Evaluation and Analysis of Distributed
Graph-Parallel Processing Frameworks

Yue Zhao,' Kenji Yoshigoe,! Mengjun Xie,! Suijian Zhou,'
Remzi Seker? and Jiang Bian®*

! Department of Computer Science, University of Arkansas at Little Rock, Little
Rock, AR 72204, USA

2Department of ECSSE, Embry-Riddle Aeronautical University, Daytona Beach, FL
32114, USA

3Department of Biomedical Informatics, University of Arkansas for Medical
Sciences, Little Rock, AR 72205, USA

{yxzhao; kxyoshigoe; mxxie; sxzhou} @ualr.edu, sekerr@erau.edu,
Jjbian@uams.edu (*Corresponding)

Received 15 June 2014; Accepted 20 August 2014
Publication 7 October 2014

Abstract

A number of graph-parallel processing frameworks have been proposed to
address the needs of processing complex and large-scale graph structured
datasets in recent years. Although significant performance improvement made
by those frameworks were reported, comparative advantages of each of these
frameworks over the others have not been fully studied, which impedes the
best utilization of those frameworks for a specific graph computing task and
setting. In this work, we conducted a comparison study on parallel processing
systems for large-scale graph computations in a systematic manner, aiming
to reveal the characteristics of those systems in performing common graph
algorithms with real-world datasets on the same ground. We selected three
popular graph-parallel processing frameworks (Giraph, GPS and GraphLab)
for the study and also include a representative general data-parallel computing
system— Spark—in the comparison in order to understand how well a general
data-parallel system can run graph problems. We applied basic performance

Journal of Cyber Security, Vol. 3, 289-316.
doi: 10.13052/jcsm2245-1439.333
(© 2014 River Publishers. All rights reserved.

290 Y. Zhao, K. Yoshigoe et al.

metrics measuring speed, resource utilization, and scalability to answer a
basic question of which graph-parallel processing platform is better suited
for what applications and datasets. Three widely-used graph algorithms—
clustering coefficient, shortest path length, and PageRank score—were used
for benchmarking on the targeted computing systems. We ran those algorithms
against three real world network datasets with diverse characteristics and
scales on a research cluster and have obtained a number of interesting
observations. For instance, all evaluated systems showed poor scalability
(i.e., the runtime increases with more computing nodes) with small datasets
likely due to communication overhead. Further, out of the evaluated graph-
parallel computing platforms, PowerGraph consistently exhibits better per-
formance than others.

Keywords: Big data, Graph-parallel computing, Distributed processing.

1 Introduction

Recent years have seen the exponential growth of scale and complexity of
networks from various disciplines, sectors, and applications such as World
Wide Web, social networks, brain neural networks, transportation networks
and so on. These real-world networks are often modeled as graphs and
studied by applying graph theories. It becomes increasingly important to
gain insights and discover knowledge from those large, real-world networks,
e.g., identifying critical nodes in information distribution by studying social
networks and discovering biomarkers from gene regulatory networks and
human brain connectome [13]. However, gigantic size of those graphs that
consist of millions (or even billions) of vertices and hundreds of millions
(or billions) of edges poses a great challenge to study them as effective
parallelization of graph computations becomes the key.

There are many parallel computing paradigms—e.g., Message Passing
Interface (MPI) [1], Open MultiProcessing (OpenMP) [2], MapReduce [3],
and graph-parallel computing systems [4—6]—available for parallel process-
ing. The general idea of parallelizing computational and/or data intensive tasks
is to split a large computing job into multiple smaller tasks and distribute them
onto multiple computing machines for parallel processing.

Traditionally, MPI has been very popular as it provides essential virtual
topology, synchronization, and communication functionality between a set
of processes (that have been mapped to computer nodes) in a language-
independent way. MPI achieves these goals through standardizing message

Evaluation and Analysis of Distributed Graph-Parallel Processing Frameworks 291

passing between processes on parallel computers. On the other hand, OpenMP
provides shared memory parallelism with a set of compiler directives and
library routines for Fortran and C/C++ programs. The learning curve for
programming in MPI and OpenMP environments has been quite steep even
after many helper software packages (e.g., PETSc [7]) have become available
to ease the use of MPIL. On the other hand, MapReduce [3] is significantly
easier to learn because of a well-defined programming model. In MapReduce,
nodes communicate through disk I/O (i.e., a shared distributed file system)
while nodes in MPI exchanges data and states by message passing. Con-
sequently, in general, MapReduce is more suitable for data-intensive tasks
(data-parallelism) where nodes require little data exchange to proceed while
MPI is more appropriate for computation-intensive tasks (task-parallelism)
[8]. Moreover, the support of fault tolerance is a built-in feature in MapReduce,
making application development more user-friendly, transparent and easy to
debug.

Unfortunately, traditional data-parallel computing systems such as
MapReduce [3] and Spark [9] cannot take advantage of the characteristics
of graph-structure data and often result in complex job chains and excessive
data movement when implementing iterative graph algorithms. In order to
seek the leap of performance on processing graph data, numerous specialized
graph-computing engines such as Pregel [14], and Graphlab [4—6] have been
developed.

Effective parallelization of computing tasks can vary substantially depend-
ing on the characteristics of computation (e.g., task parallelism vs. data
parallelism and fine-grained parallelism vs. coarse-grained parallelism vs.
embarrassing parallelism). For example, MapReduce based frameworks
are extremely good at solving SIMD (single-instruction, multiple-data)
problems. Efficient parallelism arises by breaking a large dataset into
independent parts with no forward or backward dependencies in each
Map-Reduce pair. In contrast, parallelizing machine learning algorithms
such as logistic regression and random forest requires a different com-
puting model, as the algorithms are often iterative where future itera-
tions have a high-level of data dependency over previous results. Run-
ning iterative algorithms using MapReduce is shown to incur excessive
communications and hurt the performance [9]. A comprehensive under-
standing of the characteristics of different big data computing platforms
through quantitative and qualitative measurements is necessary to under-
stand their respective strengths in handling different types of computational
tasks.

292 Y. Zhao, K. Yoshigoe et al.

In this paper, we studied different distributed graph-parallel computing
systems processing graph-structured data due to: 1) the growing importance
and popularity of graph data in both industry and academia; and 2) better
performance over data-parallel platforms reported in existing work for certain
computation tasks [15, 16]. Our analyses aim to not only evaluate and compare
the basic performance metrics (e.g., runtime, resource utilization, and scala-
bility) of these systems, but also to present instructive experience for selecting
the most appropriate data processing platforms based on characteristics of the
applications and/or datasets. Spark [9, 10] was included in this study, as a
representative of data-parallel processing systems, with the intent to better
understand the difference between graph-parallel and data-parallel platforms.
Our evaluation was conducted by executing three important graph-processing
algorithms (i.e., PageRank, clustering coefficient and shortest path length)
under the targeted systems (i.e., Spark [9, 10], Graphlab [4-6], GPS [17],
Pregel/Giraph [14, 18]). The input data for the experiments are three graph-
structured datasets extracted from real-world use with diverse characteristics
and different scales in size.

The experiment results show that 1) comparing with Spark - a data-
parallel processing system, graph-parallel computing platforms exhibited
better performance in terms of graph computing rate and resource utiliza-
tion; 2) PowerGraph outperformed others graph-parallel computing platforms
under most evaluation cases; and 3) all evaluated graph-parallel comput-
ing systems exhibited different scalability on datasets with diverse scales
in size.

The rest of the paper is organized as follows. Section 2 describes our
design for evaluating and analyzing distributed graph-parallel computing
platforms. Experiment results and analysis are presented in Section 3. Section
4 overviews related work, and Section 5 concludes this paper.

2 Design of experiments

In this section we detail the design of the experiments for evaluating dis-
tributed graph-parallel processing platforms. Our experiments focused on
graph algorithms and graph-structured datasets as they were aimed to examine
whether and how graph-parallel systems improve the efficiency of executing
large-scale graph algorithms compared to general-purpose data-parallel sys-
tems. The experiment design essentially had three key considerations:
1) identifying performance metrics that system users are mostly concerned
with; 2) selecting representative graph algorithms and real-world datasets

Evaluation and Analysis of Distributed Graph-Parallel Processing Frameworks 293

of different scale; and 3) identifying representative graph-parallel comput-
ing systems. We conducted experiments on each of the selected parallel
computing system, compared and analyzed the results in terms of both the
quantitative performance metrics and qualitative user experiences of the
systems.

2.1 Performance Metrics

The performance metrics we considered in the experiments are mainly from
the perspective of an end user of a parallel computing platform. Nowadays
big data computation jobs including those large-scale graph computations are
quite likely to be executed in a computing cloud environment leased by the
user. Obviously, the sooner the job completes and the less the resources are
used, the better. Therefore, we chose metrics that measure data processing rate
(speed) and resource utilization. We also studied the system scalability which
is directly related to the processing rate.

1) Data Processing Rate: Data processing rate measures how quickly a
distributed computing platform can process data and finish the execution of
the computation job. We are interested in the overall runtime spent by the
system on processing a particular dataset. The entire runtime consists of two
parts: the data ingress time and job execution time. The former refers to the
amount of time spent by the system from bootstrapping to the completion of
data ingestion and the latter refers to the amount of time spent by the system
in executing the computation job. Typically, in a distributed environment, the
ingress time consists of the time for bootstrapping the computing cloud (or
cluster) and the time for reading and partitioning the data and the ingress time
is usually dominated by the latter.

2) Scalability: Scalability is the ability of a computing system to accom-
modate the growth of the amount of work by adding more computing
resources (e.g., compute nodes) without changing the system itself. For
distributed computing systems, a larger dataset usually indicates more com-
putations. We studied the scalability of the selected distributed systems by
examining: 1) the execution time of the same computation job with different
size of dataset; and 2) the speedup achieved by using more compute nodes
when dealing with the same dataset.

3) Resource Utilization: Resource utilization measures the degree of usage for
each type of hardware and software resources (e.g., CPU, memory, file system
cache, etc), which helps to understand the running behavior and efficiency of a
computing platform. For a distributed computing system, the most concerned

294 Y. Zhao, K. Yoshigoe et al.

computing resources are CPU, memory, and network bandwidth. Thus, we
selected the following metrics: CPU load, amount of consumed memory,
and network I/O volume, to study the resource utilization of the targeted
platforms.

In summary, the performance metrics studied in this work include data
ingress time, job execution time, CPU load, memory consumption, and
network I/O volume. Since the platforms we studied are distributed computing
systems, the CPU load, memory consumption and network I/O volume are
normalized by the number of computing nodes if not specified.

2.2 Benchmarking Datasets and Graph Algorithms

This section discusses the selected benchmarking datasets and graphs
algorithms.

1) Benchmarking Datasets

We selected three graph datasets extracted from real-world social networks
with diverse characteristics (e.g. graph density, average vertex degree (AVD),
and directivity) and different scales (in terms of number of vertices and edges).
We included both the directed and undirected graphs. Table 1 summarizes
the datasets used in this study. Dataset G1, a sampled snapshot of the
Facebook social graph obtained in 2009 [23], has the largest number of
vertices and edges. Datasets G2 and G3 reflect LiveJournal friendship network
(directed) and DBLP coauthorship network (undirected), respectively. Both
of them are obtained from Stanford Network Analysis Project (SNAP)!. The
graph density measures the proportion of the number of actual edges over
the maximal possible number of edges. It is defined as 2[E|/(|V|(|V|-1))
for undirected graph and |E|/(|V|(|V|-1)) for directed graph. The average
vertex degree is defined as |E|/|V| for directed graph and 2|E|/|V| for
undirected graph.

2) Graph Algorithms

Table 2 lists the three graph algorithms being studied. We chose those
algorithms because they are basic graph algorithms and commonly used
in network analysis studies. Those algorithms often are already imple-
mented in distributed graph-parallel computing systems and used as the
benchmarking algorithms to evaluate system performance in existing studies
(e.g. [41[6D.

"http://snap.stanford.edu/data/

295

Evaluation and Analysis of Distributed Graph-Parallel Processing Frameworks

JIomiou
diysioyine-oo
pejoarpuf) L 60'C 998°670°1 080°L1¢ d714dd d19q-wo) €D
JIomiou
[e1008
drysupary
pajoallg 4! 650 €LL'€66°89 ILS'LY8Y [EUWINO[IATT [BUINOfIAIT-O0S [43]
JI0MIAU [B100S
| kit S 200 69T9LL9EE S19°9L8°T9 3[00qa3eq 1549 |§9)
ANADOAI AV (ot ™) N uonduosaq sydein jeseieq
Ansuop ydein (|g]) se8pa jo # SOOI)IOA JO #
syoseep Juowadxa oy Jo Arewwing | J[qeY,

296 Y. Zhao, K. Yoshigoe et al.

Table 2 Summary of the studied graph algorithms

1D Algorithm Characteristics Example Application

Al PageRank Iterative, high communication Importance ranking

A2 Shortest path Iterative, low communication Decision making

A3 Triangle count- Single step, medium communi- Clustering coefficient
ing cation

PageRank [19] and its variants such as Personalized PageRank [20] are
effective methods for link prediction based on finding structure similarities
between nodes in a network. Conceptually, the PageRank score of a node
is the long-term probability that a random web surfer is at that node at a
particular time step. For sufficiently long time, the probability distribution of
the random walks on the graph is unique, that is, minor changes to the graph
make the random walk transition matrix aperiodic and irreducible [21]. The
computation of the PageRank score of a node v is an iterative process where
the PageRank algorithm recursively computes the rank R(v) considering the
scores of nodes u that are connected to v, defined as:

R(v)=(1-a) Wy X R(u) + 2

u liq% towv n
where « is the damping factor (see Langville et. al.’s “Deeper Inside PageR-
ank” for a detailed and excellent description of the PageRank algorithm).

Topological features of a network can be quantitatively measured as net-
work characteristics such as the clustering coefficient and characteristic path
length. These structural network characteristics are often used to benchmark
or infer the functional aspects of the network.

The clustering coefficient of a vertex expresses the chance of how likely its
neighbors are also connected to one another. The (global) clustering coefficient
is based on triplets of nodes, where a triplet consists of three nodes that are
connected by either two (open) or three (closed) undirected ties. The global
clustering coefficient is therefore defined as the fraction of the number of
closed triplets over number of total connected triplets of vertices. Therefore,
the method of calculating the global clustering coefficient is also often called
triangle counting [22]. The clustering coefficient measures the degree of
herding effect in a network (or network component), a larger coefficient value
implies that nodes tend to create more tightly knit groups.

The characteristic path length is the average shortest path length in a
network [22], which measures the average degree of separation between nodes

Evaluation and Analysis of Distributed Graph-Parallel Processing Frameworks 297

in a network (or network component). Therefore, the shorter the length, the
“easier” (or more likely) it can reach another node in a network.

The clustering coefficient and the characteristic path length are important
network measures that are often used to determine the type of a network (e.g.,
random, small-world and scale-free). For example, Watts and Strogatz [22]
coined the term “small-world” networks to categorize complex sparse real-
life networks that have significantly high clustering coefficients than sparse
random graphs yet have small degrees of separation (i.e., characteristic path
length) between nodes.

2.3 Distributed Big Data Platforms and the Targeted Platforms

As this work focuses on the evaluation of graph-parallel processing platforms,
we selected three systems that are recent and popular both in academia and
industry. They are Giraph, GPS, and PowerGraph (the upgraded version of
GraphLab). In addition, we also included a popular general-purpose data-
parallel computing platform, Spark, into the study in order to understand
the performance difference between a data-parallel computing platform and
graph-parallel computing platform in executing a graph computation job.
The general information of the computing platforms evaluated in this study
is summarized in Table 3. Note that Spark, Giraph, and GPS use only
synchronous computation mode while both synchronous and asynchronous
modes are supported by PowerGraph and were tested in our experiments.

1) Data-Parallel Computing System

Data-parallel computing systems use a simple programming model to pro-
cess large-scale data. Whereby the data-parallelism feature, these systems
support and implement a couple of fault-tolerance strategies and are highly
scalable [24]. They are able to process data organized in any kinds of format,
such as table and graph. Thus, data-parallel computing systems are also
tagged as generic data processing systems [11]. MapReduce/Hadoop [3] and
Spark [9] are the most popular representatives of data-parallel computing

Table 3 Summary of the studied distributed computing platforms

Platform Type Version Release Year Computation model
Spark Data parallel Spark-0.9.0 2014 Synchronous
PowerGraph Graph parallel PowerGraph-2.2 2012 GAS (Synchronous
& Asynchronous)
Giraph Graph parallel Giraph 1.0.0 2013 BPS (Synchronous)

GPS Graph parallel GPS-0.0.1 2013 BPS (Synchronous)

298 Y. Zhao, K. Yoshigoe et al.

systems. Because literatures [9, 27] have demonstrated that Spark Mapreduce:
simplified data processing on large clusters performs much better than Mapre-
duce/Hadoop in the big data processing rate and efficiency, we selected Spark,
but not Mapreduce/Hadoop, as a representative of data-parallel computing
systems to evaluate and analyze in this work.

Spark [9]: While retaining the fault tolerance and scalability of MapRe-
duce Spark proposes three simple data abstractions: two restricted types of
shared variables (broadcast variables and accumulators) and the resilient
distributed datasets (RDDs). In particular, RDDs are read-only partitioned
objects stored separately on a set of computing nodes. It can be rebuilt if a
partition is lost. Spark can outperform Hadoop by 10x in executing time for
iterative machine learning jobs. The graph analytic library, GraphX [24], on
Spark efficiently formulates graph computation within the Spark data-parallel
framework, and it exploits the special graph data structures such as vertex
cuts, structural indices and graph-parallel operators.

2) Graph-Parallel Computing System

Graph-parallel platforms are designed and developed specially for processing
graph data. In a graph-parallel computing system, the input of an algorithm
is presented as a sparse graph G = {V, E}, and the computation is con-
ducted by executing a vertex-program Q in parallel on each vertex veV.
The vertex-program Q(v) can communicate with neighboring instances Q(u)
where (u, v)€E. For example, GraphLab [5] provides a shared data table
(SDT), an associative map, to support globally shared information and Pregel
[14] adopts message-passing model to exchange information among vertex-
program instances [3]. In the following paragraphs we introduce the targeted
graph-parallel computing systems evaluated in this work and demonstrate
their characteristics to clarify the reason why we selected them.
PowerGraph [6]: GraphLab exhibits more competitive performance than
others in graph processing [11, 15, 24]. Besides bulk-synchronous com-
putation model GraphLab also supports asynchronous graph computation
to alleviate the overhead induced by waiting for barrier synchronization.
PowerGraph is a representative of GraphLab platform series [4, 5, 6, 28]
and it is an open-source, distributed graph-specific computing system imple-
mented in C++. Based on the primary distributed Graphlab [4] PowerGraph
makes the following improvements. First, PowerGraph proposes a three-
phase programming model, Gather, Apply and Scatter (GAS), for constructing
a vertex-program. By directly exploiting the GAS decomposition to factor
vertex programs over edges, PowerGraph eliminates the degree dependence

Evaluation and Analysis of Distributed Graph-Parallel Processing Frameworks 299

of the vertex-program [6]. Second, PowerGraph incorporates the best features
from both Pregel [14] and GraphLab [4]. Like GraphLab, PowerGraph adopts
the shared-memory and data-graph view of computation that frees users from
architecting a communication protocol for sharing information. PowerGraph
borrows the commutative associative message combiner from Pregel, which
reduces communication overhead in the Gather phase. At last, PowerGraph
uses a vertex-cut approach to address the issue of partitioning power-law
graphs [6]. Vertex-cutting can quickly partition a large power-law graph by
cutting a small fraction of very high degree vertices.

Giraph [18]: Pregel [14] is a most popular and representative bulk
synchronous parallel (BSP) computing system, in which all vertex-programs
run simultaneously in a series of global super-steps. Many other state-of-the-
art graph-parallel systems [17, 18, 29] derive from Pregel. Pregel employs
message passing model to exchange information among vertex-computing
instances. However, the source code of Pregel is not open and it is not feasible
to evaluate it directly, thus we selected its public implementation: Giraph to
evaluate in this work. Giraph inherits the vertex-centric programming model
of Pregel and isan open-source, distributed graph-parallel processing platform.
Giraph leverages the Map phase from Mapreduce/Hadoop and to achieve fault
tolerance Giraph adopts the periodic checkpoints. Like Graphlab, Giraph is
also executed in-memory, in which a whole graph needs to be imported into
memory to process. Although this feature can accelerate the graph processing,
it can also lead to crashes when there is not enough memory for large amounts
of messages or big datasets.

GPS [17]: GPS is also an open-source distributed graph-parallel process-
ing system. GPS is a Pregel-like system, with three new improvements: First,
in order to make global computation more easily expressed and more efficient
GPS proposes an extended API with an additional function: master.compute();
second, GPS proposes a dynamic repartitioning scheme, which reassigns
vertices to other computing nodes during the job execution based on messaging
patterns; and last, GPS conducts an optimization, which distributes adjacency
lists of high-degree vertices across all compute nodes, to further improve the
system performance.

In summary, we have considered the diversity in platform type and
computing model, and the representativeness and novelty in similar systems as
selecting standard consequently selecting one advanced data parallel platform
and three most representative graph parallel platforms to evaluate and analyze
in this work.

300 Y. Zhao, K. Yoshigoe et al.

3 Experimental Evaluation and Analysis

3.1 Experiment Environment

Our experiments were conducted on a Linux-based cluster with 65 nodes
(528 processors). The cluster consists of one front-end node that runs the
TORQUE resource manager and the Moab scheduler and 64 computing
(worker) nodes. Each computing node has 16 GB RAM and 2 quad-core
Intel Xeon 2.66GHz CPUs. All the nodes share /home partition through NFS.
Up to 48 nodes were used in our experiments.

3.2 Experiment Design, Results, and Analysis

We obtained the results of the targeted metrics mainly through two methods:
extracting information from job execution logs and using Linux ps command.
In particular, the data processing time and volume of network I/O were
obtained from the job execution logs. And the ingress time information on GPS
and Giraph also came from their job execution logs. However, to measure the
ingress time in Spark and PowerGraph, we modified the source code of these
systems. We essentially measured the time spent between the initiation of a
job and the beginning graph computing phase. Further, memory consumption
and CPU load were derived by averaging the snapshot results measured using
the ps [30] command in Linux. We ran each experiment at least three times.

3.2.1 Applicability

An interesting observation from our study is that not all the tested platforms
were able to handle all the datasets in the experiments. Only PowerGraph
could successfully process the largest graph, G1. All other platforms (Spark,
Giraph, and GPS) crashed? while working on dataset G1. For PowerGraph,
it also crashed when loading G1 under the asynchronous execution mode.
The reason of the crashes is that the memory required by those systems
for processing the graph exceeds the total amount of physical memory that
the system can supply. In particular, GPS crashes when a large number of
messages overwhelm the message queue kept by the message parser thread.
For Giraph, the memory on one particular worker node is exhausted during the
graph loading phase. For PowerGraph asynchronous engine execution mode,
if the number of graph partitions is large, the messages exchanged among the
partitions will explode and exhaust the memory of computing nodes. Spark

>We conducted experiments with 16, 32, 48 computing nodes and system crash occurs in
all of those experiments.

Evaluation and Analysis of Distributed Graph-Parallel Processing Frameworks 301

crashes due to the overflow of the Java heap space during the shuffle phase.
Even in each node we increased the size of heap space up to almost equal to
the size of the memory capability of that node (16GB) the crash still persisted.

3.2.2 Data Processing Rate

We measured the time spent on processing the datasets. As mentioned in
Section 2 we measured both the ingress time and the computing time for a
graph computation job.

Ingress Time: The default graph loading strategy of Giraph and GPS
is multi-loading, that is, each computing node loads its part in parallel.
In contrast, the default graph loading strategy of PowerGraph is single-
loading, in which the master reads the graph file from disk and distributes the
graph to computing nodes. To be consistent with the graph loading strategy
of Giraph and GPS, we configured PowerGraph to also use multi-loading
strategy. Two data partitioning methods—random partitioning and oblivious
partitioning—are available for PowerGraph and we tested both.

Figure 1 shows the ingress time for datasets G2 and G3 on each tested
platform. There is no ingress time data available for G1 as our tested platforms
crashed during data loading. We can clearly see in the figure that the ingress
times of those graph-parallel processing platforms decrease when adding more
computing nodes for medium-size graph G2 while they keep almost constant
for small-size graph G3. For these graph-parallel processing platforms, the
ingress time consists of the time for reading and partitioning the data and

60 4 —e— PowerGraph {Random) 45 -

+--4--- PowerGraph (Oblivious)
50 A

A\ - -&--Giraph 3.5 1
a4 o N\ — w —GPS 2 3
o | N o
H “ N A ' E 25
£ 3p - " SO\ = *¥= Spark =
“w L/ - oy 3 el + em) s e) —
§ . g 21 MR f-=
Fy 2151 B...g.

2 4 8 16 32 48 2 4 8 16 32 48
Number of Machines Number of Machines
(a) G2 () G3

Figure 1 Ingress time for different dataset on each platform

302 Y. Zhao, K. Yoshigoe et al.

the time for system setup. When the dataset is large and multi-loading
strategy is employed, increase of nodes increases the degree of parallelism,
effectively reduces the workload of data reading and partitioning on each
node, and therefore reduces the overall ingress time. For small graphs, the
graph loading time is negligible and ingress time is mainly determined by the
system setup time, which stays approximately the same when more nodes are
added.

Another interesting observation is that the ingress time of Spark is fairly
small in all cases and its curve keeps flat for both G2 and G3. Unlike the three
evaluated graph-parallel processing platforms that need to load the entire graph
into memory before running any graph computation job, Spark does not need
to wait for the whole graph being loaded into memory. Instead, Spark begins
its data computing immediately after part of the data is available in memory.
The ingress time of Spark actually records the time for loading partial graph
instead of the entire graph. Thus the ingress time of Spark is small and remains
constant even though more nodes are added.

Graph Computing Time:

Figures 2—4 show the computing time results of each platform for three
selected graph algorithms with different dataset and number of computing
nodes. Note that, the triangle counting algorithm implemented in PowerGraph
does not support the asynchronous execution mode. Thus our results do
not include those results of triangle counting under asynchronous mode in
PowerGraph. Since all the platforms except PowerGraph were not able to
handle G1 dataset, we only show the PowerGraph results on G1 in those
figures. PowerGraph exhibits different execution times when it is configured
with synchronous communication mode and asynchronous communication
mode (the ingress times in both modes are the same). Due to the excessive

Runtime (s)
Runtime (s)
£
é
I
I
o
]

1
14
)
¢

Figure 2 Computing time of PageRank

Evaluation and Analysis of Distributed Graph-Parallel Processing Frameworks 303

A —+— PowerGraph (SyncRandom) 120 - 60
90 4 N, —B PowerGraph (SyncOblivious)
SR A eses POWErG 100 4 X }
oL Dy A ..4.. PowerGraph {AsyncRandom) 100 s 500 g e -
So, === PowerGraph(AsyncOblivious) =~ [o TS s
70 5 T B e SES gy
— = Giraph 80 - \ — 40 T
Z 60 —e GPS = .9 *o - ~ =
o o ~ , - o
g | — spark g - .o X
£ s0 £ 60 - . - E 30
5 £ £
€ 40 - < &
3014 40 - 20 +
20 - S RN
L 20 + 10 +
10 ‘E--n
0 o0l o r_..::“ uuk--‘.--.—‘-.--i
2 4 8 16 32 48 2 4 8 16 32 48 2 4 8 16 32 48
Number of Machines Number of Machines Number of Machines
(a)G1 (b) G2 (©) G3
Figure 3 Computing time of single source shortest path (SSSP)
1800 —+—PowerGraph (SyncRandom) 1000 20
260088] -+ @+ PowerGraph (SyncOblivious) 900+, 18 A
- 4= Giraph \ %
1400 -+ 800 « 16 - ®L
- GPS \ A\
7 4 \ 4 ~
1200 + m, — - -Spark 700 % 14 G "y
z & T6ooiq % T 124 T
% 1000 3 N % "y
E E 500+ A \ £ 10
B e £ , \ B P o o
5 5 ~
& 2 400 - \ \ € g e e - am ard
600 ¥
g 300
003 200
200 ~ 100 -
0 0
2 4 8 16 32 448 2 4 8 16 32 48 2 4 8 16 32 448
Number of Machines Number of Machines Number of Machines
(a)Gl1 (b) G2 (¢) G3

Figure 4 Graph computing time of triangle counting

memory usage incurred by asynchronous communications, we were only
able to run PageRank and SSSP algorithms on PowerGraph in synchronous
communication mode with G1 on 2, 4, and 8 computing nodes and show their
results in Figures 2 and 3.

For PageRank, Spark always performs worse than other platforms in
terms of computing time. The main reason is that Spark has a significant I/O
between two continuous iterations and suffers a heavy shuffle phase between
the map and the reduce phases. The implementations of single-source shortest
path (SSSP) and triangle counting algorithms we used for Spark come from
the graph analytic library supplied by Spark. The graph analytic library on
Spark efficiently formulates graph computation within the Spark data-parallel
framework, and it exploits the special graph data structures such as vertex
cuts, structural indices and graph-parallel operators [24]. Thus, for SSSP and

304 Y. Zhao, K. Yoshigoe et al.

triangle counting algorithms, the graph computing time results of Spark are
more competitive.

For all three algorithms and three datasets PowerGraph exhibits the best
performance in graph computing time. One of the reasons for PowerGraph’s
superior performance can be attributed to its highly optimized C++ imple-
mentation. All other platforms use Java as the development language. Another
reason is that Giraph, GPS and Spark all use Hadoop MapReduce-like resource
scheduling mechanism, which induces substantial overhead especially when
the graph is small [24].

Because asynchronous mode incurs more communications than syn-
chronous mode, PowerGraph (v2.2) cannot achieve runtime gain from
asynchronous mode under the experiment environment of this work. For
dataset G2 and G3 which are relatively small graphs, PowerGraph does not
achieve better runtime when increasing the number of computing nodes. The
runtime even increases when more machines are used. The reason is that
PowerGraph splits the high-degree vertices across partitions, which incurs
the overhead due to the joins and aggregations required for coordinating
vertex properties across partitions [24]. When the size of graph is small,
the synchronization overhead exceeds the benefit obtained from workload
distribution. For the largest dataset G1 PowerGraph exhibits good scalability
for all the algorithms. For other platforms, their scalability becomes more
evident when the dataset is relatively large. Consequently, distributed data
processing platforms are more suitable for processing large size of data, which
is especially true for PowerGraph.

3.2.3 Resource Utilization

In order to understand the resource utilization of the targeted platforms, we
collected network 1/0, CPU load, and memory usage of the jobs executed on
the selected platforms.

Network I/0: We measured the overall volume of network traffic (in
unit of GB) generated by each platform when executing each of the three
algorithms. Both G2 and G3 were tested. Results for PageRank, SSSP, and
triangle counting are depicted in Figures 5, 6, and 7, respectively. As shown in
those figures, in general, the more nodes are employed (i.e., the more partitions
are generated), the more communications are incurred, which is reflected by
rising curves in the figures. One notable exception to this pattern is the network
traffic generated by Giraph, which remains fairly constant across different
datasets and number of nodes for all three different algorithms. Relative lower
communication overhead growth rate with more machines being used is one

Evaluation and Analysis of Distributed Graph-Parallel Processing Frameworks

Volume of Communications (GB)

45 4

40

35 4

30

25 4

Volume of Communications (GB)

—t: ~GPS /

Number of Machines

(@) G2

Figure 5 Network I/O of PageRank

—a— PowerGraph (Sync Random)

---4--- PowerGraph (Sync Oblivious)

==& -- PowerGraph {Async Random)

= % = PowerGraph {Async Oblivious) ,’

- ¥=— Spark o
A

—e— Giraph 4

Number of Machines

(@) G2

Figure 6 Network I/O of SSSP

A

/
/

48

Volume of Communications (GB)

Volume of Commuications (GB)

35 A

——4— PowerGraph (Sync Random)

«+-4&-+- PowerGraph (Sync Oblivious)

305

14 4

'y
- =k ~-- PowerGraph {Async Random)

/
= » = PowerGraph {Async Oblivious) ¢
[

- %= Spark 1 %
e
—&— Giraph " /
—+ = GPS Ay X
4 .
,’/)(,
x
/x’ 7
o N

Number of Machines

(®)G3

Number of Machines

() G3

of the reasons why Giraph can achieve a better scalability on graph computing
time than other platforms.

Among the evaluated platforms the asynchronous PowerGraph suffers the
largest communication overhead especially when the number of machines
used becomes large. Because there is no synchronization between each
round of computing, asynchronous PowerGraph needs to launch more

306 Y. Zhao, K. Yoshigoe et al.

20 4 025 -

18 4 —&— PowerGraph (Sync Random)

«--ll--- PowerGraph (Sync Oblivious)
02

16 4

E g -~k ~- Giraph o
g 141 2 - = =GPS
e 12 4 2 015 4 — - Spark
i]
H H
E 101 E
5 E
e 8 8 01 4
S k] g
¢ ° - e = == =]
5+ g | YT .me
2 3
s : -
4 Z 005 w/ mer
24
04 0 A . o= am I o= o= o e e
2 4 8 16 32 48 2 4 8 16 32 48
Number of Machines Number of Machines
(@62 (®) G3

Figure 7 Network I/O of triangle counting

communications to synchronize the vertex properties across partitions, which
may account for the fact that the graph processing rate of PowerGraph in the
asynchronous mode is worse than that in the synchronous mode.

Memory Consumption: We measured the average memory consumption of
each platform for running PageRank, SSSP, and triangle counting algorithms
with datasets G2 and G3 and show their results in Figures 8—10. As shown
in the figures, the more machines participate in the computing, the more
memory each job will consume. Similar to the results in graph computing
time, compared with other platforms, Spark consumes relatively more memory
resource for PageRank algorithm. Butits graph analytic library performs much

—+— PowerGraph (SyncRandom)

~-@-- PowerGraph (Sync Oblivious))
0 164 --A--PowerGraph (AsyncRandom) e
»
35 14 4 —m— PowerGraph (Async Oblivious) 77
- _ £Y
g. 30 8 12 4 —® - Giraph ///
3 3 /
e 3 10 + =IOk /‘/
g 3 —= - Spark o
§ 20 - g 8 "W
b3
15 6 4 '/
10 - 7 /7%/
1%
i
5 4 2 -
0 0 = == s = —
2 a 8 16 32 48 2 4 8 16 32 48
Number of Machines Number of Machines
() G2) G3

Figure 8 Memory used by PageRank

Evaluation and Analysis of Distributed Graph-Parallel Processing Frameworks 307

16
—e— PowerGraph (SyncRandom) /

14 --8-- PowerGraph (Sync Oblivious) //}'

194 ~-&~-PowerGraph (AsyncRandom) 4,/'/

—m— PowerGraph (AsyncOblivious) ‘e

10 4 —a - Giraph ”/
—e—GPS / »

—=— spark V /4

Memory Used (GB)
Memory Used (GB)
o

Number of Machines Number of Machines

@62 (b) G3

Figure 9 Memory used by SSSP

40 = —— PowerGraph (Sync Random)

++ @+ PowerGraph (Sync Oblivious) ,’
- A= Giraph 7
-=>e= GPS

Memory Used (GB)
N
o
Memory Used (GB)

Number of Machines Number of Machines

(@ G2 (b) G3

Figure 10 Memory used by triangle counting

better in memory usage. It is similar that the graph analytic library outperforms
the raw Spark in the CPU resource utilization, which is presented in the
following section. The reason is that the graph-parallel systems only conduct
the operation related to the activated vertices in each iteration. This feature
help to reduce the memory consumption for graph-parallel systems.

CPU Load: We measured the average CPU load of all computing nodes
involved in the execution of each algorithm for each platform. In particular,
we first sampled the CPU load of each computing node every second and
calculated the average of the samples. Then, we averaged these CPU load
values of all computing nodes. As the results of each platform exhibited similar
trends for G1 and G2, only the results for G1 are presented.

Figure 11 depicts the variation of CPU load with the increase of computing
nodes. It is clear that with the increase of the number of machines used, the
CPU load of each machine goes down evidently. This is expected as more

308 Y. Zhao, K. Yoshigoe et al.

CPULoad (%)

CPULoad (%)
CPULoad (%)

2 4 8 16 32 a8 2 4 8 16 32 48 2 4 8 16 32 a8
Number of Machines Number of Machines Number of Machines

(a)PageRank (b) SSSP (c) Triangle Counting

Figure 11 CPU Load for G2

machines process the graph in parallel, the computation workload distributed
to each machine decreases. On the contrary, there is more CPU idle time
induced by waiting for data transmission among machines.

Spark consumes more CPU time during job execution for all three algo-
rithms (and for all datasets). One of the reasons for the high CPU load is that
the ingress time for Spark is much shorter than those for other platforms. The
operations during ingress time are mainly for loading the graph data from disk
and configuring the running environment, which incur minor CPU utilization.
Among graph-parallel processing systems, PowerGraph runs faster than others
with lower CPU load. And its CPU load in asynchronous mode is lower than
that in synchronous mode. The relatively low CPU load in asynchronous mode
coincides with the relatively high communication overhead, which suggests
that PowerGraph has more idle CPU in asynchronous mode due to more
network communications occurred during graph processing.

4 Related Work

Many previous works [11, 15, 17, 24, 25, 26] have conducted performance
evaluation of distributed graph-parallel computing platforms as well. Study
[11] presented a detailed and real-world performance evaluation of six rep-
resentative graph-processing systems (i.e., (Hadoop, YARN, Stratosphere,
Giraph, GraphLab, and Neo4j) aiming to facilitate platform selection and
tuning for processing tasks in Small and Medium Enterprise (SME) environ-
ment where computing resources are limited. In [15], the authors presented
an evaluation of big data processing frameworks and provided a comparison
between MapReduce and graph-parallel computing paradigms. However, its
analysis is limited to the k-core decomposition problem. A number of other
works [17, 24,25, 26] have proposed new computing platforms and conducted

Evaluation and Analysis of Distributed Graph-Parallel Processing Frameworks 309

evaluation of a few graph-parallel computing systems to prove the effective-
ness of the new platforms. Thus, in terms of evaluation, these work are diverted
from conducting a comprehensive evaluation and analysis of graph-parallel
processing systems. In all these existing works, studies on the following
two aspects are inadequate. First, in contrast to bulk synchronous computing
model, asynchronous computing model has been recently proposed for graph
processing. Existing works leave out thorough comparison and analyses of
the performance exhibited by these two different computing models. Second,
these existing works do not attach importance to explore and analyze the
performance impact of the scale of datasets on distributed graph-parallel
processing systems. Although some of their evaluations used different sized
datasets, they failed to answer some interesting and important problems such
as “Is it suitable to use a distributed computing system to process relatively
small datasets?”” and “What are the different performance characteristics when
processing a large and a relative smaller dataset, respectively?”. The answers
to these questions can be valuable reference to users for platform selection. By
conducting a comprehensive evaluation and analysis on the most concerned
performance aspects of representative platforms, we seek to find the answers
to these questions.

5 Conclusion

In this work, we performed a comprehensive evaluation of several popular
graph-parallel computing platforms aiming to facilitate platform selection and
tuning. For completeness, we also compared the performance of these graph-
parallel systems with a popular data-parallel processing platform, Spark.
We found that graph-parallel computing platforms outperform general data-
parallel systems on both graph computing rate and resource utilization for
processing graph-structured data. However, Spark uses less ingress time than
graph-parallel systems when the sizes of the graphs are large. Further, all sys-
tems evaluated in this work exhibit better scalability on large dataset compared
with small dataset. With an optimized C++ implementation and a sophisti-
cated modular scheduling mechanism, PowerGraph exhibits a better graph
processing rate than other graph-parallel computing platforms. Furthermore,
PowerGraph has an intelligent graph partitioning strategy, which coordinates
the vertices distribution among machines, improves both the execution effi-
ciency and resource utilization. However, we found that the asynchronous
computing mode proposed by PowerGraph does not bring improvement in
performance in our experiments. Moreover, Giraph can achieve a better

310 Y. Zhao, K. Yoshigoe et al.

scalability on graph computing time than other platforms due to its rel-
atively lower communication overhead growth rate when more machines
are used. However, its graph computing rate is slower than PowerGraph
and GPS.

6 Acknowledgment

This work was supported in part by the National Science Foundation under
Grant CRI CNS-0855248, Grant EPS-0701890, Grant EPS-0918970, and
Grant MRI CNS-0619069.

References

1.

Forum, M.P., MPI: A Message-Passing Interface Standard. 1994,
University of Tennessee.

. Dagum, L. and R. Menon, OpenMP: An Industry-Standard API for

Shared-Memory Programming. IEEE Comput. Sci. Eng., 1998. 5(1):
p. 46-55.

. Dean, J. and S. Ghemawat, MapReduce: simplified data processing on

large clusters. Commun. ACM, 2008. 51(1): p. 107-113.

. Low, Y., et al., Distributed GraphLab: a framework for machine learn-

ing and data mining in the cloud. Proc. VLDB Endow., 2012. 5(8):
p. 716-727.

. Low, Y., etal., Graphlab: A new framework for parallel machine learning.

arXiv preprint arXiv:1006.4990, 2010.

. Gonzalez, J.E., et al., PowerGraph: distributed graph-parallel compu-

tation on natural graphs, in Proceedings of the 10™* USENIX conference
on Operating Systems Design and Implementation. 2012, USENIX
Association: Hollywood, CA, USA. p. 17-30.

. Katz, R.F,, et al., Numerical simulation of geodynamic processes with

the Portable Extensible Toolkit for Scientific Computation. Physics of
the Earth and Planetary Interiors, 2007. 163(1-4): p. 52-68.

. Chen, W.-Y,, et al., Parallel spectral clustering in distributed systems.

Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2011.
33(3): p. 568-586.

. Zaharia, M., et al., Spark: cluster computing with working sets, in

Proceedings of the 2% USENIX conference on Hot topics in cloud
computing. 2010, USENIX Association: Boston, MA. p. 10-10.

Evaluation and Analysis of Distributed Graph-Parallel Processing Frameworks 311

10. Zaharia, M., et al., Resilient distributed datasets: a fault-tolerant
abstraction for in-memory cluster computing, in Proceedings of the 9™
USENIX conference on Networked Systems Design and Implementation.
2012, USENIX Association: San Jose, CA. p. 2-2.

11. Guo, Y., et al. How well do graph-processing platforms perform? an
empirical performance evaluation and analysis.

12. Scott, J. and P.J. Carrington, The SAGE handbook of social network
analysis. 2011: SAGE publications.

13. Newman, M., Networks: An Introduction. 2010: Oxford University Press,
Inc. 720.

14. Malewicz, G, et al., Pregel: a system for large-scale graph processing,
in Proceedings of the 2010 ACM SIGMOD International Conference
on Management of data. 2010, ACM: Indianapolis, Indiana, USA.
p. 135-146.

15. Elser, B. and A. Montresor. An evaluation study of Big Data frameworks
for graph processing. In Big Data, 2013 IEEE International Conference
on. 2013.

16. Guo, Y., et al., Towards Benchmarking Graph-Processing Platforms.

17. Salihoglu, S. and J. Widom. Gps: A graph processing system. in Proceed-
ings of the 25 International Conference on Scientific and Statistical
Database Management. 2013. ACM.

18. The Apache Software Foundation. Apache Giraph. 2014 cited 2014;
Available from: http://giraph.apache.org/.

19. Page, L., et al., The PageRank citation ranking: Bringing order to the
web. 1999.

20. Haveliwala, T., S. Kamvar, and G. Jeh, An analytical comparison of
approaches to personalizing PageRank. 2003.

21. Langville, A.N. and C.D. Meyer, Deeper inside pagerank. Internet
Mathematics, 2004. 1(3): p. 335-380.

22. Watts, D.J. and S.H. Strogatz, Collective dynamics of ‘small-
world’networks. nature, 1998. 393(6684): p. 440-442.

23. Minas Gjoka, Maciej Kurant, Carter T. Butts and Athina Markopoulou,
Walking in Facebook: A Case Study of Unbiased Sampling of OSN:ss,
Proceedings of IEEE INFOCOM 10, San Diego, CA, 2010.

24. Crankshaw, Daniel, Ankur Dave, Reynold S. Xin, Joseph E. Gonzalez,
Michael J. Franklin, and Ion Stoica, The GraphX Graph Processing
System.

25. D. Gregor and A. Lumsdaine, “The Parallel BGL: A Generic Library for
Distributed Graph Computations,” POOSC, 2005.

312 Y. Zhao, K. Yoshigoe et al.

26.

27.

28.

29.

K. Kambatla, G. Kollias, and A. Grama, “Efficient Large-Scale Graph
Analysis in MapReduce,” in PMAA, 2012.

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. Franklin, S. Shenker, and 1. Stoica. Fast and interactive analytics
over Hadoop data with Spark. USENIX; login, 37(4), 2012.

Yue Zhao, Kenji Yoshigoe, Mengjun Xie, Suijian Zhou, Remzi Seker,
and Jiang Bian, LightGraph: Lighten Communication in Distributed
Graph-Parallel Processing, in Proceedings of the 34 IEEE Interna-
tional Congress on Big Data (BigData 2014), Anchorage, Alaska, USA,
2014.

POWER, R., AND LI, J. Piccolo: building fast, distributed programs with
partitioned tables. In OSDI (2010).

30. http://en.m.wikipedia.org/wiki/Ps_(Unix)

Biographies

Yue Zhao received his B.S and M.S. degree in Computer Science and
Technique in 2006 and 2009, respectively, from Jilin University. Currently
he is a Ph.D candidate in Integrated Computing program at University
of Arkansas at Little Rock. His research interest includes big-data ana-
Iytic, distributed computing, High performance computing, and wireless
network.

Evaluation and Analysis of Distributed Graph-Parallel Processing Frameworks 313

e

Kenji Yoshigoe is an Associate Professor in the Department of Computer
Science and the Director of Computational Research Center (CRC) at UALR.
He received his Ph.D. degree in Computer Science and Engineering from
the University of South Florida. He is currently investigating the reliability,
security, and scalability of various interconnected systems ranging from
tightly coupled high performance computing systems to resource-constrained
wireless sensor networks

Mengjun Xie is an Assistant Professor in the Department of Computer Science
at the University of Arkansas at Little Rock. He received his Ph.D. degree
in Computer Science from the College of William and Mary. His research
interests include cyber security, information assurance, mobile computing,
and big data analytics.

314 Y. Zhao, K. Yoshigoe et al.

Suijian Zhou is a Postdoctoral Researcher in the Department of Computer
Science at UALR. He received his Ph.D degree in Particle Physics from the
Institute of High Energy Physics in China. He participated in the Atlas Grid
Computing project at CERN and the IGE Grid Computing project in Sweden
during the past few years. He is interested in the Big Data analysis and Cloud
Computing techniques.

Remzi Seker is a Professor in the Department of Electrical, Computer,
Software, and Systems Engineering at Embry-Riddle Aeronautical Univer-
sity at Daytona Beach, Florida. He received his Ph.D. degree in Computer
Engineering from the University of Alabama at Birmingham. His research
interests are safety and security critical systems and computer forensics. He
is co-author of one of the first papers that was published on Mobile Phishing,
and possible techniques for preventing it.

Evaluation and Analysis of Distributed Graph-Parallel Processing Frameworks 315

Jiang Bian received the M.S. degree in Computer Science in 2007 and
his Ph.D. degree in Integrated Computing in 2010 both from University of
Arkansas at Little Rock, Little Rock. He is currently an Assistant Professor
of Biomedical Informatics at University of Arkansas for Medical Sciences,
Little Rock. His research interest includes big-data analytic, network science,
machine learning, and knowledge discovery and representation.

