
Dynamic Encryption

Lars R. Knudsen

DTU Compute Technical University of Denmark
lrkn@dtu.dk

Received: 15 January 2015; Accepted: 2 February 2015;
Publication: 3 April 2015

Abstract

This paper considers the concept of dynamic encryption1, which is about
cryptosystems used for secrecy.

1 Introduction

Traditionally the participants in a secure communication scenario involving
encryption need to agree on the particular algorithm used for the encryption
and they need to establish a shared, secret key that is known only to the
legitimate parties. Kerckhoffs’ principle says that a cryptosystem should be
secure even when attackers know everything about the system except for the
value of the secret key (in a particular session). Here we introduce cryptosys-
tems for which the receiver, Bob, does not know anything a priori about the
system except for the value of the secret key, but without necessarily violating
Kerckhoffs’ principle and without sacrificing on security. The scenario is in
more details: Alice and Bob exchange a secret key by some protocol. Alice
(alone) decides on the cryptosystem to use, encrypts the cleartext with the
agreed key and sends the cryptogram (and some additional information) to
Bob. Although Bob does not know the cryptosystem used, the knowledge of
the secret key is sufficient for him to decrypt the cryptogram and retrieve the
message from Alice. The proposed method has many practical advantages and
applies well to for example electronic mail systems, mobile conversation and

1Patent pending

Journal of Cyber Security, Vol. 3, 357–370.
doi: 10.13052/jcsm2245-1439.341
c© 2015 River Publishers. All rights reserved.

358 Lars R. Knudsen

cloud storage. Moreover, the transmitting party in a conversation can change
the cryptosystem as often as desired, e.g., for every new communication. This
means that an attacker will have a harder time breaking the security, since he
would first have to figure out how the encryption was effected, and thereafter he
could try to break the encryption. This supports the strategy of “moving-target
defense” that is becoming popular.

Encryption systems have existed for many years, several thousands of
years if we are willing to believe the historicans. There are two main types
of encryption, the symmetric-key encryption and the public-key encryption.
The typical scenario of symmetric-key encryption is as follows, see also
Figure 1. The sender, usually calledAlice, and the receiver, usually called Bob,
first agree on a key-exchange protocol and a particular encryption mechanism
or encryption algorithm. Then they exchange a secret key K, such that after the
execution of the protocol only Alice and Bob know the value of the secret key.
Subsequently, Alice and Bob can exchange encrypted messages. In a public-
key cryptosystem Alice and Bob each have a pair of keys, a private key and

Figure 1 Typical scenario for symmetric-key encryption

Dynamic Encryption 359

a public key. The public key is made available for everyone and the private
key is known only by one party. Then Alice uses Bob’s public key to encrypt
a message, and Bob can decrypt the message using his private key. Bob can
send Alice a message by encrypting it with Alice’s public key and Alice only
can decrypt the message using her private key.

To evaluate the security of an encryption system it is customary to make
at least two assumptions.

1. It is assumed that an attacker has access to the cryptograms sent between
the sender and the receiver.

2. It is assumed that the attacker knows all details of the encryption process
except for the value of the secret key.

The second principle is known as an interpretation of Kerckhoffs’principle
[7, p. 225]. Kerckhoffs’ principle is that the security of an encryption system
should lie in the secrecy of the key and not in the secrecy of the system.
Many examples from history (e.g., the World War II) show that this is a sound
principle.

Today Kerckhoffs’ principle is standard in cryptology-security evalua-
tions. One advantage by using only public systems is that people will evaluate
them and try to break them.Asystem which is kept secret can only be evaluated
by the possible few people who knows about it.

2 New Approach

The new approach presented here can very shortly be described as follows:
The receiver does not need to know any details of the encryption process except
for the value of the secret key. Here the sender will choose the encryption
system and encrypt in such a way that the receiver does not need to know how
the encryption was done and still be able to decrypt correctly. And there are
variants of this approach that do not have the disadvantage which comes from
violating Kerckhoffs’ principle.

In principle the new approaches can be applied to both symmetric-key and
public-key encryption systems, but we shall concentrate on the former.

There are several ways of implementing the above idea, in this text we
give two such examples.

2.1 Wrapped Encryption

It is assumed that the sender and receiver have agreed upon a secret key K.
The sender does the following:

360 Lars R. Knudsen

1. Choose (at random) a symmetric-key encryption system with encryption
function E and decryption function D.

2. Construct an algorithm Ω which on input the secret key K and some
ciphertext, implements D and returns the plaintext.

3. Compile Ω to the executable code X.
4. Send X to the receiver.
5. Encrypt the plaintext m using E and the key K and save the ciphertext c.
6. Send C to the receiver.

The receiver does the following:

1. Execute the code X.
2. Type in K and c on request.
3. Save plaintext m and delete X.

This algorithm is suitable for many different scenarios, including
any data transmission e.g., email, voice transmission and cloud storage.
There are applications where it may be advantageous to combine the trans-
mission of X and c into one step. In this case, c can be incorporated into Ω.
The compiled code X would then contain the ciphertext, which would not have
to be transmitted separately. See Figure 2 for an example in the C programming
language.

2.2 Encrypted Algorithm

It is assumed that the sender and receiver have agreed upon two secret keys
k1and k2, and that they have agreed upon an encryption system ε. The sender
does the following:

1. Choose (at random) a symmetric-key encryption system with encryption
function E and decryption function D.

2. Encrypt D using ε with the shared key k1 and transmit the result to Bob.
3. Encrypt the plaintext m using E and the key k2 and transmit the cipher-

text c.

The receiver does the following:

1. Decrypt the first part of the received ciphertext using k1 to retrieve D.
2. Run D on the second part of the received ciphertext using k2 to

retrieve m.

In many applications, it would be acceptable that the encryption system ε
is not very fast, since it is used only to encrypt a relatively short string. This
would allow to choose a very strong cipher for ε, e.g., triple-AES.

Dynamic Encryption 361

Figure 2 C-program example for data transmission

2.3 Discussion

Note that this approach does not conflict with using Kerckhoffs’ principle.
As an example, assume that there are n secure symmetric-key systems. Then
the sender above can choose one of these systems at random for every message
she sends. The receiver does not need to know which algorithm has been
used to encrypt a particular plaintext. In §3 below we discuss some ways of
constructing several symmetric-key systems from existing ones.

The main advantages and disadvantages of the approaches are the
following:

Advantages

• Adds another element of secrecy:
Since neither the receiver nor the attacker knows the cryptosystem which
has been used for the encipherment, a successful attacker would need to
first retrieve the encryption algorithm used, then try to break it. Moreover,

362 Lars R. Knudsen

if the transmission between Alice and Bob is executable code, an attacker
would have to decode the executable code into a higher level language
in addition.

• Adds another element of security:
Attacks on symmetric-key cryptosystem often require a huge amount of
inputs and outputs from the encryption algorithm. If the encryption of
many and/or long plaintexts is split between several secure encryption
systems, one cryptosystem will be used to encrypt fewer plaintext
blocks and the chance of a successful cryptanalytic attack will decrease.
This supports the strategy of “moving-target defense” that is becoming
popular [1, 4].

• Adds efficiency to the system:
The receiver does not need to know the decryption algorithm, so this
removes the need for the sender and receiver to first negotiate which
encryption algorithm to use.

Disadvantages

For both approaches there will be some additional setup time in the
system, and for the wrapped encryption approach:

• Transmission of executable code: users may be reluctant to execute
program code received from other party. There are several ways to deal
with this.

• The sender can use a data integrity mechanism and send checkcode
along with the other data. The receiver will check whether the
received code is authentic before processing it. The integrity check
should depend on the secret key. This is known as symmetric-key
authentication and there are several international standards for this.

• The code is executed in a protected programming environment.
This would limit the risk in case of hostile code.

3 Customization

In this section methods we discuss how to construct private versions of existing
encryption systems.

3.1 Variations of Existing Algorithms

Some encryption systems have been designed to allow for customizations,
e.g., by choosing some of the components in the design according from a large
set of primitives. As an example consider the wide-trail strategy behind the

Dynamic Encryption 363

design of AES [8]. As for most symmetric encryption systems the AES can be
split in some linear mappings and some nonlinear mappings. In the wide-trail
strategy these two sets of mappings are constructed independently according
to some predefined sets of constraints. For any components satisfying these
constraints the result is a secure encryption system, where “secure” here is
relative to the predefined constraints.

The estimated security levels of modern encryption systems are often
calculated by assuming that the subkeys used in each iteration are independent.
However, often the subkeys are computed from the shorter user-selected key in
a so-called key-schedule. Further customizations of a system can be obtained
by modifying the key-schedule.

3.2 Module Encryption

Also, one can use what we will call “module encryption”. Most, if not all,
symmetric-key encryption systems used in practice are so-called iterated
ciphers. This means that the ciphertext is computed in a number of iterations,
also called rounds, as a function of the plaintext and the secret key. In module
encryption one constructs a number of iterated ciphers, say s, each with a
relatively small number of rounds. Take the secret key K and generate from
it a number of subkeys to be used in the small ciphers. Assume that the
concatenation of t such small ciphers each dependent on a different subkey
yield a strong cipher, resistant against all known attacks. In this way it is
possible to select st variant ciphers.

3.3 Cascade Ciphering or Multiple Encryption

In a cascade of ciphers
εr ◦ ... ◦ ε2 ◦ ε1

the encryption result of the first cipher ε1, is encrypted again using the second
cipher ε2 and so. This is also called multiple encryption when the ciphers εi

are similar.
It has been shown that for all attacks exploiting plaintext statistics a cascade

of ciphers is provably at least as secure as the first cipher in the cascade [6].
Under a chosen plaintext attack the cascade of ciphers is at least as secure as
any cipher in the cascade [2].

As an example, if ε1 would be AES, any cascade of ciphers would be
at least as secure as AES. Therefore one can implement dynamic encryption
which is as secure as AES, yet the receiver and the attack do not know how the

364 Lars R. Knudsen

encryption was computed. Since AES is known, this implementation would
not have the security risk one gets (traditionally) by violating Kerckhoffs’
principle.

4 Variants of the AES

First we give a specification of the AES with the notation that we will use.
The AES is an iterated cipher which runs in 10, 12, respectively 14 rounds
depending on the size of the key of 128, 192, respectively 256 bits. These
variants are named AES-128, AES-192, and AES-256.

The AES uses four main operations in a single round. In the following,
let r denote the total number of rounds applied in encrypting a single block,
thus for AES-128, r = 10. We use Gi, 1 ≤ i ≤ r, to denote the round function
which takes a 128-bit block as input and provides a 128-bit block as output.
The ith round for I ≤ i ≤ r – l is defined as2

Gi = AddRoundKeyi ◦ MixColumns ◦ ShiftRows ◦ SubBytes.

The final round of an AES encryption is special since MixColumns is omitted

Gr = AddRoundKeyi ◦ ShiftRows ◦ SubBytes.

Before the first round, a pre-whitening key is used in a step AddRoundKey0,
so the r-round encryption with master key k is denoted by

AES − 128k = Gr ◦ · · · ◦ G1 ◦ AddRoundKey0.

Each of the four operations operate on a 128-bit block arranged in a 4 × 4
matrix over the finite field GF(28) defined via the irreducible polynomial
x8 + x4 + x3 + x +1. In this finite field, an element is represented by a single
byte a = (a7a6 · · · a1a0), where ai ∈ GF(2), which in turn represents the
field element

a (x) = a7x
7 + a6x

6 + · · · + a1x + a0·
We use hexadecimal notation to write byte values. For example a = 01
represents the polynomial a(x) = 1 and a = 02 represents a(x) = x, and
so on.

2The notation g o f is function composition of f and g. The input to the composition is
evaluated through f , the result is then fed to gand the output from gis the final result

Dynamic Encryption 365

In the following, we briefly describe the four operations used in an AES
round. The text to be encrypted is 128 bits which is arranged as 16 bytes in a
4 × 4 matrix.

4.1 SubBytes

In the SubBytes operation, each of the 16 bytes in the state matrix are replaced
by another value according to an 8-bit lookup table, an Sbox.⎛

⎜⎜⎝
a b c d
e f g h
i j k l
m n o p

⎞
⎟⎟⎠ →

⎛
⎜⎜⎝

S(a) S(b) S(c) S(d)
S(e) S(f) S(g) S(h)
S(i) S(j) S(k) S(l)
S(m) S(n) S(o) S(p)

⎞
⎟⎟⎠·

For decryption one uses the inverse Sbox, which is easy to compute.

4.2 ShiftRows

In the ShiftRows step, the ith row of the state, 0 ≤ i ≤ 3, is left rotated by i
positions: ShiftRows:⎛

⎜⎜⎝
a b c d
e f g h
i j k l
m n o p

⎞
⎟⎟⎠ →

⎛
⎜⎜⎝

a b c d
f g h e
k l i j
p m n o

⎞
⎟⎟⎠·

For decryption one uses right rotations instead of left rotations.

4.3 MixColumns

In this step, each of the four columns of the state matrix are multiplied from
the right onto an invertible matrix M in the finite field. The matrix M is

M =

⎛
⎜⎜⎝

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎞
⎟⎟⎠·

For decryption one needs the inverse matrix which is

M−1 =

⎛
⎜⎜⎝

0e 0b 0d 09
09 0e 0b 0d
0d 09 0e 0b
0b 0d 09 0e

⎞
⎟⎟⎠·

366 Lars R. Knudsen

4.4 AddRoundKeyi

The r + 1 round keys, denoted rk0, . . . , rkr are generated using the AES key
schedule, cf. later. In this step, the 128-bit round key, rki, is added bitwise
modulo two (using XOR) to the state.

The AddRoundKey operation is the same for encryption and decryption.

4.5 The AES Key Schedule

The round keys in AES are viewed as matrices with elements in the finite
field GF(28). The first pre-whitening key rk0 is the n-bit master key itself, so
rk0 = k. The key schedule varies slightly across the three AES variants. Here,
we describe it for AES-128 and refer to the literature for the other two cases.

We consider the four columns of the two round keys as rki =
(rk0

i ||rk1
i ||rk2

i ||rk3
i) and rki+1 = (rk0

i+1||rk1
i+1||rk2

i+1||rk3
i+1). To derive

rki+1 from rki, , 0 ≤ i < r, we do the following

1. Let rkj
i+1 = rkj

i for j = 0, 1, 2, 3,
2. Rotate rk3

i+1such that the byte in the first row is moved to the bottom,
3. Substitute each byte in rk3

i+1 by using the Sbox from the SubBytes
operation,

4. Update the byte in the first row of rk3
i+1 by adding 02i−1 from the finite

field, and
5. Let rkj

i+1 = rkj
i+1 ⊕ rkj−1 mod 4

i+1 for j = 0, 1, 2, 3.

This procedure is repeated for i = 1,..., r to obtain the round keys rk0, ..., rkr.

4.6 Variants of the AES

There are several possible ways of making variants of the AES without
destroying the ideas behind the design. The subfunctions in the encryption
process are AddRoundKey, MixColumns, ShiftRows, and SubBytes.

AddRoundKey. The generation of round keys can be modified in many
different ways without inviting to new cryptanalytical attack. However, it is
not a trivial task to figure out how many secure ways there are of doing this.

MixColumns. This mapping is implemented by a circulant 4×4 matrix
over GF(28). According to [3] there are around 231 possible ways to choose
such a matrix with properties similar to the one chosen in the original
AES.

ShiftRows. There are 4! = 24 possible ways of choosing this mapping.

Dynamic Encryption 367

SubBytes. There are 28! ≈ 21684 possible bijection on eight bits, so there
is plenty to choose from. In practice, one would probably prefer to use a
(relatively) short key to pick one of these permutations, e.g., with a 128-bit
“Sbox-key” we would pick one of 2128 permutations. Therefore we would
only get a relative small subset of all permutations but we would still want to
sample them uniformly.

To choose such an S-box one can use the Knuth shuffle which is simple
and intutive [5]. The algorithm uses random numbers in the range [0, i] for
varying values of i, which may not so easy to compute. An alternative is to
use the initialization part of the stream cipher RC4, developed by Professor
Ron Rivest from MIT [9].

5 A Dynamic Encryption Variant - Using AES

In this section one variation of dynamic encryption using theAES is presented.
We introduce a new cipher, RAES, which is similar to AES-128 except

that the S-box used is different. RAES takes two keys each of 128 bits. One
key is used just as the key in AES-128 is used, the other key is used to select
the 8-bit S-box used in RAES. AES-128 has 10 rounds, cf., earlier, but RAES
can be specified with less than 10 rounds.

Now we can define a dynamic encryption variant using AES.
DynAES

RAESdk3,dk2AES−128dk1 ◦ AddKey [dk0].

This is an AES encryption using dk1 with a so-called prewhitening key dk0,
followed by an encryption using RAES, where dk2 is used as the “AES-key”
in RAES, and dk3 is used to select the 8-bit S-box.

For decryption one goes in the reverse direction using the inverse Sbox in
RAES, which is easy to compute.

5.1 GenerateSbox

There are many possible ways of generating an 8-bit S-box. We have chosen
to use the key setup function of the stream cipher RC4.

The input to the function is an s-byte key y = (y0, . . . , ys−1).

• let T be initialised such that T(i) = i for i = 0, ..., 255
• set j := 0
• for i := 0 to 255 do

– j := j + yi mod sx + K[i mod s] mod 256.

368 Lars R. Knudsen

– swap(T (i), T(j))
The output is the table T.
The table T which is output from the key setup function can be as the Sbox

in an AES variant. In the example above we used s = 16.

5.2 Security of the Variants

It is possible to prove that the above AES variant is at least as secure as the
AES itself, but likely much more secure.

Theorem 1 The cryptosystem DynAES where the keys dk0, dk1, dk2 and
dk3are chosen independently at random is at least as secure as the AES-128.

Also note that this proof is valid regardless of the number of rounds of the
cipher RAES, also if RAES runs in zero rounds.

6 Conclusion

This paper has presented the approach of dynamic encryption. The sending
party in a conversation can choose the encryption system at random from
a set of many, secure cryptosystems, encrypt the cleartext and transmit the
result together with some additional information. The receiver will be able to
decrypt the received cryptogram on input the correct key. The receiver does
not need to know how the encryption was performed, what is important for
the receiver is to do the decryption and retrieve the message. The dynamic
encryption approach has many applications.

References

[1] ACM/SIGSAC. First acm workshop on moving target defense (mtd
2014). http:// csis.gmu.edu/MTD2014, November 2014.

[2] Shimon Even and Oded Goldreich. On the power of cascade ciphers. In
David Chaum, editor, CRYPTO, pages 43–50. Plenum Press, New York,
1983.

[3] Otokar Grosek and Pavol Zajac. Searching for a different aes-class
mixcolumns operation. In Proceedings of the 6th WSEAS International
Conference on Applied Computer Science, Tenerife, Canary Islands,
Spain, pages 307–310, 2006.

[4] Homeland Security. Moving traget defense. http://www.dhs.gov/science-
and-technology/csd-mtd. Retrieved November 26, 2014.

Dynamic Encryption 369

[5] Donald E. Knuth. The Art of Computer Programming, Volume II:
Seminumerical Algorithms, 2nd Edition. Addison-Wesley, 1981.

[6] Ueli M. Maurer and James L. Massey. Cascade ciphers: The importance
of being first. J. Cryptology, 6(1):55–61, 1993.

[7] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1997.

[8] National Institute of Standards and Technology. Advanced encryption
standard. Federal Information Processing Standard (FIPS), Publication
197, U.S. Department of Commerce, Washington D. C., November 2001.

[9] R. L. Rivest, 1996. Attributed to Rivest in Applied Cryptography by
B. Schneier, Wiley, 1996.

