. The maximum measured error rate was 0.18 %. Higher error rates
can only be seen at the positions 1 (close to the transmitter) and 3 (near
the receiver). At position 1 there is a error rate in contrast to position 3.
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The reason for this are low deviant RSSI values and due to the simple fact,
that transmission is disturbed at the sending device. Thus, a packet may
be destroyed while sending already or more important, the sender does not
send at all due to already occupied channel. Most MAC protocols of course
sample the wireless channel before sending. Nevertheless detection rates of
65.7 % with a minimal increase in the RSSI average of 8.9 dBm can still be
obtained. Better results have been measured at position 3. In this scenario,
we achieved detection rates of 99.98 % at the receiver and of 91.89 % at the
sender respectively. The most difficult jammer to be detected was the random
jammer. The rapid change from short to long interfering signals are reflected in
the results again. It still reaches values of 84 % to 93.4 %. However, the lower
detection results at the receiver and the jammer at position 1 still remain due
to low RSSI values returned. Overall, very good results have been achieved
in all scenarios given to the fact that not pre-configured jamming is difficult at
all, especially in sensor networks. It has been shown that even weak jammers
were effectively detected. In a sensor network scenario, all nodes located near
to the jammer should be able to detect an attack. Hence, also nodes not affected
by the jammer can then inform all other nodes as well as a sink about on-going
jamming and take any necessary corrective action, e.g. searching for a suitable
other wireless channel.

6 Concluding Remarks

In this paper we have introduced the significance analysis approach as a means
to detect jamming in wireless sensor networks in real-time. Since it reacts on
changes in the monitored value, here SNR, our approach omits the need for
preconfigured values, which are difficult to get and in addition are difficult
to use since the impact on the SNR depends on the position of the jammer.
We have evaluated the complexity of our approach and shown that in theory
the computational effort equals to O(14) and that the memory consumption
collapses to storing three integer values. We have evaluated the correctness
of the prediction by applying it to real measurements recorded in a jamming
experiment.

To provide evidence, we have implemented and tested our jamming
detection engine based on the significance analysis on a state of the art sensor
network setting. It requires about one kilobyte of code and data memory only.
Our jamming detection engine monitors the wireless channel with a sampling
rate of 10 ms. It returns a jamming detection decision within less than 5 ms
and achieves a detection accuracy in between 84 to 99 percent. It turned out
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that the obviously best position of jammer is near the receiver, since then the
jamming might be overseen by the sending device whereas the receiving one
is not able to send an alert message due to ongoing jamming either.

Even though we have proven our approach to be working quite well, there
still exist several open questions such as correlation of detection method and
used MAC protocols, reaction time to be gained e.g. in case the jamming
device slowly increases its transmission power etc. Especially the latter case
is of interest for us, since in this case jamming might probably not be detected
as a peak in SNR by our approach. In summary, jamming detection methods
in general need to be seen as continuous work in progress due to the simple
fact that jamming methods and jamming devices will advance too.
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