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Abstract

Malicious software, called malware, can perform harmful actions on com-
puter systems, which may cause economic damage and information leakage.
Therefore, malware classification is meaningful and required to prevent mal-
ware attacks. Application programming interface (API) call sequences are
easily observed and are good choices as features for malware classification.
However, one of the main issues is how to generate a suitable feature for the
algorithms of classification to achieve a high classification accuracy. Different
malware sample brings API call sequence with different lengths, and these
lengths may reach millions, which may cause computation cost and time
complexities. Recurrent neural networks (RNNs) is one of the most versatile
approaches to process time series data, which can be used to API call-based
Malware calssification. In this paper, we propose a malware classification
model with RNN, especially the long short-term memory (LSTM) and the
gated recurrent unit (GRU), to classify variants of malware by using long-
sequences of API calls. In numerical experiments, a benchmark dataset
is used to illustrate the proposed approach and validate its accuracy. The
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numerical results show that the proposed RNN model works well on the
malware classification.

Keywords: Malware classification, API call sequence, Recurrent neural
network, Long short-term memory, Gated recurrent unit (GRU).

1 Introduction

With the rapid development of the Internet, the daily life of hundreds of
millions of users is closely related to the Internet, such as online shopping,
ordering meals, banking, etc. For example, Pandalabs has reported that there
will be more than 50 billion devices connected to the Internet by 2020 [1].
Despite making our lives more convenient, the Internet makes us face the risk
of being attacked, such as viruses, worms, and trojan horses.

Malicious software, or malware, can perform harmful actions on servers,
computer systems, and mobile devices, to gain unauthorized access to destroy
the system and steal data. Malware can not only maliciously expose users’
private information, but also may pose security threats to the economy, result-
ing in undesired losses such as information leakage and economic damage.
Therefore, great efforts are required to prevent malware attacks.

In general, there are two main approaches for malware classification,
static-based approach [2, 3] and dynamic-based approach [4, 5]. For the
static-based malware classification approach, the executable file is examined
on the structure without viewing the actual instructions. For example, the
opcode sequence is one of the malware features, which is usually used for
static analysis of malware [6]. However, the information contained in opcode
sequences is quite limited, and the cost of obtaining and executing the opcode
is quite high. Moreover, the static-based approach is difficult to distinguish
the type of malware by only observing the fixed features, since there are
a large number of variants made every moment. For the dynamic-based
malware classification approach, malware is executed and identified without
the need for reverse engineering of malware.

A well-known approach for dynamic-based malware classification is
extracting features from binary files, which can be transformed as the input
of the Convolutional Neural Network (CNN). However, the information
contained in the binary data is mainly spatial, which may lack temporal
information of malware. Application Programming Interfaces (APIs) contain
temporal features of malware, which can be also used for dynamic malware
classification [7]. Since the malware calls the APIs provided by the operating
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system (OS) to execute their malicious tasks, and API call sequences can be
observed according to the dynamic analysis using some automated malware
analysis systems such as the Cuckoo Sandbox and Alkanet tracer system.
The observed API call sequences seem to be of a good choice as features for
malware classification. However, one of the main issues is how to generate a
suitable feature for the algorithms of classification to achieve a high classi-
fication accuracy, since different malware sample brings API call sequence
with different lengths, and these lengths may reach millions resulting in
difficult computation and increased time complexity.

A neural network is a popular mathematical approach, which can auto-
matically find an approximate function with the given input. Recently, a
number of tasks have been done using RNN, such as image caption gen-
eration [8], speech recognition [9] and language modeling [10]. Recurrent
Neural Network (RNN) is one of the most versatile approaches to sequence-
based classification [11]. Since there exists a hidden state in RNN, the prior
information in the sequence can be memorized and updated [12]. Unfortu-
nately, conventional RNN may cause the gradient vanishing problem when
processing long sequences. To resolve the gradient vanishing problem, two
popular RNN variations are proposed, which are called Long Short-term
Memory (LSTM) [13, 14] and Gated Recurrent Unit (GRU) [15]. For the
LSTM and GRU models, the long-term dependencies in sequences can be
effectively learned with a memory cell and gated units. The GRU controls
the flow of information like an LSTM unit, but without having to use the
memory cell. In other words, the GRU exposes the full hidden content without
any control. Besides, the performance of GRU is comparable to LSTM, but
the computational efficiency is higher since the gated units are simpler. In this
paper, we propose a novel malware classification model with RNN, especially
LSTM and GRU, to clarify which one is better for malware classification with
long-sequences of API calls.

The main contributions of this paper are as follows:

1. We use an RNN model, especially LSTM and GRU models, to classify
malware families considering API call information.

2. A preprocessing algorithm is proposed to reduce the noise of the long
sequences of API calls and to improve the classification accuracy.

3. Numerical experiments demonstrate several evaluation indicators to
compare the classification accuracy.

The remainder of the paper is organized as follows. Section 2 gives an
overview of related works. Section 3 briefly introduces the conventional RNN
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model, and its two variants, named LSTM and GRU, respectively. Section 4
demonstrates the proposed model. In Section 5, the experimental results are
exhibited. Finally, the paper is concluded in Section 6.

2 Related Works

In this section, the past literature on malware classification is overviewed.
Specifically, the static-based and dynamic-based malware classification
approaches are surveyed in Sections 2.1 and 2.2 respectively.

2.1 Static-based Malware Classification

For the static analysis techniques for malware classification, there is no
need to execute the malware in a controlled environment. In general, the
static-based approach usually integrates machine learning algorithms in the
classifier. For example, the executable file is first executed by the reverse
engineer. Then, the signature, which is extracted from the malware source
code, is compared with a regularly updated database.

Schultz et al. [16] designed a framework and used naive Bayes to classify
malicious code statically. In the work, they extracted the features of mal-
ware by using binary profiling, string sequences, and hex dumps, and they
analyzed the entire set of malicious executables instead of only boot-sector
viruses, or only Win32 binaries. Kolter et al. [17] used overlapping four-
byte sequences as features to improve the accuracy of classification. They
presented empirical results from an extensive study of inductive methods for
detecting malicious executables in the wild. Shankarapani et al. [18] pro-
posed two general malware classification methods; static analyzer for vicious
executables and malware examiner using disassembled code, which used
static API calls and assembly calls for analysis, respectively. The experiment
showed that the assembly call-based method was superior to the API call-
based method. Raff et al. [19] proposed a feedforward neural network to
classify malicious executables from raw byte sequences. The solution avoided
a number of the issues with the more common byte n-gram approach, such as
brittle features and over-focusing on the PE-Header as important information.

However, almost all the above approaches are difficult to distinguish the
malware families by only observing the fixed features, since there are a large
number of variants made every moment. Moreover, the computation cost of
the static-based analysis techniques is very high, such as the byte n-gram
method, which is difficult to be extended in a large domain.
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2.2 Dynamic-based Malware Classification

The dynamic-based malware classification approach executes the executable
file and identifies features without the need for reverse engineering of
malware, such as memory writes, system calls, and API calls.

For example, Gregio et al. [20] proposed a dynamic model capture mal-
ware behavior with memory writes, which is a certain subset of instructions
writes to memory during program execution. In 2015, Canzanese et al. [21]
analyzed system calls to monitor executing processes to classify malware
that evade traditional defense. The system monitored executing processes
to identify compromised hosts in production environments. Also, Canzanese
et al. [22] presented a malware analysis system, which is used to classify
malicious processes at run-time on production hosts. Different to the other
works, the analysis system does not require the use of specialized analysis
environments. Eskandari et al. [23] proposed a binary classification approach
by applying n-gram to distinguish malware binaries from API calls. In
general, API call sequences contian more dynamical information of malware
than the static information, such as signatures. Ahmed et al. [24] extracted
spatial and temporal information from API calls and used the extracted
features to classify malware. They applied statistical analysis to extract the
arguments and return values from API calls as the spatial features. Moreover,
they applied a Markov chain to extract the temporal information from the
transition matrix by using API calls. Hansen et al. [25] and Qiao et al. [26]
also proposed a malware classification system with API call-related features.
Hansen et al. used API call sequences as the features for malware family
classification, which are transformed from the dynamic analysis results of
the Cuckoo sandbox analysis. Different from Hansen’s work, Qiao et al.
conducted the malware classification by using the frequency of the API call
sequences. The API call sequences were obtained from CWSandbox and
Cuckoo Sandbox.

In general, the API calls often appear in the form of sequences, and the
lengths of the sequences can vary from one to millions, which made the fea-
ture extraction difficult. To improve the accuracy of the malware classification
from API call sequences, many researchers considered using the models of
deep learning, such as the RNN model. RNN has demonstrated a powerful
ability in processing time series sequences, especially in natural language
processing. For example, Yazı et al. [27] presented a binary classification for
malware families with a single-layer LSTM model. The LSTM model can
distinguish whether an API call sequence is a malware or not, and the API
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call dataset was described in [28]. Also, Catak et al. [29] detected API calls
from the Windows Operating system, which is a new dataset and does not
exist in this domain before. In the work, they proposed a single layer LSTM
and a two-layer LSTM to classify malware families, respectively. Tobiyama
et al. [30] proposed a malware process detection method based on process
behavior in possible infected terminals. Specifically, they first proposed an
LSTM to extract the sequence features from API calls, and then the extracted
features are feed into a convolutional neural network (CNN). The CNN
continuously extracted and classified the features for a binary classifier.

Most of the above LSTM models considered the malware classification
problem as a binary classification, which can only classify the executable
files or the identified features as malware. In this paper, we propose an RNN
model, especially LSTM and GRU, to classify malware into different fami-
lies, such as viruses, worms, and trojans. Also, we present to use API calls as
the raw data for the RNN model. To improve the malware classification ability
and reduce the noise of the RNN model, we propose a simple but effective
algorithm to extract the effective information from the API call sequences.

3 Preliminaries

In this section, we briefly introduce the conventional RNN model and two
well-known variants, called LSTM cell and GRU cell, respectively.

3.1 Conventional RNN Model

RNN is a kind of artificial neural network to model sequential data. In
general, RNN maintains a state, which can be updated at each time step,
so that the previous information can be memorized and utilized for current
prediction [12]. Figure 1 shows an example of the basic RNN model. Blank
circle represents a state and gray circle represents a input. In this work, the
input is the API call sequences, and the output is the malware family labels,
such as viruses and worms. If we unfolded the RNN according to time steps,
we can represent RNN as the network like the one shown in right part of
Figure 1. xt, yt and ht be the input, output and hidden state of the RNN
model at t-th time step, and U , W and V represent the weight matrices.
Then, the hidden state ht is updated based on the previous ht−1 and the
current input xt:

ht = f(Uxt +Wht−1) (1)
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Figure 1 An example of the conventional RNN structure.

Figure 2 An example of the LSTM cell.

where f is the activation function, such as sigmoid, tanh, and ReLU function.
The output yT is computed by:

yT = softmax(V hT ) (2)

3.2 Long Short-term Memory

LSTM [13] and GRU are the two variants of the basic RNN model, which
are better at extracting long term dependencies of time series data. Figure 2
demonstrates the LSTM cell. In general, there exist three main gates in a
general LSTM cell, which are called the input gate, forget gate, and output
gate, respectively.
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Figure 3 An example of the GRU cell.

The LSTM function is implemented by the following composite func-
tions:

it = σ (Wxixt +Whiht−1 +Wcict−1 + bi) (3)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf ) (4)

ct = ftct−1 + ittanh (Wxcxt +Whcht−1 + bc) (5)

ot = σ (Wxoxt +Whoht−1 +Wcoct−1 + bo) (6)

ht = ottanh(ct) (7)

where it, ft, ot, and ct are the input gate, forget gate, output gate and cell
content, respectively. Also, σ and tanh are the sigmoid and tanh function.
Whi, Wxo, Wxi, Wci, Wxf , Whf , and Wxc are the hidden-input gate
matrix, input-output gate matrix, input gate matrix, cell-input matrix, input-
forget gate matrix, hidden-forget gate matrix and input-cell gate matrix,
respectively. bi, bf , bc and bo are the basis of input gate, forget gate, cell
and output gate, respectively.

3.3 Gated Recurrent Unit

Different from the LSTM cell, the structure of GRU is relatively simple.
Figure 3 shows the basic structure of a GRU model. In general, there are
two main gates in a GRU [15] model, which are called the reset gate and
update gate, respectively.

Define rt and zt represent the reset gate and update gate at t-th time step,
respectively, which are computed as follows:

rt = σ(Wrxt +Urht−1) (8)

zt = σ(Wzxt +Uzht−1) (9)
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where Wr, Ur, Wz and Uz are weight matrices of the reset gate and update
gate, respectively. Then, the hidden state ht can be calculated as follows:

ht = ztht−1 + (1− zt)h̃t (10)

h̃t = tanh(Wrxt +Ur(rt � ht−1)) (11)

where � represents the Hadamard product.

4 API Call Based Recurrent Neural Networks

The RNN-based malware classification model is introduced in this section.
In general, we first describe the creation of the malware dataset, and then, we
propose a novel preprocessing algorithm for the dataset to reduce the noises
of the API call sequences. Finally, we generate the RNN model to classify
the malware families.

4.1 Extraction of the API Call Sequences

The malware family samples are used to generate the malware executable
repository (MER). Then, the generated API call sequences are sent to Cuckoo
Sandbox for the dynamic analysis. Cuckoo Sandbox is a well-known frame-
work for malware dynamic analysis, which can generate analysis reports
for each malware sample. The generated analysis reports contain static and
dynamic analysis results, such as hash values. In this paper, we only use
the API call sequences as the input of the RNN model. On the other hand,
the VirusTotal service API is used to generate malware family labels. The
malware family labels and API call sequences together form the malware
dataset.

For a better understanding, Figure 4 demonstrates the process of dataset
creation. The created dataset contains a series of (label, seqence) pairs,
where the label represents the type of malware, while the sequence contains
a series of names of the executed API calls.

Table 1 shows some examples of the (label, seqence) pairs.Li represents
malware family label. For example, Li is a kind of worms, viruses, trojan,
downloader, backdoor, dropper, spyware, and adware. Si reprensents the
name of API calls, such as “ exception ” and “regclosekey”. In the example,
it is observable that the sequence of L1 type calls the API file S1 repeat-
edly. Also, the L2 and L3 repeatedly call the sub-sequence {S1, S2} and
{S1, S2, S3}, respectively. However, the repeatedly called API sub-sequences
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Figure 4 The process of the API call generation and classification.

Table 1 An example of the (label, sequence) pairs in the dataset

label sequence

L1 S1, S1, S1, S1, . . .

L2 S1, S2, S1, S2, . . .

L3 S1, S2, S3, S1, S2, S3, . . .

. . . . . .

have little effect on the classification results. On the contrary, the repeated
API calls or the sub-sequences may increase the noise of the RNN model.

4.2 Data Preprocessing

To reduce the noise of the RNN model, we propose a simple but
effective algorithm to preprocess the original API call sequences. For
example, since there exists the repeated API S1 in the API sequence
of {S1, S1, S1, S1, . . .}, we remove the continuously same API
S1. Besides, for the API sequences {S1, S2, S1, S2, . . .} and
{S1, S2, S3, S1, S2, S3, . . .}, there also exist the same API sub-sequences
{S1, S2} and {S1, S2, S3}, we delete these continuously same sub-
sequences, respectively. The algorithm of sequence preprocessing is illus-
trated in Algorithm 1. After data preprocessing, data noise and the lengths of
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API call sequences are reduced. The algorithm result str as the input is feed
into the RNN model.

Algorithm 1 Removal of continuously same API call.
Input: The original API call sequence seq.

Output: Sequence str after removing the duplicate pattern.

1: s1 = [i[0] for {i in groupby(seq)}]

2: str = ′ ′.join(s1)

3: index = []

4: for i in range (len(str)):

5: if str[i] == str[i + 2] and str[i + 1] == str[i + 3]:

6: index.extend([i + 2, i + 3])

7: i += 2

8: s2 = np.delete(str, index)

9: str = ′ ′.join(s2)

10: index = []

11: for i in range (len(str)):

12: if str[i] == str[i + 3] and str[i + 1] == str[i + 4] and str[i + 2] == str[i + 5]:

13: index.extend([i + 3, i + 4, i + 5])

14: i += 3

15: s3 = np.delete(str, index)

16: str = ′ ′.join(s3)

17: return str

4.3 RNN Model Description

Formally, given an API call sequence X = {x1, x2, . . . , xm}, where xi (1 ≤
i ≤ m) is the index of an API call from the API dictionary with size v.
Notice that m is very different since the length of the API call sequence can
reach one to millions as we mentioned above. However, there exists a large
number of redundant subsequences in the API call sequence, which have
little effect on malware classification. To reduce the length of the sequence
to fit the proposed LSTM model, we remove the continuously same API
from the sequence. Although the removal operation is a simple method, it
can effectively reduce the length of sequences and improve the accuracy of
classification. Let T be the length of the LSTM model, then the sequence
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Figure 5 The architecture of the proposed RNN model.

is padded or truncated to X = {x1, x2, . . . , xT }. In our model, we use
v-dimensional one-hot vector to represent xi, which means xi ∈ Rv.

Figure 5 demonstrates the architecture of our proposed RNN model.
The one-hot vector is high-dimensional and sparse, which means only one
element is 1, and the rest are 0 in the one-hot vector. Then, the one-hot vector
xi as input to be feed into the embedding layer. The embedding layer uses a
dense vector to represent the one-hot vector, which can reduce the dimension
of the one-hot vector.

The output is defined by y, where y = [y1, y2, . . . , yK ] and y ∈ Rv. y is
generated by the softmax function, which is a probability distribution over all
K malware families. In other words, yi represents the probability of malware
family i, where i = (1, 2, . . . ,K), and

∑K
i=1 yi = 1.

In the training phase, backpropagation-through-time (BPTT) is often used
for propagating gradients of errors. BPTT is a variant of the backpropagation
approach for training feedforward neural networks. Error is computed using
cross-entropy loss function:

Loss(y′,y) =
K∑
i=0

y′ilog(yi) (12)

where y′ is the true probability distribution, and y is the predicted probability
distribution.

Besides, we apply Adagrad as the optimization method, which is a mod-
ified stochastic gradient descent method with a per-parameter learning rate.
Also, the dropout technique is used as a regularization to alleviate overfitting.
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5 Numerical Experiments

In this section, several extensive experiments are conducted to evaluate the
effectiveness of our proposed model We evaluate some indications by using
a benchmark dataset. Finally, we evaluate the performance of the proposed
LSTM model and GRU model. All experiments are run in Keras 2.4.3 with
Python 3.5.6.

5.1 Dataset

A benchmark dataset for malware classification is used in the experiment. The
dataset contains 7,107 malware records for 8 different families of malware,
which are represented by 0 to 7. The 8 families are worms, viruses, trojan,
downloader, backdoor, dropper, spyware, and adware. Figure 6 shows the
number of malware sequences for the 8 families, where the x-axis represents
the eight malware families, and the y-axis is the number of corresponding
sequences of each family.

Figure 7 shows the original lengths of API call sequences, where the x-
axis and y-axis represent the lengths of API call sequences and the number
of corresponding sequences, respectively.

Figure 8 demonstrates the lengths of API call sequences after the
preprocessing operation.

It is observable that the lengths of most of the API call sequences are less
than 400 after removing redundant API calls from the original sequences.

Figure 6 The number of malware sequences for the 8 families.
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Figure 7 Length distribution of API call sequences before preprocessing.

Figure 8 Length distribution of API call sequences after preprocessing.

Figure 9 Confusion matrix for each of the eight malware families.

5.2 Performance Metrics

We calculate the accuracy, precision, recall, F1-score, Macro-average and
weighted-average. Formally, define TP, TN, FP and FN as the true positives,
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true negatives, false positives and false negatives, respectively. Figure 9
demonstrates the confusion matrix for each of the eight malware families.

Then, the accuracy, precision, recall and F1-score can be defined as

accuracy =
TP + TN

TP + TN + FP + FN
(13)

precision =
TP

TP + FP
(14)

recall =
TP + TN

TP + FN
(15)

F1 =
2× precision× recall

precision + recall
(16)

Besides, the Macro-average can be computed by averaging the precision,
recall, and F1-score, respectively. Also, similar to the Macro-average, the
weighted-average metric assigns weights to every malware family according
to the number of samples of each family, hence the name.

5.3 Parameter Setting

We select a single hidden layer of the RNN model to classify the eight
different types of malware. More specifically, we use the LSTM model and
GRU model for the classification, respectively. Tables 2, 3 and Figures 10, 11
show the single hidden layer RNN model and the optimal hyperparameters
of the RNN model, respectively.

Table 2 Optimal hyperparameters for the proposed LSTM model

Hyperparameters Value

LSTM length 200

Embedding units 32

Length of hidden layer 32

Activation function Sigmoid function

Kernel initializer Random uniform

Dropout 0.5

Optimizer Adam
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Table 3 Optimal hyperparameters for the proposed GRU model

Hyperparameters Value

GRU length 200

Embedding units 64

Length of hidden layer 64

Activation function Sigmoid function

Kernel initializer Random uniform

Dropout 0.5

Optimizer Adam

Figure 10 Single hidden layer LSTM classification model structure.

Figure 11 Single hidden layer GRU classification model structure.

5.4 Experimental Results

Figures 12–15 show the training loss, accuracy of the LSTM model and GRU
model, respectively. Notice that the EarlyStopping approach is used to solve
the overfitting issue. The analysis results of the testing phase are shown in



API Call-Based Malware Classification Using Recurrent Neural Networks 633

Figure 12 Training loss of the proposed LSTM model.

Figure 13 Training accuracy of the proposed LSTM model.
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Figure 14 Training loss of the proposed GRU model.

Figure 15 Training accuracy of the proposed GRU model.
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Table 4 Classification results of the proposed LSTM model

Precision Recall F1-score

Malware Families Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

Adware 0.58 0.77 0.95 0.91 0.72 0.83

Backdoor 0.60 0.55 0.28 0.51 0.38 0.53

Downloader 0.65 0.71 0.52 0.72 0.58 0.71

Dropper 0.26 0.62 0.37 0.51 0.30 0.56

Spyware 0.14 0.38 0.24 0.32 0.17 0.35

Trojan 0.05 0.30 0.23 0.38 0.09 0.33

Virus 0.53 0.72 0.76 0.76 0.63 0.74

Worms 0.47 0.45 0.35 0.52 0.40 0.48

Accuracy – – – – 0.41 0.55

Macro-average 0.41 0.56 0.46 0.58 0.41 0.57

Weighted-average 0.50 0.55 0.41 0.55 0.43 0.55

Table 5 Classification results of the proposed GRU model

Precision Recall F1-score

Malware Families Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

Adware 0.64 0.74 0.88 0.90 0.74 0.81

Backdoor 0.68 0.40 0.39 0.65 0.49 0.50

Downloader 0.59 0.64 0.71 0.74 0.64 0.69

Dropper 0.40 0.61 0.47 0.46 0.44 0.53

Spyware 0.08 0.36 0.24 0.38 0.12 0.37

Trojan 0.36 0.40 0.25 0.32 0.29 0.36

Virus 0.63 0.68 0.79 0.76 0.70 0.72

Worms 0.43 0.60 0.45 0.52 0.44 0.56

Accuracy – – – – 0.48 0.55

Macro-average 0.48 0.56 0.52 0.59 0.48 0.57

Weighted-average 0.52 0.55 0.48 0.55 0.48 0.54

Tables 4 and 5. Notice that case 1 and case 2 represent the evaluation values
of the original sequences and after preprocessing, respectively.

It is observable that the precision, recall and F1-score of the Spyware and
Trojan families are quite lower than other malware families. One reason may
be that the noise influence of these two families may cause low performance.
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Also, the performance of the proposed LSTM and GRU model in case 2 are
almost the same, and they are better than the performance of the model in
case 1. Moreover, the performance of the proposed GRU model in case 1 is
better than the proposed LSTM model in case 1. In other words, the API call-
based LSTM model and GRU model work well on the malware classification.

6 Conclusions

Malware classification with time-series data, such as the API call sequences,
is important to finance and the economy. RNN has achieved great success in
prediction and classification with time-series data. In this paper, we proposed
an RNN-based architecture to classify 8 malware families with API call
sequences. More specifically, the LSTM cell and GRU cells were considered
as the model for malware classification. In the experiment, a benchmark
dataset was used to evaluate the classification accuracy, precision, recall, F1-
score, Macro-average, and weighted-average. The analysis results illustrated
that the proposed LSTM model and GRU model are effective in the API
call-based malware classification.

In the future, we would like to compare the considered approaches in
this paper with other classification methods. Another derection is to consider
a hybrid neural network, such as the LSTM-CNN model, for the malware
classification with API call sequences. Moreover, the attention mechanism is
also needed to be considered to improve the accuracy of the classification.
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