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Abstract

With the explosive growth of web-based cameras and mobile devices, billions
of photographs are uploaded to the internet. We can trivially collect a huge
number of photo streams for various goals, such as image clustering, 3D scene
reconstruction, and other big data applications. However, such tasks are not
easy due to the fact the retrieved photos can have large variations in their
view perspectives, resolutions, lighting, noises, and distortions. Furthermore,
with the occlusion of unexpected objects like people, vehicles, it is even more
challenging to find feature correspondences and reconstruct realistic scenes.
In this paper, we propose a structure-based image completion algorithm
for object removal that produces visually plausible content with consistent
structure and scene texture. We use an edge matching technique to infer
the potential structure of the unknown region. Driven by the estimated
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structure, texture synthesis is performed automatically along the estimated
curves. We evaluate the proposed method on different types of images: from
highly structured indoor environment to natural scenes. Our experimental
results demonstrate satisfactory performance that can be potentially used for
subsequent big data processing, such as image localization, object retrieval,
and scene reconstruction. Our experiments show that this approach achieves
favorable results that outperform existing state-of-the-art techniques.

1 Introduction

In the past few years, the massive collections of imagery on the Internet have
inspired a wave of work on many interesting big data topics. For example,
by entering a keyword, one can easily download a huge number of photo
streams related to it. Moreover, with the recent advance in image processing
techniques, such as feature descriptors [1], pixel-domain matrix factorization
approaches [2–4] or probabilistic optimization [5], images can be read in an
automatic manner rather than relying on the associated text. This leads to a
revolutionary impact to a broad range of applications, from image clustering
or recognition [6–12] to video synthesis or reconstruction [13–15] to cyber-
security via online images analysis [16–19] to other scientific applications
[20–24].

However, despite the numerous applications, poor accuracy can be yielded
due to the large variation of the photo streams, such as resolution, illumination,
or photo distortion. In particular, difficulties arise when unexpected objects
present on the images. Taking the Google street view as an example, the
passing vehicles or walking passengers could affect the accuracy of image
matching. Furthermore such unwanted objects also introduce noticeable
artifacts and privacy issue in the reconstructed views.

To resolve these issues, object removal [25, 26] is an effective technique
that has been widely used in many fields. A common approach is to use
texture synthesis to infer missing pixels in the unknown region, such as
[27, 28]. Efros and Leung [29] use a one-pass greedy algorithm to infer the
unknown pixels based on an assumption that the probability distribution of
a target pixel’s brightness is independent from the rest of the image given
its spatial neighborhood. Some studies propose example-based approaches
to fill the unknown regions, such as [27–29]. These approaches failed to
preserve the potential structures in the unknown region. Bertalmio et al. [30]
apply partial differential equations (PDE) to propagate image Laplacians.
While the potential structures are improved in the filled region, it suffers from
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blurred synthesized texture. Drori et al. [31], propose an enhanced algorithm
to improve the rendered texture. Jia et al. [32] propose an texture-segmentation
based approach using tensor-voting to achieve the same goal. But their
approaches are computationally expensive. A widely used image in-painting
technique developed by Criminisi et al. [26] aims to fill the missing region
by a sequence of ordered patches by using the proposed confidence map. The
priority of each patch is determined by the edge strength from the surrounding
region. However, the potential structures in the in-painted region can not be
well preserved, especially for those images with salient structures. The authors
Sun et al. in [33] make an improvement through structure propagation, while
this approach requires additional user intervention and the results may depend
on the individual animators.

As an extension of our early work [34], we propose an automatic object
removal algorithm for scene completion, which would benefit large imagery
processing. The cue of our method is based on the structure and texture
consistency. First, it predicts the underlying structure of the occluded region by
edge detection and contour analysis. Then structure propagation is applied to
the region followed by a patch-based texture synthesis. Our proposed approach
has two major contributions. First, given an image and its target region,
we develop an automatic curve estimation approach to infer the potential
structure. Second, an orientated patch matching algorithm is designed for
texture propagation. Our experiments demonstrate satisfactory results that
outperform other techniques in the literature.

The rest of the paper is organized as follows: in Section 2, we give an
example to demonstrate the basic steps of our image completion algorithm.
Then we define the model and notations in Section 3. Details are further
explained in Section 4. The experiment results are presented in Section 5.
Finally we conclude the paper and our future work in Section 6.

2 A Simple Example

The process of our framework is: for a given image, users specify the object for
removal by drawing a closed contour around it. The enclosure is considered
as the unknown or target region that needs to be filled by the remaining region
of the image. Figure 1(a) shows an example: the red car is selected as the
removing object. In the resulting image, Figure 1(b), the occluded region is
automatically recovered based on the surrounding available pixels.

Our algorithm is based on two observations: spacial texture coherence
and structure consistency along the boundaries between the target and source
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Figure 1 Example object removal on an image (a) The original image (b) The result image

regions. To ensure spacial coherence, many exemplar-based methods have
been proposed to find the potential source texture for the target region. By
traversing the available pixels from the known region, a set of “best patches”
are found to fill the target region. Here the definition of “best patch” refers
to a small region of contiguous pixels from the source region that can maximize
a certain spacial coherence constraint specified by different algorithms. A
typical example can be found in [26]. However, a naive copy-and-paste
of image patches may introduce noticeable artifacts, though the candidate
patches can maximize a local coherence. To resolve this problem, structure
preservation is considered to ensure the global consistency. There have been
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several techniques presented for structure propagation to ensure smooth and
natural transitions among salient edges, such as the Sun’s method [33], which
requires additional user input to finish the task.

3 The Approach

First let us define some notations for the rest of paper. The target region for
filling is denoted as Ω; the remaining part Φ(= I – Ω) is the region whose
pixels are known. The boundary contours are denoted as ∂Ω that separate
Φ and Ω. A pixel’s value is represented by p = I(x, y), where x and y are
the coordinates on the image I. The surrounding neighborhood centered at
(x, y) is considered as a patch, denoted by Ψp, whose coordinates are within
[x ± Δx, y ± Δy], as shown in Figure 2. In our framework, there are three
stages involved: structure estimation, structure propagation, and remaining
part filling.

Structure Estimation: In this stage, we estimate the potential structures
in the target region Ω. To achieve this, we apply gPb Contour Detector [35]
to extract the edge distribution on the image:

Figure 2 Symbols definition
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Iedge =

√
[

∂

∂x
(I ∗Gx)]2 + [

∂

∂y
(I ∗Gy)]2 (1)

where, Gx and Gy are the first derivative of Gaussian function with respect

to x and y axis (Gx = −x.G(x,y)
σ2 ). After computing Iedges, most of the strong

edges can be extracted via threshold suppression. Inspired by the level lines
technique [36], the edges in Ω can be estimated by linking matching pairs of
edges along the contour.

Structure Propagation: After the structures are estimated, textures along
the structures are synthesized and propagated into the target region Ω. We
use Belief Propagation to identify optimal patches of texture from the source
region Φ and copy and paste them to the structures in Ω.

Remaining Part Filling: After the structure propagation, the remaining
unfilled regions in Ω are completed. We adopt the Criminisi’s method [26],
where a priority-based patch filling scheme is used to render the remaining
target region in an optimal order.

In the following subsections, we present the details of each step of the
proposed algorithm. In particular, we give emphasis to the first two steps:
structure estimation and structure propagation, which provide the most
contribution of this proposed technique.

3.1 Structure Estimation

In this stage, we estimate the potential structures in Ω by finding all the possible
edges. This procedure can be divided into two steps: Contour Detection in Φ
and Curve Generation in Ω.

3.1.1 Contour Detection in Φ
We first segment the region Φ by using gPb Contour Detector [35], which
computes the oriented gradient signal G(x, y, θ) on the four channels of
its transformed image: brightness, color a, color b and texture channel.
G(x, y, θ) is the gradient signal, where (x, y) indicates the center location
of the circle mask that is drawn on the image and θ indicates the ori-
entation. The gPb Detector has two important components: mPb Edge
Detector and sPb Spectral Detector [35]. According to the gradient ascent
on F-measure, we apply a linear combination of mPb and sPb (factored
by β and γ):
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gPb(x, y, θ) = β ·mPb(x, y, θ) + γ · sPb(x, y, θ) (2)

Thus a set of edges in Φ can be retrieved via gPb. However, these edges are
not in close form and have classification ambiguities. To solve this problem,
we use the Oriented Watershed Transform [35] and Oriented Watershed
Transform [37] (OWT-UCM ) algorithm to find the potential contours by
segmenting the image into different regions. The output of OWT-UCM is
a set of different contours {Ci} and their corresponding boundary strength
levels {Li}.
3.1.2 Curve Generation in Ω
After obtaining the contours {Ci} from the above procedure, salient bound-
aries in Φ can be found by traversing {Ci}. Our method for generating the
curves in Ω is based on the assumption: for the edges on the boundary in
Φ that intersects with the ∂Ω, it either ends inside Ω or passes through the
missing region Ω and exits at another point of ∂Ω. Below is our algorithm for
identifying the curve segments in Ω:

Algorithm 3.1 Identifying curve segments in Ω

Require: Reconstruct missing curves segments in Ω
Ensure: The estimated curves provide smooth transitions between

edges in Φ
1: Initial t = 1.0
2: For t = t –Δt
3: if ∃e ∈{C} : E ∩ ∂Ω �= ∅
4: Insert e into {E}
5: End if t < δt

6: Set t = t0, retrieve all the contours in {Ci} with Li> t
7: Obtain < φx1, φx2> for each Ex

8: DP on {< φ01, φ02 >, < φ11, φ12 >, . . .} to find optimal pairs
9: According to the optimal pairs, retrieve all the corresponding edge-pairs:
{(Ex1, Ex2), (Ex3, Ex4), . . .)}.

10: Compute a transition curve Cst for each {(Es, Et)}.

In algorithm 3.1, it has three main parts: (a) collect all potential edges
{Ex} in Φ that hits ∂Ω; (b) identify optimal edge pairs {(Es, Et)} from {Ex};
(c) construct a curve Cst for each edge pair (Es, Et).
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Edges Collection: The output of OWT-UCM are contours sets {Ci} and
their corresponding boundary strength levels {Li}. Given different thresholds
t, one can remove those contours C with weak L. Motivated by this, we use
the Region-Split scheme to gradually demerge the whole Φ into multiple sub-
regions and extract those salient curves.This process is carried out on lines 1–9:
at the beginning the whole region Φ is considered as one contour; then
iteratively decrease t to let potential sub-contours {Ci} faint out according
the boundary strength; Every time when any edges e from the newly emerged
contours {C} were detected of intersecting with ∂Ω, they are put into the
set {E}.

Optimal Edge Pairs: the motivation of identifying edge pairs is based
on the assumption if an edge is broken up by Ω, there exists a pair of corre-
sponding contour edges in Φ that intersect with ∂Ω. To find the potential pairs
{(Es, Et)} from the edge list {Ex}, we measure the corresponding enclosed

regions similarities. The neighboring subregions <φ
(s)
x1 , φ

(s)
x2 > which are

partitioned by the edge Es are used to compare with the corresponding
subregions <φ

(s)
x3 , φ

(s)
x4 > of another edge Et. This procedure is described on

lines 7 – 9 of the algorithm 3.1. For simplicity, the superscripts (s) and (t) are
removed and the neighboring subregions <φx1, φx2> are list in a sequential
order. Each neighboring region is obtained by lowing down the threshold value
t to faint out its contours as Figure 3 shows.

Figure 3 Contour extraction by adjusting the value of t
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To compute the similarity between regions, we use the Jensen-Shannon
divergence [38] method that works on the color histograms:

d(H1, H2) =
n∑

i=1

{H i
1 . log

2.H i
1

H i
1 + H i

2
+ H i

2 . log
2.H i

1

H i
1 + H i

2
} (3)

where H1 and H2 are the histograms of the two regions φ1, φ2; i indicates
the index of histogram bin. For any two edge (Es, Et), the similarity between
them can be expressed as:

M(Es, Et) =
‖Ls − Lt‖

Lmax
. min{d(Hsi, Hti) + d(Hsj , Htj)} (4)

i and j are the exclusive numbers in {1, 2}, where 1 and 2 represent the indices
of the two neighboring regions in Φ around a particular edge. The Lmax is the
max value of the two comparing edges’ strength levels. The first multiplier
is a penalty term for big difference between the strength levels of the two
edges. To find the optimal pairs among the edge list, dynamic programming
is used to minimize the global distance:

∑
s,t M(Es, Et), where s �= t and s, t

∈{0, 1,. .., size({Ei})}. To enhance the accuracy, a maximum constraint is used
to limit the regions’ difference: d(H1, H2) < δH . If the individual distance is
bigger than the pre-specified threshold δH , the corresponding region matching
is not considered. In this way, it ensures if there are no similar edges existed,
no matching pairs would be identified.

Generate Curves for each (Es, Et): we adopt the idea of fitting the
clothoid segments with polyline stoke data first before generating a curve
[39]. Initially, a series of discrete points along the two edges Es and Et

are selected, denoted as {ps0, ps1, ..., psn, pt1, ..., ptm}. These points have a
distance with each other by a pre-specified value Δd. For any three adjacent
points {pi−1, pi, pi+1}, the corresponding curvature ki could be computed
according to [40]:

Ki =
2 . det(pi − pi−1, pi+1 − pi)

||pi − pi−1||.||pi+1 − pi||.||pi+1 − pi−1|| (5)

Combining the above curvature factors, a sequence of polyline are used to fit
these points. The polylines are expected to have a possibly small number of
line segments while preserving the minimal distance against the original data.
Dynamic programming is used to find the most satisfied polyline sequence by
giving a penalty for each additional line segment. A set of clothoid segments
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Figure 4 Optimal structure generation in Ω

can be derived corresponding to each line segment. After a series rotations
and translations over the clothoid, a final curve C is obtained by connecting
each adjacent pair with G2 continuity [39]. Figure 4 demonstrates the curve
generation result.

3.2 Structure Propagation

After the potential curves are generated in Ω, a set of texture patches, denoted
as {Ψ0, Ψ1, ...}, need to be found from the remaining region Φ and placed
along the estimated curves by overlapping with each other with a certain
proportion. Similar to the Sun’s method [33], an energy minimization based
Belief Propagation(BP) framework is developed. We give different definitions
for the energy minimization and passing messages, the details of which can
be found in algorithm 3.2.

In our algorithm, the anchor points are evenly distributed along the curves
with an equal distance from each other Δd. These points represent the center
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where the patches {Ψi}(l × l) are placed, as shown in Figure 2. In practice,
we define Δd = 1

4 . l. The {Ψ̂t} is the source texture patches in Φ. They
are chosen on from the neighborhood around ∂Ω. According to the Markov
Random Field definition, each ai is considered as a vertex Vi and E ij = aiaj
represents a edge between two neighboring nodes i and j.

Among the traditional exemplar-based methods, when copy a texture patch
from the source region Φ to the target region Ω, each Ψi have the same
orientation as Ψ̂ti , which limits the varieties of the texture synthesis.

Algorithm 3.2 Belief Propagation for Structure Completion

Require: Render each patch Ψi along the estimated structures in Ω
Ensure: Find the best matching patches while ensuring texture conherence
1: For each curve C in Ω, define a series of anchor points on it,
{ai, |i = 1→ n}

2: Collect exemplar-texture patches {Ψ̂ti} in Φ, where ti ∈ [1.m]
3: Setup a factor graph G = {V , E} based on {C} and {ai}
4: Defining the energy function E for each ai : Ei(ti), where ti is the index

in [1, M]
5: Defining the message function Mij for each edge E in G, with initial

value Mij ← 0
6: Iteratively update all the messages Mij passed between {ai}
7: Mij ← minai{Ei(ti) + Eij(ti, tj) +

∑
k∈N(i),k �=j Mki}

8: end until ΔMij < δ,∀i, j (by Convergence)
9: Assign the best matching texture patch from {Ψ̂t} for each ai that

arg min[T,R]{
∑

i∈v Ei(ti) +
∑

(i,j)i∈E Eij(ti, tj)}, where T and R

represent the translation and orientation of the patch {Ψ̂ti}

Noticing that different patch orientations could produce different results, we
introduce a scheme called Adaptive Patch by defining a new configuration for
the energy metric E and message M.

Intuitively, the node energy Ei(ti)can be defined as the Sum of Square
Difference(SSD) by comparing the known pixels in each patch Ψi with the
candidate patch in Ψ̂ti. But this could limit the direction changes of the salient
structure. So instead of using SSD on the two comparing patches, rotation
transformation is performed to the candidate patch before computing the SSD.
Mathematically, Ei(ti)can be formulated as:
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Ei(ti) = αλ.P.
∑
||Ψi − Ṙ(θ).Ψ̂ti||2λ (6)

where Ṙ represents the 2D rotation matrix with an input angle parameter θ
along the orthogonal vector that is perpendicular to the image plane. Since
the size of a patch is usually small, the rotation angle θ can be specified
with an arbitrary number of values. In our experiment, it is defined as θ ∈{
0,±π

4 ,±π
2 , π

}
. Parameter λ represents the number of known pixels in Ψi

that overlap with the rotated patch Ψ̂ti P is a penalty term that discourage
the candidate patches with smaller proportion of overlapping pixels with the
neighboring patches. Here, we define P as P = λ

l2
(l is the length of Ψ). αλ

is the corresponding normalization factor.
In a similar way, the energy Eij(ti, tj) on each edge Eijcan be expressed

as:

Eij(ti, tj) = αλ. P.
∑
||Ψi(ti, θti)−Ψj(tj , θtj )||2λ (7)

where i and j are the corresponding indices of the two adjacent patches in
Ω. The two parameters for Ψi indicate the index and rotation for the source
patches in {Ψ̂ti}. We adopt a similar message passing scheme as [33] that
message Mij passes by patches Ψi is defined as:

Mij = Ei(ti) + Eij(ti, tj) (8)

Through iterative message passing on the MRF graph to minimize the global
energy, an optimal configuration of {ti} for the patches in {Ψi} can be
obtained. The optimal matching patch index t̂i is defined as:

t̂i = arg min
ti

{Ei(ti) +
∑

k

Mki} (9)

Where k is the index of one of the neighbors of the patch Ψi : k ∈ N (i). To
compute an minimum energy cost, dynamic programming is used: at each step,
different states of Ψ̂ti can be chosen. The edge Eij represents the transition
cost from the state of Ψ̂ti at step i to state of Ψ̂ti at step i to state of Ψ̂tj at
step j. Starting from i = 0, an optimal solution is achieved by minimizing the
total energy ξi(ti):

ξi(ti) = Ei(ti) + min{Eij(ti, tj) + ξi−1(ti−1) (10)

where ξi(ti) represents a set of different total energy values at the cur-
rent step i. In the cases of multiple intersections between curves C, we
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adopted the idea of Sun’s method [33], where readers can refer to for further
details.

3.3 Remaining Part Filling

After the structure curves are generated in Ω, we fill the remaining regions
by using the exemplar-based approach in [26], where patches are copied
from the source region Φ to the filling region Ω in a priority order. The
priority is determined by the extracted edges in Φ that intersect with ∂Ω.
To ensure the propagated structures in Ω maintain the same orientation as in
Φ, higher priorities of texture synthesis are given to those patches that lie on
the continuation of stronger edges in Φ.

According to Criminisi’s algorithm [26], each pixel on a image has a
confidence value and color value. The color value can be empty if it is in the
unfilled region Ω. For a given patch ΨP at a point p, its priority is defined as:
priority (p) = C(p) . D(p), where C(p) and D(p are the confidence map and
data term that are define as:

C(p) =

∑
P∈ΦP

⋂
(I−Ω) ·C(q)

|ΨP| (11)

and

D(p) =
|ΔIx

p . n⊥
p |

α
(12)

where q represents the surrounding pixels of p in the patch ΨP. |ΨP is the area
of the patch ΨP. The variable np is a unit orthogonal vector that is perpendicular
to the boundary ∂Ω on the point p. The normalization factor α is set as 255
as all the pixels are in the range [0, 255] for each color channel. So in such a
way, the priority for each pixel can be computed. For further details, we refer
readers to the Criminisi’s algorithm [26] for more explanations.

4 Experiments

In our experiments, to evaluate our algorithm, different styles of images are
tested from natural scenes to indoor environment that has strict structure.
Our algorithm obtains satisfactory results in terms of texture coherence
and structural consistency. The algorithm is implemented in C++ code with
OpenCV library. All the images results are generated on a dual-core PC with
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CPU 2.13GHz and Memory 2G. For the images with the regular resolution
640 x 480, the average computation cost is about 52 seconds.

To verify the performance of the algorithm, we first compare the result
of our method with the one proposed in [26] on the well-known Kanizsa
triangle in terms of structure coherence and texture consistency. As shown in
Figure 5(a), the white triangle in the front is considered as Ω that needs to
be filled. First, a structure propagation is performed based on the detected
edges along ∂Ω. The dash curves in Figure 5(b) indicate the estimated
potential structure in the missing area Ω, which are generated by our structure
propagation algorithm. Texture propagation is applied to the rest of the image
based on the confidence and isophote terms. One can notice both the triangle

Figure 5 Kanizsa triangle experiment (a) Original image (b) Curve reconstruction for the
missing region Ω (c) Result image by criminisi’s method (d) Result image by our method
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and the circles are well completed in our result Figure 5(d) comparing with
Criminisi’s method in Figure 5(c).

Figure 6 demonstrates the advantage of our method by preserving the
scene structure after removing the occluded object. The original image data
can be find publicly at the website 1. Figure 6(b) shows the target region (the
bungee jumper) for removal marked in green color. Figure 6(c), 6(d) are the
image reconstruction results by the Criminisi’s and our methods respectively.
One can notice the roof area in Figure 6(c) is broken by the grass which
introduces noticeable artifact, while the corresponding part remains intact
in our result. Furthermore, in contrast to the Criminisi’s method, the lake
boundary is naturally recovered thanks to our structure estimation procedure,

Figure 6 Result comparison with criminisi’s method [26]

1http://www.cc.gatech.edu/sooraj/inpainting/
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as shown in 6(d). In terms of the time performance for the original image of
205 × 307 pixels, our method performed 10.5 seconds on the computer of
dual-core PC with CPU 2.13GHz and 2GB of RAM, to be compared with 18
seconds of Criminisi’s on a 2.5 GHz Pentium IV with 1 GB of RAM.

Another existing work we choose to compare with is the Sun’s method,
which also aims to preserve the original structure in the recovered image.
However, the difference is that Sun’s method requires manual intervention
during the completion process. The potential structure in the target region
needs to be manually labeled by the designer, which can vary according
to individuals. Figure 7 demonstrates a comparison between Sun’s and our
methods. In the original image, the car is considered as the target object for
removal, which is marked in black color in Figure 7(b). In Figures 7(c), 7(d),

Figure 7 Result comparison with sun’s method [33]



Structure Preserving Large Imagery Reconstruction 279

the potential structures in the target region are labeled by [33] and automati-
cally estimated by our method, which produce different results, as shown in
Figures 7(e), 7(f). To compare the computation speed, our methods performed
51.7 seconds to process this image (640 × 457), in contrast with the Sun’s
fewer than 3 seconds for each curve propagation (3 curves in total) and 2 to 20
seconds for each subregion (4 subregions in total) on a 2.8 GHz PC. Moreover,
we save the potential labor work on specifying the missing structures by
the user.

To further demonstrate the performance, a set of images are used for
scene recovery: ranging from indoor environment to natural scenes. Figure 8
shows the case of indoor environment, where highly structural patterns often
present, such as the furniture, windows, walls. In Figure 8, the green bottle
on the office partition is successfully removed while preserving the remaining
structure. In this example, five pairs of edges are identified and connected by
the corresponding curves that are generated in the occluded region Ω. Guided
by the estimated structure, plausible texture information is synthesized to form
a smooth intensity transition across the occluded region with little artifact.

Figure 8 Demo 1- Bottle removal (a) Original image (b) Image with user’s label for removal
(c) Generated structure in the missing region (d) Result image
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Figure 9 Demo 2- Tree removal 1 (a) Original image (b) Image with user’s label for removal
(c) Generated structure in the missing region (d) Result image

Figure 10 Demo 3- Tree removal 2 (a) Original image (b) Image with user’s label for removal
(c) Generated structure in the missing region (d) Result image
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Figure 11 Demo 4- Bird removal (a) Original image (b) Image with user’s label for removal
(c) Generated structure in the missing region (d) Result image

For the outdoor environment, as there are fewer straight lines or repeating
patterns existing in the natural world, the algorithm should provide the
flexibility to generate irregular structures. Figure 9 and 10 show the results of
removing trees in the nature scenes. Several curves are inferred by matching
the broken edges along ∂Ω and maximizing the continuity. We can notice
the three layers of the scene (sky, background trees, and grass land) are well
completed. In Figure 11, it shows a case that a perching bird is removed from
the tree. Our structure estimation successfully completes the tree branch with
smooth geometric and texture transitions. Without such structure guidance,
those traditional exemplar-texture based methods can easily produce notice-
able artifacts. For example, multiple tree branches may be generated as the
in-painting process and directions largely rely on the matching patches.

5 Conclusion

In this paper, we present a novel approach for foreground objects removal
while ensure structure coherence and texture consistency. The core of our
approach is to use structure as a guidance to complete the remaining scene,
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which demonstrates its accuracy and consistency. This work would benefit
a wide range of applications, from digital image restoration (e.g. scratch
recovery) to privacy protection (e.g. remove people from the scene). In
particular, this technique can be promising for the online massive collections
of imagery, such as photo localization and scene reconstructions. By removing
foreground objects, the matching accuracy can be dramatically improved as
the corresponding features are only extracted from the static scene rather
than those moving objects. Furthermore it can generate more realistic views
because the foreground pixels are not involved in any image transformation
and geometric estimation.

As one direction of our future work, we will apply this object removal
technique to scene reconstruction applications that can generate virtual views
or reconstruct the 3D data from a set of images. Multiple images can give more
cues of the potential structure and texture in the target region. For example,
through corresponding features among different images, intrinsic and extrinsic
parameters can be estimated. Then the structure and texture information can
be mapped from one image to another image. So for a particular target region
for completion, multiple sources (from different images) can contribute the
estimation. As such, Our current algorithm needs to be modified adaptively
to take the advantage of the extra information. An optimization framework
could be established to identify optimal structures and textures to fill the target
region.
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