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Abstract

The ubiquity of mobile devices and their evolution as computing platforms
has made them lucrative targets for malware. Malware, such as spyware,
trojans, rootkits and botnets that have traditionally plagued PCs are now
increasingly targeting mobile devices and are also referred to as mobile mal-
ware. Cybercriminal attacks have used mobile malware trojans to steal and
transmit users’ personal information, including financial credentials, to bot
master servers as well as abuse the capabilities of the device (e.g., send
premium SMS messages) to generate fraudulent revenue streams.

In this paper, we describe Triton, a new, network-based architecture, and a
prototype implementation of it, for detecting and mitigating mobile malware.
Our implementation of Triton for both Android and Linux environments was
built in our 3G UMTS lab network, and was found to efficiently detect
and neutralize mobile malware when tested using real malware samples
from the wild. Triton employs a defense-in-depth approach and features:
1) in-the- network malware detectors to identify and prevent the spread of
malware and 2) a server-side mitigation engine that sends threat profiles to an
on-the-phone trusted software component to neutralize and perform
fine-grained remediation of malware on mobile devices.
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1 Introduction

Mobile devices have become an integral part of our daily lives; we rely on
them to send and receive email, communicate with family and friends, perform
financial transactions, and much more. Due to the inherent trust users place in
these devices, as well as the availability and frequent download of hundreds
of thousands of apps, it is no coincidence that mobile devices are now targets
of complex malware attacks. According to a threat report by F-Secure Labs,
5,033 malicious Android applications were discovered in the second quarter
of 2012, a 64% increase compared to the previous quarter, including the first
Android malware to use a drive-by-download vector for infection [6].

From a mobility network provider point of view, the mobile malware
threat not only impacts its individual customers, but also impacts the secu-
rity and reliability of the mobility network as a whole. Researchers have
shown the feasibility of denying mobility network services using specially
targeted SMS messages, control channel vulnerabilities, and mobile botnets
[28, 42, 51]. In fact, in the recent outbreak of SpamSoldier [14], attackers
formed a botnet of SMS spammers, making what was once a research problem
now a reality. As with many other security problems, the problem of mobile
malware needs to be addressed holistically via a defense-in-depth approach
that includes prevention, detection, containment, and recovery techniques.
Various solutions have been proposed to tackle the increasing number of
mobile threats, though from the perspective of a network provider, no optimal
solution exists today.

Many app stores are beginning to use security APIs to scan apps before
they list them [9] [1]. While this will limit some malicious apps from being
downloaded by the user, mobile malware can be delivered via other attack
vectors, such as visiting infected websites (drive-by-downloads), downloading
apps from unsafe app stores, spam email or SMS/MMS, or simply down-
loading unsafe content from unrated or malicious web sites. Recent work
has also shown the feasibility of subverting the app store review process,
thereby compromising the integrity of the app store itself [47, 8]. Though
most companies provide mobile variants of their signature-based anti-virus
software; these schemes typically require an exhaustive set of signatures and
can be easily thwarted by malware that use techniques such as encryption and
packing [24, 34]. In fact, Google’s ownApp Verification Service, introduced in
Android 4.2, only detects 15% of 1,200 malware samples previously released
to the public [36]. Alternatively, host-based behavioral detection engines,
which can detect these sophisticated threats, are simply infeasible to deploy on
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current mobile devices due to their heavy resource requirements and limited
energy constraints [46, 20].

To protect both their customers and network infrastructure, network
providers frequently deploy network-based anomaly detectors capable of
detecting malicious traffic patterns, such as botnet communication patterns,
worm traffic, and DDoS attacks [40]. Within the mobility network, these
same security services exist, though they are expanded to include mobility
specific attacks, such as SMS spamming campaigns and premium number
fraud. Traffic characteristics and malicious payloads are typically analyzed
using inhouse analysis environments and third-party cloud services without
resource constraints. Traffic characteristics from millions of users are analyzed
every day, giving a network provider visibility into a large set of attacks.
However, when the network detects a misbehaving device and determines
that its activity is harmful to both other customers and the network, the only
current possible mitigation strategy is deactivating the device, resulting in
dissatisfied customers and calls to customer service.

In this paper, we describe Triton, a new, network-based architecture and a
prototype implementation of it for detecting and mitigating mobile malware.
Triton combines the strength of network-based detection with the abilities
of a trusted device component to identify the malicious app and mitigate
the infection. Triton employs a defense-in-depth approach where in-the-
network malware detectors communicate network threats to an on-the-phone
trusted software component to identify and neutralize malware on the device.
Combining network based detection with the ability to identify malware on the
device allows Triton to provide protection against threats even in the absence
of an anti-virus signature, provide faster response to ongoing threats, operate
at lower costs, and leads to a minimal increase in battery consumption on the
end device.

The contributions of this work are as follows:

• The Triton architecture detects and renders malware ineffective. Triton
derives its effectiveness by placing network level components that detect
and communicate threat profiles to a trusted software component running
on the device that can identify and mitigate malware.

• A prototype implementation of Triton that we built in our 3G UMTS
lab, and discuss some of the real-world trade-offs that we encountered in
building it.

The remainder of the paper is organized as follows. In Section 1, we
provide a quick primer of the 3G mobility network to provide the reader an
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understanding of how Triton fits in. In Section 3, we describe our defense-in-
depth approach including Triton’s design and implementation. We present our
experimental results in Section 4. We address counter attacks, scalability and
limitations in Section 5. Related work is covered in Section 6 and we finally
conclude in Section 7.

2 Background

This section describes the basic elements involved in the 3G UMTS network
[16]. We use this type of network to design, develop and test our architecture.
The architecture that we propose is generic enough and can be deployed with
other types of 3G networks as well as 4G LTE networks.

2.1 3G UMTS Network Primer

Figure 1 shows the basic components of a UMTS network. In a UMTS
network, a mobile device connects to the network via a radio link to the
nearest base station, also referred to as the Node B. Multiple base stations
are connected to a Radio Network Controller (RNC). For access to the circuit
switched services, such as phone calls and SMS messages, multiple RNCs are
connected to a Mobile Switching Center (MSC). SMS messages are sent to
the nearest SMS Center (SMSC) from the MSC over the control channel. For
access to the data services, multiple RNCs are connected to the Serving GPRS
Support Node (SGSN). The MSC, SGSN and the Visitor Location Register
(VLR) track devices that are connected to the network that they are visiting.
Every subscriber in the UMTS network is identified with an International
Mobile Subscriber Identity (IMSI) number. Every device is identified with an

Figure 1 3G UMTS Network Architecture
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International Mobile Equipment Identity (IMEI) number. Every subscriber
also has a home network that stores the subscriber profile in the Home
Location Register (HLR), including the IMSI and the IMEI numbers. Mutual
authentication between a mobile device and a visited network is carried out
with the support of the serving SGSN or the MSC/VLR. The Gateway GPRS
Support Node (GGSN) acts as an anchor for all data traffic originating from
the mobile device irrespective of its location. For simplicity and clarity, we
have only described elements that are sufficient for basic understanding of the
UMTS network. The GGSN is the component that our architecture interfaces
with within the UMTS network and therefore is described in more detail below.

2.2 Gateway GPRS Support Node (GGSN)

The GGSN is a node that acts as a gateway between the mobility network
and the Internet. The mobile device connects to the local SGSN, which in turn
builds a tunnel to the GGSN using the GPRS Tunneling Protocol (GTP). When
the device moves to a different location, it switches SGSNs while the GGSN
serves as the anchor point of the tunnel that routes data traffic to the Internet.
The GGSN covers a very large part of the mobility network for data services
as it resides within the user’s home network. This placement allows the GGSN
to serve as a central point of observation for data traffic and therefore is ideal
for placement of network based malware detectors.

The GGSN assigns an IP address to every single outgoing data connection
originating from the mobile device. This IP address is randomly picked from a
pool of IP addresses owned by the GGSN. Therefore, a single IP address from
this pool might represent different mobile devices within the same mobility
network at different points in time. Alternatively, different IP addresses might
correspond to the same device at different time instances. The GGSN contains
all information about user’s data usage. It feeds this information into a
Charging Gateway Function (CGF). The CGF accounts for data usage and
generates billing information based on the usage and the type of data plan
subscription. The GGSN naturally acts like a Network Address Translation
(NAT) device and has information to correlate the IP address assigned to the
device to its identity at any given point in time. This structure of the mobility
network provides the following advantages that we leverage.

• Centralized view of data traffic: The GGSN acts as a gateway to the data
traffic and has visibility into data generated by all the mobile devices that
it serves. This centralized view enables detection of large scale attacks,
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such as command and control traffic originating from mobile botnets and
fast spreading worms.

• Mapping IP to the device identity: When a new mobile device initiates
a data connection, the GGSN creates a Packet Data Protocol (PDP)
context for the device. The PDP context is maintained at both ends
of the GTP tunnel between the SGSN and the GGSN. It contains all
information about the device that has requested the data service including
its IMSI/IMEI numbers. The GGSN picks a free IP address from its pool
and assigns it to the new PDP context. Because the GGSN maintains this
information, at any given point in time, it is able to identify the device with
the given IP address. The architecture we propose utilizes this mapping
to accurately identify infected devices sending out malicious traffic.

3 Design and Implementation

Triton employs a defense-in-depth approach in combating mobile malware,
which broadly comprises of the following steps.

• Infection prevention: Triton is able to prevent infections by blocking
mobile devices from either visiting or downloading known “bad” apps
and content. It can push infection information of new and ongoing threats
to non-infected devices, which will prevent malware from running on
these devices altogether.

• Effective detection: Mobile devices are heavily network centric as most
content is delivered from the Internet via apps or websites. Triton places
malware detectors within the mobility network and monitors for signs of
infection. It also interfaces with third-party cloud services for specialized
offline analysis of apps and content, which it uses for detection and
prevention.

• Immediate containment: Triton employs a trusted component on the
mobile device that receives threat profiles from the network. Threat pro-
files characterize the traffic that was flagged by the network as malicious.
The trusted component can identify the application that generated the
malicious traffic and immediately stop it from executing. It can also
notify the user and remove the application from the device once it has
been neutralized.

• Fine grained response: Triton’s fine-grained response of only containing
malware without hampering execution of other legitimate applications,
allows the user safe continued access to his device.
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3.1 Architecture

Figure 2 shows the end-to-end architecture of Triton and how it interfaces
with the GGSN within the 3G UMTS network. Triton places several new
components within the mobility network - the Mitigation Engine (MiE), the
Network Malware Detector (NMD), the Filter, the Packet Inspector (PI) and
the database. It also places a Trusted Host Component (THC) on the mobile
device itself to assist with containment.

As explained in Section 2.2, mobile devices send data traffic to the Internet
via the GGSN. When a mobile device attaches to the network, it establishes
a new PDP context and is assigned an IP address from a pool owned by the
GGSN. We instrument the GGSN to log the IP address assigned to the device
and its IMSI/IMEI numbers into the database. It also logs the time duration
for which the current IP belonged to the specific device, i.e. the duration of
the PDP context. This information is required to map the IP address assigned
to the device with its device identity (IMSI/IMEI).

The PI sniffs the Internet facing interface of the GGSN and logs all network
data flows, originating from and to the mobile devices, into the database. It
also logs information from some application level protocols, such as HTTP
and DNS. The NMD operates on logged network flows and detects malicious
traffic patterns e.g., the NMD might find a mobile device conducting an IP
scan or a port scan, or sending traffic to blacklisted command and control
servers. Since the NMD has a large scale view of the mobility network, it is
well placed to detect spread of worms or other types of large scale attacks, such
as DDoS or botnet command and control communication patterns. It is also
well-placed to detect other kinds of application level accesses, such as access
to malicious websites or malicious app downloads. Along with traditional
network-based detectors, the NMD can also rely on external cloud-based

Figure 2 Mobile malware mitigation architecture
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services for specialized analysis, e.g., analysis of specific URLs for drive-
by-downloads or conducting behavioral analysis of an app that was accessed
by the end mobile device. Analysis results from cloud services are used as
network signatures for detection both in the NMD and the Filter. The Filter
component blocks future access from mobile devices to websites or apps that
are identified as malicious. The MiE uses the alert information generated by
the NMD to generate a threat profile and communicates the threat profile to the
THC on the end mobile device. The mobile device identifies the application
that is infected and immediately stops it from executing on the device.

Below, we explain in detail the role of each of the components of Triton and
how they communicate with each other to effectively combat mobile malware.

3.1.1 Trusted Host Component (THC)
Triton places the THC on the mobile device in two different ways; primarily
based on whether the underlying platform supports virtualization.

Figure 3(a) shows a THC on the device that supports virtualization. On
a virtualized platform, the THC runs as an application inside a privileged
virtual machine (VM) and all other user applications run inside a User VM.
Placing the THC in this fashion allows us to leverage certain well-known
security properties of the virtual machine architectures [29, 27]. By placing
the THC in the privileged VM, it is effectively isolated from other applications
running on the device yet is able to inspect on the state of the applications
and the operating system running inside the User VM. This architecture can
protect against malware that resides in user, as well as kernel, space inside the
User VM.

Figure 3(b) shows the THC running inside the operating system kernel
for platforms that do not support virtualization, which is the case with current

Figure 3 Mobile device architecture and placement of the trusted component
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commercial mobile phones. We use this architecture on smart phones where
the THC runs inside the kernel. By running in kernel space, the THC is able
to intercept system calls from user space applications and inspect application
state. However, this model has the limitation that it is unable to detect or
defend against attacks that compromise the kernel, e.g., kernel-level rootkits.
While using this architecture, we assume that the threat to the device is only
in user space.

In both cases, the THC listens for connections from the MiE on a special
TCP port. It also maintains a rolling log of network connections both incoming
and outgoing generated by user applications running on the device. This log
maps each network flow to the application that generated the flow or is the
recipient of the flow. When the network identifies that a device is infected with
malware, it receives infection information from the MiE about the network
flows that were found to be malicious. The THC refers to its log to find the
application that generated the malicious flow.

3.1.2 Packet Inspector (PI)
The PI component sniffs the outgoing physical interface of the GGSN,
also known as the Gi interface. It logs into the database, all bidirectional
network flows from the mobile devices. Network flows comprise of source
and destination IP addresses, source and destination ports and the protocol
used. The PI also logs some relevant information from certain application
level protocols of interest, such as domain names for DNS and URLs for
HTTP. DNS information allows the NMD to identify applications trying to
contact malicious domains. Logging HTTP URLs helps identify access to
malicious websites from mobile devices.

3.1.3 Network Malware Detector (NMD)
The NMD operates on logged network flows and identifies malicious network
traffic. The NMD is designed with extensibility in mind and can leverage any
number of well known tools or techniques to identify malicious traffic patterns
[2, 15, 23, 31–33, 41 52–53]. In order to improve Triton’s effectiveness over
time, future network-based detection algorithms can be easily incorporated
into the NMD. At the IP/TCP/UDP layer, the detector might find a device
scanning other IP addresses or ports. A high scan rate indicates a worm trying
to spread to new devices, such as the iKee.B worm which targeted jailbroken
iPhones [49]. Often port scans look for specific open ports running services
with vulnerabilities. Other types of network layer detection might involve
using the amount of data or connections to detect Denial of Service (DoS)
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attempts, including DoS attempts on the mobility network itself [42]. The
NMD can also maintain an IP blacklist, obtained from 3rd party sources,
network based detection algorithms and internal observations, to identify
malicious connections from devices to such servers. This often indicates
infection, e.g., a bot trying to connect to its command and control server
or a malicious application that tries to send stolen information back to the
attack server.

Apart from detection at the network layer, detection can be incorporated
by scanning headers of higher level protocols contained within the network
traffic, such as DNS. With DNS information, the network detector can identify
malicious connections to blacklisted domains. In addition to scanning higher
level protocol headers, the detector can also perform deep packet inspection on
suspicious traffic to match for known malware signatures. This approach can
be used selectively as it increases the storage load on the server significantly.

The NMD logs all alerts into the database. The alert contains the IP address
of the device and the time at which the flow was recorded to be malicious.

Specialized detectors. Network providers typically rely on specialized
detectors for certain services that are outside their area of expertise. In
Triton, the NMD employs specialized cloud-based detectors for a more
comprehensive, time-consuming analysis of unknown URLs and apps seen in
the network. When a user downloads an unknown app or visits an unknown
URL, the Filter optimistically grants access to the resource, while initiating
a URL/app scanning request to the cloud service in parallel. Though some
simple, signature-based checks can be done to determine if an application or
URL is already previously known to be malicious, scanning applications and
URLs for previously unknown threats using dynamic or behavioral analysis
can detect malware variants for which no signature exists yet. Analysis results
returned by the cloud service are fed back into the NMD to enhance its
algorithms and to prevent future accesses to the malicious URLs/apps. If a
device gets infected before the results are received, an alert is generated by
the NMD, and the mitigation steps to contain the effects of the malware are
executed by the MiE and THC working together in tandem.

SMS Malware Detector. If the cloud-based analysis reports malware
sending premium SMS messages or messages that have been previously
identified as spam [3], the message or premium number is added to an SMS
blacklist within our database. The SMS Malware Detector, running on the
SMSC has access to this database and can match all outgoing SMS messages
with this blacklist and generate an SMS alert.
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3.1.4 Filter
The Filter component blocks access to malicious content/connections e.g., it
can check for future accesses to URLs or apps that are flagged as malicious.
In such a case, the Filter component drops the request and returns a stub page
to the user, which informs him of the website being malicious. The Filter
component can also filter generic netflows identified as malicious, such as
communication with blacklisted IPs or domain names.

3.1.5 Mitigation Engine (MiE)
The MiE processes the alerts generated by the NMD. An alert contains the IP
address of the infected device and the time at which the alert was generated
for the given network flow. The MiE has to first identify the correct device
based on this information as the device might have disconnected from the
network or might have acquired a new IP address. The MiE first obtains the
IMSI/IMEI of the device that the IP address belonged to at the time the alert
was generated. This information can be obtained by correlating the time for
which the PDP context was valid and had the aforementioned IP address. From
the IMSI/IMEI number, it checks if the device is connected to the network
and has a valid PDP context. It obtains the new IP address of the device in this
case and makes a connection to the THC on the device. If the device is offline,
this alert is ignored and processed later when the device connects back to the
network.

With the valid IP address, the MiE connects to the THC on a special TCP
port. The THC listens on this special port for commands from the MiE and
receives threat profiles in order to identify malicious apps.

3.2 Network-Device Communication

When a device is uninfected, the network passively scans for signs of malicious
traffic generated by the device. Communication is initiated by the MiE, only
when signs of infection are found via the NMD. In all cases, the MiE initiates
the connection to the THC on the device. We assume that the MiE and the
THC have a unique preshared key that they use for secure communication.
The preshared key can be securely stored on the device and distributed along
with the THC.

3.2.1 Threat profile communication
The MiE identifies the infected device in response to an alert generated by the
network detector or as a result of offline analysis. For example, the NMD might



192 A. Baliga et al.

have identified that the device is infected because it found the device initiating
an HTTP connection to a bot controller. After establishing a secure channel
with the THC on the device, the MiE sends a threat profile to it. Figure 4 shows
an example threat profile generated by the MiE for a device infected with the
DroidDream malware [7]. In this case, the network identifies a device which
has contacted a blacklisted IP of the botnet command and control server. The
profile includes the details of the malicious flow as identified by the network,
which includes the source and destination IP and port pairs, the protocol and
the time the connection was made. This profile also commands the THC to
terminate the application that generated the malicious flow.

The host component also maintains a log of network connections from
the device. This log comprises of the eight tuple <Source IP, Dest IP, Source
Port, Dest Port, Protocol, Application, Start Time, End Time>. Compared to
the network, the host component additionally stores the application identity
that is sending/receiving packets. By matching the tuples with the threat
profile, the host component is able to find the application that generated the
malicious flow.

The MiE responds with possible remediation actions to be performed
depending on the severity of the threat. If the flow, identified by the network, is
not found in the log, the THC stores this information in a watch list and looks
for future matching packets that might be sent from the device. For example,
if a bot on the device initiated HTTP connections to its controlling server, this
event is likely to repeat within the near future and will be detected at that point
in time.

Figure 4 Threat profile for the DroidDream app connecting the botnet server
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3.2.2 Mitigation Actions
Mitigation actions can be explicitly requested by the MiE or performed by
the host component after receiving infection information. In both cases, the
mitigation actions effect only the malware program running on the device
without hampering the user from using other applications or functionality.
In some cases, where the network has enough information about an ongoing
threat, it can request the THC to perform prevention in order to contain the
threat. For example, if Triton has identified both the network activity and
application of a fast spreading worm, it might preemptively share this threat
profile with other devices before they are infected, thus preventing infection.

Android smart phones today allow Google to remotely send commands to
either install or remove applications from their smart phones via their GTalk
service. Google has been using this feature to revoke applications found to be
malicious or violating their Android market developer distribution agreement
or content policy [13, 5]. Our architecture on the other hand allows the mobility
carrier to invoke such functionality on all types of heterogeneous devices that
are allowed to connect to its mobility network, upon discovering that those
devices are infected. As opposed to the kill switch that Google can invoke
to remove applications only downloaded from the Android market [5], Triton
can protect end users from malicious apps that might have been installed from
other alternative app stores, malware that gets installed as a result of a drive by
download, malware that installs with the user permission as a result of email
or SMS/MMS spam or other types of malicious attacks, such as worms, etc.

3.3 Implementation

We have a fully operational 3G UMTS instance that implements the Triton
architecture. Below, we describe the implementation details of prototyping
Triton within our 3G UMTS lab network.

3.3.1 Network components
We use the OpenGGSN software running on a Linux server as the GGSN node
[12]. The OpenGGSN node interfaces with the SGSN within our 3G wireless
lab. We modified OpenGGSN to log information about PDP contexts assigned
to the mobile devices within the mobility network into a MySQL database that
runs on the same server. This information consists of the device identity, i.e.
the IMSI/IMEI numbers and its corresponding IP address for a valid PDP
context time duration. The PI, NMD, MiE and the Filter are all applications
that run on the same Linux server and can query the MySQL database.
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3.3.2 Trusted component on Android
On Android, the THC runs within the Android kernel, implemented as a kernel
module as shown in Figure 3(b). We use this architecture to demonstrate
the implementation on smart phones as they exist today. Because the THC
runs within the kernel, it can only provide complete protection against
attacks that operate in user space, which is largely the case for smart phone
malware today. This implementation does not take into account attacks that
already have obtained kernel level control, such as kernel-level rootkits. We
defer discussion about how malware might subvert the host component if it
obtains kernel level control and our countermeasures against such attacks to
Section 5.1.

The THC obtains information about Android applications by intercepting
system calls. It intercepts all socket related calls to create a log of all TCP
and UDP traffic that originates from Android applications. It buffers and
logs network activity within a small rolling log. This log is comprised of the
network end point information, such as source and destination IP addresses
and port numbers, the application that generated or received the traffic and
the start and end times of the network flow. The application name that sends
traffic on a specific socket is obtained by internally walking the various kernel
data structures. A significant amount of malware on Android also generates
malicious SMS messages. To keep track of SMS messages, the THC also
intercepts all writes to the modem file descriptor and looks for AT commands.
By using this technique, it also logs all SMS messages that are generated by
Android applications.

To receive threat profiles from the network MiE, the THC runs a TCP
server within kernel space as a kernel thread. This thread listens to commands
from the network component and can decode the threat profiles that it receives.
Upon receiving a threat profile, it decodes the malicious flow, refers to its log to
find the application that generated the flow and kills the application by posting
a kill signal to the appropriate process. The application is further blacklisted
and prevented from running on the device thereafter.

3.3.3 Trusted component on Xen/Linux
Current mobile virtualization solutions are limited in their availability and
cannot be installed on any commercially available devices today. To demon-
strate how Triton works with virtualizable platforms, which are expected to
be available on smart phones in the near future [11, 17, 35], we built our
prototype on the Viliv S5 mobile device due to its functional equivalence of
a smart phone. The Viliv S5 is equipped with an Intel Atom Z520 1.33 GHz
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processor and runs the Xen VMM [27] to achieve isolation between the user
VM and the THC executing within a privileged VM, both running the Linux
operating system as shown in Figure 3(a).

The THC inside the privileged VM must identify network activity gener-
ated by the user VM and identify the application that generated this traffic.
By using a hypervisor-based system, the THC can remain isolated and secure
even if the user VM’s kernel is compromised by malware. Because we assume
the kernel in the user VM can be compromised, the THC does not rely on any
information within the user VM kernel and therefore must bridge the semantic
gap between the hypervisor and the user VM.

In the hypervisor, we add functionality for intercepting and forwarding
process and networking related system calls to the THC in the privileged VM.
We use a technique published in [19], to pass all system calls to the hypervisor.
Relevant system calls are forwarded to the THC via shared memory pages,
which are accessible to both the hypervisor and the THC. The THC waits on a
Xen event channel in order to be notified when new information arrives on the
shared pages. Below, we describe how this implementation tracks applications
running on the system and how it accounts for the network traffic that they
generate.

Process tracking. In Linux, processes are executed using the execve
system call. The execve system call takes an argument, which is the full
path name of the application to be executed. The THC obtains the name of
the application executing by using this information from the hypervisor. To
identify the process currently running, without relying on the kernel data
structures of the user VM, we rely on the characteristics of the x86 memory
management system.

In the x86 architecture, each process is separated within its own virtual
address space using multi-level pages tables. Each address space is indexed
by a high level page directory table, which is stored in the process control
register (CR3) during process execution and can be used to uniquely identify
a process [39, 18]. When a process is created using the the execve system call,
we capture the address of the page directory and pass the address on to the
THC. This gives us a mapping between a binary name and the current process
running, identified by the CR3 value.

Network activity tracking. When an application generates network ac
tivity, it makes a sequence socketcall system calls. We trace various socket
calls, such as connect and sendto, and pass their arguments to the THC in order
to log network activity of the user VM. Since these system calls occur within
the context of the currently executing process, the CR3 register is also passed
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to the THC in order to identify the application which caused this network
activity. This generates a mapping between the application and the network
activity that it is involved in.

Mitigation. Because killing a process relies on various kernel data struc-
tures of the user VM, the THC cannot directly kill a running application.
Instead, once a malicious application has been identified, the binary name
and any currently executing CR3 values corresponding to this binary are
blacklisted. If the malicious application attempts to make any further socket
system calls, the hypervisor returns an error resulting in a system call failure.
This forces the kernel to return an error, effectively denying service to the
application.

4 Evaluation

In this section, we describe the experimental setup and the specific experi
ments that we used to illustrate the defense-in-depth approach of our prototype
Triton.

4.1 Experimental setup

Mobile devices equipped with specialized SIM cards can connect to the base
station in our 3G wireless lab. The devices that we use in our experiments are
the HTC Aria smart phone and the Viliv S5. The HTC Aria phone is equipped
with a Qualcomm MSM 7227 Chipset, a ARMv6 600 MHz processor, and
291 MB of memory. We run the CyanogenMod 7 distribution [4] and Android
version 2.3.4, API version 10 on the phone. The trusted component runs as a
kernel module on this phone. The Viliv S5 is equipped with an IntelAtom Z520
1.33 GHz processor, 4.8” touch screen, 32GB hard drive, 1GB of memory,
WiFi, Bluetooth, a 3G modem, and GPS. We use the Xen 4.0.1 hypervisor in
paravirtualized mode. The privileged VM runs Fedora 12 with Linux 2.6.27.42
patched for Xen dom0 support while the User VM runs CentOS 5.5 with Linux
2.6.27.5 including Xen paravirtualization support.

4.2 Malware Prevention

We describe here the experimental setup that we have to prevent mobile
devices from downloading known bad content and apps. Once resources are
identified as malicious, future access is blocked, effectively protecting end
users from downloading malicious content.
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4.2.1 Behavioral Scanning of Apps and URLs
The Triton architecture uses a cloud-based malware analysis service to
behaviorally scan applications and URLs offline. When a user downloads
an application through an app store and/or has an application transmitted to
his device, the download request URL, containing an application identifier,
is observed by the packet inspector in the network. Triton uses this identifier
to download the application through the normal app store channel and does
not expose the user that has downloaded the application in any way. Due to
privacy concerns, we do not rely on any sensitive information of the user and
do not obtain applications from user devices. Triton currently only intercepts
apps downloaded from the official Android market, but can be easily extended
to include other app stores as well.

If an app has never been downloaded before or its status has expired,
either the application identifier or application itself is sent to the cloud-based
service for static and behavioral analysis. The static analysis phase involves
quick checks against previously known malware signatures and identifies an
application’s possible characteristics based on permissions, API calls and
app metadata. On the other hand, behavioral analysis of the application is
conducted by emulating simulated user actions within a mobile emulator
sandbox to determine what the application does. The analysis platform records
various characteristics of an application such as system calls, bandwidth
utilization and connections to domains/IPs. If the application sends SMS spam,
attempts to gain root access, connects to a bot master, etc., the application is
flagged as malware. Network characteristics, such as command and control
servers or SMS spam messages, are logged in the database for use in
the NMD.

In order to trigger malicious features of an app, user behavior is dynam-
ically generated while the app is running. Depending on the complexity of
the malware, multiple levels of scanning may be needed such as behavior
after reboot, directed user-like behavior, and random aggressive crash testing.
Though some apps may take up to 2 hours to analyze, in general we found that
most malicious apps currently trigger their malicious functionality right after
execution, in which case will be detected and generate a network signature
within three minutes. The app analysis platform currently incurs a false
positive rate of 1 in 10,000 and is continuously improving over time.

The Filter blocks an app download if the app was previously flagged as
malicious. If the app has been downloaded before and was reported as benign,
no new request is sent to the cloud service and the app can be downloaded as
normal.
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Similarly, when a user visits a URL on the mobile phone’s browser, the
URL is forwarded to the cloud service to scan for drive-by-downloads that
might be initiated by that URL. The cloud service uses its malware analysis
platform to conduct both static and behavioral checks to determine what the
URL does, and the URL is flagged if it attempts to conduct a drive- by-
download or is identified to be a phishing URL. The malware analysis platform
used for URL detection had a low false positive rate, approximately 1 in
10,000,000. A similar caching mechanism with a set timeout is used to avoid
redundant requests to the cloud service.

4.2.2 Scan Frequency and Caching
In order to put an upper bound on the number of users that can be infected
in between scans of a resource, the frequency of scanning is chosen to be
proportional to the frequency of accesses. Such an approach allows for an
elegant trade-off between the scanning cost and level of security desired. If
a resource is very popular, it is scanned more frequently as an infection of
that resource could affect many users quickly, whereas if a resource is less
popular, the cost of scanning it is kept in proportion with its low usage.

In our experiments, we send every new request that has not been refreshed
within the past four hours to the cloud service for scanning. Upon the first
visit of a malicious website or attempt to download a malicious app, we found
that subsequent users are protected from visiting the website by the Filter
component, which blocks access to the URLs found to be malicious.

4.3 Malware Detection and Mitigation

This set of experiments illustrates how Triton effectively detects and mitigates
malware on the end mobile device. In all the experiments, we run the malware
on the device and the network detector generates an alert as soon as it detects
the first malicious flow. The MiE generates the threat profile and sends it to the
THC on the device, which accurately identifies the malicious application and
stops it from executing on the device. It is further blacklisted and prevented
from running in the future.

4.3.1 Android malware
Table 1 shows the malicious apps tested, some of which were uploaded into
the official Android market and were downloaded by users. We use these in
our experiments as they form a good representative set of malware that exists
today for Android phones. Column 1 shows the malware name. Column 2
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Table 1 This table shows the malware that we use to run experiments on the HTC Aria
smartphone running Android. All attacks were successfully detected by Triton and the malware
was disabled from executing on the device.

Malware Name/Android
Package Name

Malware Type Malicious Network Behavior

Trojan: Android/Geinimi.A Trojan, Bot Connects to several malicious
domains

Exploit:Linux/DroidRooter.A Trojan, Bot Connects to a malicious IP address
Trojan:Android/Twalktupi.A Trojan, SMS

spam
Connects to a malicious domain
Sends spam SMS

Android.Trojan.Bgserv.A Trojan, SMS
spam

Sends SMS

Android.Trojan.FakePlayer.A Trojan Sends
SMS to premium number

Trojan:Android/HippoSms.A Trojan Connects to malicious domains
Sends
SMS to premium numbers

Android.Trojan.GGTracker.A Trojan Sends SMS to premium number
Golddream.A Trojan,

Spyware
Connects to a malicious domain

Plankton Spyware Connects to a malicious domain

shows the type of malware that we obtained from our forensic analysis and
documentation publicly available about the malware. Column 3 shows the
network behavior of the application that was flagged as malicious.

All the malware samples were detectable in the network because they
performed one or more of the following actions - (a) contacted malicious IP
addresses (b) contacted malicious domains (c) Sent SMS spam or (d) Sent
SMS to premium numbers.

The Trojan:Android/Geinimi.A is a repackaged sex positions application
that connects to a botnet. The Exploit:Linux/DroidRooter.A, also popularly
known as DroidDream, is a repackaged version of a bowling game application
that also connects to a botnet and awaits additional commands.

The Trojan:Android/Twalktupi.A, popularly known as the “Walk&Text”
application, sends SMS spam to all the contacts available in the con-
tact list of the infected device. Android.Trojan.Bgserv.A also sends
SMS spam. Android.Trojan.FakePlayer.A, Trojan:Android/Hippo-Sms.A and
Android.Trojan.GGTracker.A all send SMS messages to premium numbers.

Plankton and GoldDream.A are spyware applications that connect to
malicious domains and leak sensitive information, such as IMEI numbers.
Gold- Dream.A logs incoming SMS messages to a local file and sends this
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over to the attacker. Plankton 1 was added to about ten other applications on
the official Android market from three different developers. Its stealthy design
also explains why some earlier variants have resided on the market for more
than two months without being detected by current mobile anti-virus software
[10]. Since Plankton1 runs a background service that connects to a remote
server, identified by a scanning request to the cloud service, all apps that
include Plankton would be automatically detected by the NMD and disabled
via the THC.

Triton successfully detected and mitigated all malware attacks on the end
device.

4.3.2 Linux malware
On Linux, we chose malware that had some network footprint, such as worms,
malware that launches Denial of Service (DoS) attacks, and bot software.
Although the Linux platform is not a popular target for malware writers, we
use real Linux samples and find that they do illustrate the capabilities of Triton.

Table 2 shows the representative samples that we used in our experiments.
Column 1 shows the name of the malware. Column 2 shows the type and
Column 3 shows the network behavior that the Malware Detector used to
flag the flow as malicious and generate an alert. For IP and port scanners,
the Malware Detector detects them based on the fact that the number of
connections to a diverse set of IP addresses/ports exceeds a set threshold.
Blacklisted IP addresses and ports are detected in a similar fashion as the
Android malware, where the blacklists are constantly updated from third
party cloud services doing malware analysis. DoS attempts are detected when
malware tries to open connections to a given IP address or a set of IP addresses
within a specified period of time that exceeds the normal threshold. In all the
experiments with Linux malware from the set above, the malware detector
successfully detected the malicious flows and the malware on the device was
correctly identified from the threat profile generated by the MiE. The malware
was subsequently disabled and blacklisted from running on the device in the
future.

4.4 Performance

Below, we discuss the response time and the performance overhead of Triton.

1Prof. Jiang’s research group at NC State Univ identified Plankton as spyware, but the
authors of Plankton claim to be a legitimate ad network. Google suspended Plankton from its
Android Market.
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Table 2 This table shows the malware that we use to run experiments on the ViliV S5 running
Linux inside a Xen VMM. The network behavior was flagged as malicious, and the malware
was disabled from executing on the device.

Malware Name Malware Type Malicious Network Behavior
Trojan-DDoS.Linux.Fork Bot Connects to a blacklisted destination

server and port number
Trojan-
Spy.Linux.XKeyLogger.b

Port scanner,
Keylogger

Conducts high rate TCP port scan

Net-Worm.Linux.Cheese Worm Connects to random IP addresses on
a specific port

Net-Worm.Linux.Mworm.a Worm IP/Port scan over specific IP ranges
Trojan-DDoS.Linux.Blowfish Worm Connects to a blacklisted port
DoS.Linux.Arang DoS Creates a denial of service attacks to

a specified victim
FTP AnoScan Port Scanner Scans for open FTP ports
FTPNullSearch02 Port Scanner Scans for open FTP ports
Flooder.Linux.Alcohol.a DoS Creates a denial of service attacks to

a specified victim

4.4.1 Response time
Automated mitigation has the potential to protect many users as well as
a mobility provider’s network from the negative effects of malware. For
instance, in the DroidDream attack that took place in March 2011 in which over
260,000 users had downloaded malware to their phones, automated mitigation
could have protected most users.

DroidDream was injected into re-packaged versions of over 50 of the most
popular applications on Google’s Android Market, and once downloaded,
the malware shipped the user’s IMSI/IMEI numbers and other personally
identifiable information (PII) to a bot master. The attack was first noticed on
March 1, 2011 [7], and Google started rolling out a fix in the form of the
Android Market Security Tool on March 5, 2011. While data is not available
regarding the download rate of DroidDream applications, by assuming a
uniform download rate we can do a back-of-the-envelope calculation as to
how many users could have been protected using automated mitigation.

As per the forensics for DroidDream, identified by Triton as shown
in Figure 4, an infected phone can be identified by a connection to the
DroidDream bot master, 184.105.245.17. Once DroidDream and its bot master
are identified as malicious, Triton can contain malicious effects on all phones
which download DroidDream thereafter. In particular, the mitigation engine
would instruct the trusted component on the phone to kill the DroidDream
process, and firewall off communication with the bot master. If 260,000
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phones were infected by March 5, and the infections started on March 1,
then approximately 2,200 phones were infected per hour. If a threat profile
were to have been deployed by the mitigation engine within the first hour, then
99.2% of attempted DroidDream infections that occurred afterwards would
not result in PII leakage or compromise of the phone. In addition, for the 0.8%
of phones that were already infected, the DroidDream process could be killed
and communication with the bot master could be cut off to prevent further
damage.

4.4.2 Performance overhead
In this section, we run the following three workloads to record the overhead
generated by running the THC on the device.

Browsing Workload. We use an automatic browsing script to measure
our overhead against a typical mobile browsing experience. During the
experiments we visited google.com, gmail.com with an account opened, and
cnn.com. The script also watches a 60 secondYouTube clip, within the browser
on Linux and within the YouTube app on Android. Lastly the script checks
an email account using the Thunderbird application on Linux and the default
email application on Android.

To measure the overhead, we execute the workload on each platform both
with and without the host component. We measure the time the workload
executes using the wall clock time and average the results over five runs
of the experiment. The results are summarized in Table 3. The in-kernel
implementation on Android incurs a minimal overhead of 1.2%, while the
VMM based implementation incurs a 9% overhead. The higher overhead is
caused by the increased complexity of the hypervisor-based host component
compared to the in-kernel version.

File Download. Mobile device users frequently download small files,
such as music MP3s or applications from various app stores. To measure
the overhead of a similar file download, we downloaded a 5 megabyte file
from [21]. We performed this experiment on both the Linux and Android
platforms by using the wget command. Because the file download initiates a
single TCP connection we observe minimal overhead and report the download
time overhead for both the kernel and hypervisor-based host component as
1.7% and 0.7% respectively. In each case the overhead is minimal and within
the standard deviation of the workload.

CPU Intensive Workload. For completeness we include a CPU intensive
workload for the hypervisor-based component. Because we trap every system
call within the hypervisor, we wanted to observe the overhead of the system
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Table 3 This table shows the performance overhead recorded for three different workloads
resembling user actions on the device with and without the trusted host component (THC)

Android THC Linux THC
Workload Without THC With THC Without THC With THC
Web Browsing 150.2 + –1.6s 152 + –2s(1.2%) 198.2 + –2.9s 216.4 + –8s(9.2%)
File download 114 + –0.7s 114.2 +

–1.6s(1.7%)
114.4 + –3.2s 115.2 +

–2.9s(0.7%)
LMBench N/A N/A 198.3 + –0.6s 201.3 + –2s(1.5%)

in general. We chose a CPU intensive workload designed to measure OS
performance called lmbench [44]. Lmbench exercises multiple OS interfaces
and calls numerous system calls. We report an average overhead of (1.5%)
and a standard deviation within both experiments, with and without the host
component.

5 Discussion

In this section, we discuss counter attacks, scalability issues and the limitations
of our approach.

5.1 Subverting the Host Component

The attacker might be able to subvert the host component in one of the
following ways:

Root the device. On non-virtualized platforms, such as smart phones
available today, the trusted host component runs as part of the operating
system kernel. Several instances of malware on the Android platform have
been known to root the device and install a rootkit [13], potentially compro-
mising the integrity of our host component. We recommend that the ultimate
deployment of this architecture only be made on platforms that support our
virtualization-based trusted host component.

Send commands via 3G. An attacker may try to subvert the trusted host
component when it is connected to the Internet via 3G/4G. For example, by
sending commands to the trusted component, an attacker might attempt to
remove their app from the blacklist or disable other benign apps for malicious
intent. This involves the attacker sending commands to the special port that the
trusted component on the device listens to.Apart from the fact that the attacker
does not possess the keys for communicating with the device, the GGSN can
be configured to block all communication to this port from other devices on
the Internet as well as devices within the mobility network itself. The only
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communication that happens on this secure port is between the Mitigation
Engine and the device.

Parasitic Malware. In some cases, malware can inject itself into other
benign system processes. This is an especially popular technique used with
malware that infects PCs running the Windows operating system [50]. In such
cases, the trusted host component will identify the infected system process
as malicious and kill it. While it is not clear if malware on mobile devices
are following a similar trend, the host component can be trivially extended to
identify the correct malware program by using techniques discussed in [50].

5.2 Scalability

When deployed in a real network, Triton should be able to handle millions
of devices and traffic sent by them. While Triton is a prototype, it can lever
age several well-known techniques to handle scale in a real network. The
packet inspector can be a passive sniffer that can sniff traffic at very high
speeds [25–26, 38]. Databases can handle queries and very fast lookups of
terabytes of data [30, 22]. The workload of other components, such as the
mitigation engine, the filter and the malware detectors can be split by using
large clusters of machines and load balancing techniques already used in large
data environments.

5.3 WiFi Offload

Due to both data cap and bandwidth limitations, mobile device users typically
offload traffic to WiFi hotspots when available. Though Triton’s network
component does not have visibility into traffic that is offloaded via WiFi,
each device still logs its own network activity in the host component. Since
there are still millions of other customers currently connected to the mobility
network at any given time, Triton’s network detection algorithms maintain
their global visibility and effectiveness. If a significant threat is detected,
Triton can proactively communicate with devices that are currently connected
to WiFi via an out of band channel, such as SMS or WAP push, to ensure that
the device is not effected by the threat.

5.4 Limitations

The approach that we propose offloads detection to the network, while the host
component does much of the mitigation and prevention. This is well suited to
attacks that manifest themselves in the network, which the network provider
has a good view of, such as, botnet command and control patterns, spread
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of worms, DDoS activities, malicious applications phoning home and so on.
These activities are generally characteristic to mobile malware where attack
activity is driven by economic incentives. However, malware can be designed
to be largely focused on the device and operate without a network footprint.
Our approach cannot detect malware that is purely device centric. In such
cases, we assume the presence of other anti-virus software on the device that
can detect such malware.

With network level detection techniques catching up, malware can become
more stealthy and piggyback on genuine network traffic for communication
with its controlling servers or spread to other devices. Stealthy malware is a
challenge to detect in the network and would be challenging for our approach
as well.

6 Related Work

We can classify related work in three main categories: network-based detec
tion techniques and host based detection techniques that we leverage, and
work that uses a combination of network and host based techniques.

There is a large body of work on network-based anomaly detection. Recent
work has focused on detecting botnet command and control communication
patterns based on protocols and heuristics [40], presence of a botnet infection
cycle visible from the network [32], spatio-temporal correlations in network
traffic [33] and clustering of network traffic [31] for detection of botnets. A
similar body of work exists for other types of malware such as worms [52–
53, 41], exploit code inside network flows [23], etc. Triton relies on efficient
network-based detection techniques and can leverage them to improve its
detection accuracy and efficacy.

We leverage techniques for securely inspecting the state of a user VM from
a privileged VM as discussed in prior work [29, 18, 48]. Many VMM- based
techniques have been proposed to detect malware running inside the user
VM [43, 37]. Triton uses similar inspection techniques to find a malicious
application but relies on network-based detectors to flag malicious traffic.

Zeng et al. developed a technique to improve the accuracy of botnet
detection by using additional information on PCs, such as CPU and memory,
via a component installed on the PC [54]. Srivastava et al. used a detector in the
network to identify anomalous traffic, while a host component attributed this
traffic to identify parasitic malware on the end device [50]. Our work differs
in several ways from the above two works. We focus primarily on mobile
devices as opposed to devices on the wireline network. We propose a defense
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in-depth approach that can detect, prevent and contain malware as opposed to
only detecting it. The Triton architecture is designed to be integrated in a real
mobility network and uses the on-host component only to prevent or mitigate
an infection and therefore operates with a very low overhead on the mobile
device.

Airmid [45] proposes a similar idea of remote repair where a network and
host component act in tandem to recover from mobile malware infections. At
the high level, our work shares the same insight but differs in the following
ways: (a) We have a complete end to end working instance on a real 3G
UMTS network where we address the design and implementation challenges
encountered in realizing the architecture within the carrier. Airmid simulates
the carrier side and assumes the existence of a server that can handle malicious
traffic originating from mobile devices. (b) We report performance over-
heads on mobile devices supporting two different architectures - an inkernel
component on HTC Aria phones and VMM based architecture running Xen
on Viliv S5 devices. Airmid on the other hand only considers an in-kernel
implementation. (c) We perform experiments with real mobile malware sam
ples that have posed real threats on the Android market and show that our
architecture can automatically identify malware and recover the end devices
from malware infections. Airmid on the other hand uses prototype malware
samples. Finally, Triton is built to interoperate with existing carrier equipment
and does not require any changes within the carrier network elements, and
therefore lends itself to easy adoption by carriers.

7 Conclusions

In this paper, we have described Triton, a new architecture for detection and
containment of mobile malware. Triton employs a defense-in-depth approach
where in-the-network malware detectors identify and prevent the spread of
malware and communicate the threat to an on-the-phone trusted software
component to identify and neutralize malware on the device. This allows
mobility service providers to quickly respond to ongoing malware threats
and contain malware on mobile devices, even in the absence of an anti-virus
signature.

We reported on our experience and learnings from design and imple-
mentation of Triton in our 3G wireless lab for its server-side infrastructure
components, and two prototype implementations for its client-side compo-
nents namely, a kernel-level implementation on Android smart-phones, and a
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VMM-based implementation on Linux Viliv devices. The prototype imple-
mentation of Triton successfully achieved infection prevention, effective
detection, immediate containment, and fine-grained response on a diverse,
representative set of real Android and Linux malware with a very low
performance overhead. While our research described in this paper suggests
that Triton has the potential to mitigate a large majority of mobile malware
infections, we also discussed the potential counter attacks, scalability, and
limitations of the Triton architecture.
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