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Abstract

Empirical channel models were always an important tool for proper wireless
network planning. These models consider the properties of electromagnetic
waves and terrain conditions. The efficiency and accuracy of these Empirical
models suffer when they are used for an area other than where they have been
designed. So tuning of these models is required for proper and accurate pre-
diction of coverage and it is done by taking the correction factor into account.
Comparison of four Empirical models i.e, the Lee, the ECC-33 model, the WI
model, the Ericsson model, the COST 231, and SUI is done with Measured
path loss, and the best model with minimum error is then selected for
tuning. Field data of LTE network at 2300 MHz is collected at two sites of
Uttarakhand-India. It is analysed that the Ericsson model shows minimum
RMSE, Standard Deviation, and Mean error as compared to measured path
loss, followed by the Okumura model. The Ericsson model is then tuned to
further reduce the error. Validation of the tuned model is done at Haridwar.
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1 Introduction

Over the past few years, there is an exponential rise in wireless applica-
tions e.g., augmented reality, IoT, 5G, healthcare, agriculture, etc. due to
which there is a rise in the optimization of coverage of BTS [1–3]. To
locate the correct geographical location of a Base Station Transmitter in an
outdoor wireless network, path loss prediction is essential for the interest
of researchers. Propagation of electromagnetic waves between Tx and Rx
exhibits multiple reflections, deep fading, shadowing, etc. Empirical path
loss models were used to calculate signal loss and coverage prediction. In
recent survey reports of the Telecom Regulatory Authority of India (TRAI)
and research survey on cellular mobile service, it is identified that call drop
is among one of the major issues which result in deterioration of Quality of
Service (QoS) of a wireless network [4]. Quality of Service of a wireless
network depends on 4 major parameters:

• Accessibility
• Connection setup
• Connection continuation
• Routing

Connection maintenance is monitored through three factors:

• Call drop ratio
• Worst affected call
• Connection with good voice quality

As indicated by TRAI report higher call drop ratio depends upon the
Radio Frequency (RF) related issues i.e. 50% of call drop occurs due
to propagation factors such as reflection, multipath fading, diffraction,
and shadowing of signal [5–8]. Table 1 shows different causes of call
drop.

Table 1 Causes of call drop

Call Drop Cause Occurrence

Propagation Loss 51.4%

Unpredictable user requirements 36.9%

Unusual network reaction 7.6%

Miscellaneous 4.1%
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1.1 Need for Tuning

Empirical models suffer in their efficiencies when they were used in an
environment other than where they have been designed, so they need to be
tuned according to new terrain. Tuning is done by adding a correction factor
to the best fit path loss model in new terrain [9–13].

1.2 Spline Interpolation

Spline Interpolation is a continuous second derivative mathematical equation
that maps complete data onto a smooth curve. According to the spline theory
for boundary condition of n + 1 data points, n equations can be fit over n
intervals. Mathematically, this method calculates the missed data points in
the analysis of measured data. Therefore, spline Interpolation determines
in-between missing point values to compute the accurate performance of
empirical models. The signal strength has been measured around selected
BTS but due to the limitations of terrain conditions like mountain, dense
forest, the sharp valley it is not possible to collect field data at every possible
distance. Tuning using spline interpolation has been used to find out path loss
at such locations where it is difficult to reach with test equipment and not
possible to collect field data. Here we have compared Empirical path loss
models with measured path loss and analyzed missed out path loss using
tuning and spline interpolation [14–16].

1.3 Contribution

The main contribution of this paper is to provide an exact solution for
optimized coverage for fringe areas like Uttarakhand-India.

1. Comparison and selection of the best empirical model with minimum
Root Mean Square Error (RMSE), Standard Deviation (SD), and Mean
Absolute Error (MAE) w.r.t measured path loss.

2. Tuning of the best fit model by incorporating correction factors accord-
ing to local terrain conditions.

3. Validation of the tuned model is done for similar fringe conditions.

We briefly describe the content in the following sections of the paper.
In Sections 2 and 3 a literature review and an outline of Outdoor Propa-
gation models is given respectively. In Section 4 we describe measurement
setup with data collection methodology. Finally, in Sections 5 and 6, we
report experimental results, discussions, conclusions, and future scope which
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clearly show the usefulness of the tuning and spline interpolation approach in
predicting and maximizing wireless signal coverage.

2 Literature Review of Related Work and Contextualization

Researchers have used the Friis Free Space Path Loss (FSPL) model to
predict signal coverage in an uninterrupted LoS path. In Tokyo, Okumura
presented a model that predicts received signal coverage at 2 GHz frequency
over the collected data [16, 17]. HATA additionally extended Okumura
Model by incorporating graphical information along with fading effects in
a mathematical expression [16]. HATA model when used in rural and sub-
urban areas of Malaysia, Roslee et al. incorporated a correction factor to give
a better prediction [18]. In Mosul city, Iraq data collection was conducted in
a suburban and urban environment at 1800 and 900 MHz frequency whose
analysis showed that tuning factor is required to predict signal strength over
an uneven geographical area by using the models Walfisch-Ikegami (WI),
Lee, Cost-231, International Telecommunication Union (ITU-R), Ericsson,
and Stanford University Interim (SUI) [19, 20]. The Model reflecting the min-
imum value of RMSE between a predicted and a measured value of the RMSE
is selected as the best. Also, the author recommended a signal mapping model
for maximum coverage by applying an S-shaped sigmoid function on the
measured data with the help of neural networks [21]. A wireless coverage
predictive model is built for radio access networks (RAN) by employing a
crowd-sourced examination of the Long-Term Evaluation (LTE) network.
Machine learning methods like the Gaussian Process, Random Forest, and
Exponential smoothening of time series are applied and investigated over data
gathered from conducting a thorough drive test for signal coverage mapping
which provides better coverage [22, 23]. It simultaneously provides better
user quality as well as less operational cost. Fixed Rank Kriging (FRK)
algorithm provides an efficient prediction of signal strength of the places
which are not accessible for field measurement [23, 24]. Through spatial
interpolation of geographically co-located measurements, a coverage map has
been framed using FRK. Machine-learning models for estimating path loss
of different terrain and vegetation surroundings have been explored by many
authors [24–28]. For the investigation, four machine learning algorithms were
considered. Random Forest demonstrates minimum error value with better
accuracy. A 37% reduction in average prediction error has been achieved
through machine learning models. Extensive field measurements have been
conducted by several researchers to collect a Received Signal Strength
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Indicator (RSSI) to provide optimized coverage and angular power. Particle
Swarm Optimization was used to tune propagation models which were then
compared with the Okumura HATA model and results demonstrated that the
tuned propagation model performs better [12, 40–42].

3 Outdoor Propagations

The outdoor propagation model has been broadly classified into 3 broad
categories Figure 1:

Figure 1 Classification of outdoor empirical models.

3.1 Empirical Propagation Models

These models make use of measured and observed data only. It is further
classified as:

(a) Time Dispersive (SUI)
(b) Non-Time Dispersive (HATA, COST-231, ITU-R)

3.2 Deterministic Propagation Models

In Deterministic propagation models received signal strength at specific
terrain is calculated by using laws of electromagnetic wave propagation.
3D design of a building or specific terrain like foliage is constructed from
the dataset thereafter fundamental environmental effects like diffraction,
reflection and scattering will be analysed using ray-tracing techniques.

3.3 Stochastic Models

These models were designed to analyse changes in the radio wave’s behaviour
due to random factors.
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This paper represents the critical analysis of empirical propagation mod-
els and a relative comparison is made between measured and predicted path
loss value.

Empirical Models selected for the current analysis are:

(1) COST-231 Model
(2) SUI Model
(3) Ericsson Model
(4) ECC-33 Model
(5) Walfisch Ikegami Model
(6) Lee Model

(1) COST-231 Model
HATA model is designed with a limitation of having upper frequency up to
1500 MHz however systems like GSM which uses 1800 MHz cannot use
the HATA model due to 1500 MHz frequency limitation [29]. Extension of
frequency from 1500 MHz to 2000 MHz had been achieved using COST-231
median path loss model:

L50(urban) = 46.3 + 33.9log(fc)− 13.82log(hr)− a(hr)

+ (44.9− 6.55log(ht))logd+ Cm (1)

where

fc is frequency in MHz
d is distance between T x and Rx (in km)
ht and hr is effective height of T x and Rx antenna (in meters)
Cm is 0 dB for suburban and rural terrain
=3 dB for urban terrain

a(hr) for small to medium city is expressed as:

a(hr) = (1.1(log(fc)− 0.7)hr − (1.56logfc − 0.8)

for large city a(hr) in dB

a(hr) = 8.29(log(1.54hr)
2 − 1.1; fc ≤ 300 MHz

a(hr) = 3.2(log(11.75hr)
2 − 4.97; fc ≤ 300 MHz

Range of parameters for COST-231 model

f = 500− 2000 MHz

ht = 30− 200 m, hr = 1− 10 m, d = 1− 20 km
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(2) Stanford University Interim (SUI Model)
The frequency range of the HATA model is extended from 1800 MHz to
11 GHz by IEEE 802.16 wireless group by proposing the SUI model [12, 30].
This model incorporates correction factors due to terrain and foliage based
distribution. SUI model is expressed as:

A10γlog

(
d

d0

)
+Xr +Xh + e for d > d0 (2)

where

d = distance between Tx and Rx (in km)
d0 = 100
λ = wavelength
Xr, Xh, e = Correction factor for frequency, receiving antenna height
and shadowing effect
γ > 2 GHz

Factor ‘e’ considers shadowing due to foliage and similar terrain con-
dition, it is basically a log-normal distribution and it’s whose values vary
between 8.2 to 10.6 dB.

(3) Ericsson Model
Ericsson proposed a model that can change the parameters according to the
propagation environment [31–32].

It is expressed as:

b0 + b1log(d) + b2log(ht) + b3log(ht)log(d)− 3.2(log(11.75hr)) + g(f)
(3)

where,

g(f) = 4.49log(f)− 4.78(log(f))2

b0 = 36.2, b1 = 30.2, b2 = −12, b3 = 0.1

(4) ECC-33
ECC-33 is proposed by Electronic Communication Committee (ECC) and is
a modified Okumura model extending its range up to GHz.

PLECC−33 = Afs +Abm −Gb −Gr (4)
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where,

Afs: Attenuation (dB)
Abm: Median path loss
Gb: Transmitting antenna gain
Gr: Receiving antenna gain

(5) Walfisch Ikegami Model
It is an extension of the Walfisch and Bertoni model which calculates the
diffraction effect of rooftop and building heights at streets. It considered the
effect of reflection and scattering between high-rise civil structures in urban
areas under a line of sight (LOS) and non-line of sight (NLOS) conditions.
It works in the frequency range of 800 MHz to 2 GHz and BTS heights
up to 45 m.

(6) Lee Model
W.C.Y. Lee in the year 1982 proposed the Lee model which is divided into
two parts

1. Area to Area model: It predicts path loss over flat terrain and fails to
predict path loss due to hilly terrain.

2. Point to Point Model: This model is developed from Area to Area
model and consider LOS and NLOS condition. For LOS condi-
tion, influence of reflected waves is studied and for NLOS condition
diffracted waves due to obstruction is modeled using knife edge effect.

Lee Area to Area model is expressed as:

Pr = Pro

(
r

ro

)−γ( f

fo

)−n
αo (5)

where

Pr is signal power (in watts) at receiver
Pro is signal power (at the point of interaction) at a distance of ro from
the transmitter
f is signal frequency
fo is reference signal frequency
∝0 is the adjustment factor for the antenna height transmitter power and
antenna gains
Υ is the path loss slope
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4 Experimental Setup and Data Collection

Measurement campaign for current research has been carried out at three
different terrains of Uttarakhand, India and having coordinates which lies
within 29.9457◦N longitude, and 78.1642◦E latitude. Uttarakhand is situated
at the foothills of the Himalayan region and having a fringe terrain covering
trees, mountains, forest, rain, snow, fog, and free space. Due to the holy
river Ganga, this region remained covered with fog during the months of
December-January. Uttarakhand is chosen to analyze the combined effect of
the forest, mountains, and mixed terrain canopies. Many researchers have
applied a similar approach of path loss prediction in their terrain i.e Nigeria
[33–36], Malaysia [19], Jinan [37], Africa [38], United Kingdom [30] for
tuning and path loss prediction as well as to analyze the effect of terrain on
signal propagation comprehensive field measurements was carried out during
2019–20. Sites Dehradun, Haridwar, and Rishikesh were identified to observe
variation in terrain and climatic condition on signal propagation.

An area of about 25 km2 was covered at each site by forming 16 clusters
(4 BTS each) as shown in Figure 2. The location of BTS is selected to cover
the maximum effect of terrain conditions on signal propagation. Field drive
testing has been carried out to calculate the average value of the Received
Signal Strength Indicator (RSSI). The 360-degree region around BTS is
divided into 3 sectors alpha, beta, and gamma separated by 120 degrees
apart as shown in Figure 3 and threshold values of network coverage in these
sectors were tabulated in Table 2.

Figure 2 The 16 clusters (4 BTS each) at, Uttarakhand-India.



602 A. Gupta et al.

 

 
 

Figure 3 Sectoral alignment of 3 sectors around BTS.

Table 2 Threshold value in 3 sectors

Network Threshold Value

Coverage Objective RSRP (dBm) −102.6

Coverage Overshooting Radius (m) 4005

Coverage Overshooting RSRP (dBm) −90.0

Coverage Overshooting Percentile (%) 8

Coverage Swap Percentile (%) 46

Navigation tools like CATIA, XCAL, and TEMS were used to col-
lect RSSI around selected BTS using drive vehicle, laptop, Garmin global
position system (GPS), sockets, test cables, Sony mobile handset equipped
with TEMS navigation software, MapInfo or Deskcat, and drive test
route [28, 35, 39]. GPS was mounted on the vehicle and uses the Sony
Ericson mobile handset.RSS measurements were recorded at each test point
around the selected base stations (BS) covering all roads, forest, mountain,
and populated areas as shown in Figure 4.

Drive test route is shown in Figure 5 where RSSI is indicated by the color
bar, good signal strength is indicated by the blue color bar having a value
less than −79 dBm and red color bar is having worst signal strength greater
than −109, the yellow color bar indicates field strength ranging from −109
to −99.

Figure 6 illustrates the Signal coverage around drive test cell boundary.
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Figure 4 3D Drive test tool.

 

 

   
    

     (a) 

 
 
 
 
 
 
 
 
 

     (b) 

Figure 5 Drive test route. BTS is identified by 3-letter codename.



604 A. Gupta et al.

 

Figure 6 Signal coverage around drive test cell boundary.

Table 3 Parameters of outdoor network

Parameters Value

Cluster Sectors I-UW-GGLT-ENB-9003

Band 1800

Antenna Longitude 80.06384556

Antenna Latitude 29.57544

Antenna Height (m) 35

Antenna Azimuth 8

Antenna Tilt Electrical, Mechanical 7, 5

Figure 7 RSRQ Distribution (dBm) of DTDL, DTUL.

Table 3 tabulates the parameters of outdoor network along with their
values. Received Signal Received Power Quality (RSRQ) is the power of the
LTE reference signals which is distributed over the full bandwidth. The range
of RSRQ varies between −140 dBm to −44 dBm along with a resolution of
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1 dB. Figure 7 represents the distribution of collected RSRQ ranging from
−79 to −109 thus lies within the RSRQ range.

5 Experimental Results and Discussions

Analysis Comparison of Selected Empirical Propagation Models
with Field Measured Path Loss

Propagation models were analyzed using the data collected from field for
optimized coverage prediction at selected sites. Firstly Path loss is calculated
at Dehradun from the measured data at a regular interval of 100 m ranging
from 100 m to 2000 m and it is tabulated in Table 4.

Selected propagation models are compared with the measured path loss
and its analysis is shown in Figure 8. SUI path loss model shows maximum
RMSE while ECC-33 fits nearest to measured data followed by the Ericsson
model.

Analysis of empirical path loss prediction models with measured path
loss at Haridwar and Rishikesh is shown in Figures 8 and 9 and it is analyzed
ECC-33 and Ericsson model lies nearest to measured path loss.

Observations from Figures 6–10 represents that the ECC-33 model pre-
dicts path loss nearest to the path loss value obtained from the collected data.
Prediction accuracy of the ECC-33 model is highest followed by Ericsson and
Lee model. The predicted value of the ECC-33 model is nearly equal to the
value of path loss calculated from measured data. Propagation models show
a deviation in the result when they are used in an environment other than
for which they have been designed. Therefore, for improving their prediction
efficiency tuning factor needs to be added to the original ECC-33 model.

Table 4 Measured path loss at distance of 100 m at Dehradun

Distance Pathloss Distance Pathloss

100 123 1100 155

200 124 1200 159

300 140 1300 158

400 134 1400 159

500 138 1500 155

800 152 1800 164

900 147 1900 165

1000 152 2000 168
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Figure 8 Analysis of Empirical path loss prediction models with measured path loss at
Dehradun.

 
 
 
 
 
 

Figure 9 Analysis of Empirical path loss prediction models with measured path loss at
Haridwar.

Tuned ECC-33 model
ECC-33 model is applied in a region of Uttarakhand which is other than
where it was designed originally, so for optimum performance it is needed
to tune the ECC-33 model for the Uttarakhand region. Thus a correction
factor is added based on the Root Mean Square Error (RMSE). The RMSE
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Figure 10 Analysis of Empirical path loss models with measured path loss at Rishikesh.

 

 
 
 
 

Figure 11 Comparison of K tuned ECC-33 with measured path loss at Dehradun.

for Dehradun is 2.6957. So it is proposed that the tuned ECC-33 model can
be expressed as:

Path Loss value of tuned ECC-33 model = Path loss of original ECC-33
Model + RMSE value at Dehradun

Tuned PL ECC-33 Model = PL ECC-33 + 2.6957
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Analysis of Figures 10 and 11 shows the measured path loss, path
loss predicted by the ECC-33 model, and tuned ECC-33 model. Table V
represents the RMSE value of selected models along with tuned ECC-33
Model. RMSE value of the tuned ECC-33 Model is 1.5440 which is quite
acceptable. It can be concluded from Figure 11, that the tuned ECC-33 Model
provides improved performance as compared to the original ECC-33 Model
for the Dehradun fringe region of Uttarakhand. The tuned ECC-33 model
provides better results when applied to another region of Uttarakhand similar
to Dehradun.

To validate the tuned ECC-33 model, it is applied at Rishikesh where
environmental conditions are similar to Dehradun. A drive test is conducted
for a distance ranging from 100 m to 2000 m and field data is collected
between the transmitter-receiver pair. Figures 12 and 13 shows the error value
between empirical and tuned model at a regular interval of distance.

The mean value and standard deviation of propagation models and
measured path loss are tabulated in Table 5.

Table 6 shows the RMSE error of empirical path loss models w.r.t mea-
sured path loss. ECC-33 model was observed to have a minimum RMSE of
2.6957.

Results of Figures 13 and 14 clearly show that the improved results are
given by the tuned ECC-33 model at the Rishikesh region as compared to the
basic ECC-33 path loss Model.

Figure 12 Comparison between tuned ECC-33 model with Empirical path loss models at
Rishikesh.
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Table 5 Mean and standard deviation of propagation models

Model Mean Standard Deviation

ECC-33 141.5094 9.8184

SUI 158.9304 16.033

COST 231 131.3651 12.025

Ericsson 140.1028 10.717

Walfisch-Ikegami (WI) 137.9656 9.1769

Lee 105.6074 12.988

Table 6 RMSE error of empirical path loss models

Model RMSE

ECC-33 2.6957

SUI 299.09

COST 231 136.92

Ericsson 9.4172

Tuned ECC-33 1.5440

Walfisch-Ikegami (WI) 1384.8

Lee 34.6531

Figure 13 Comparison of error between Empirical Path loss Models vs Measured Path loss
at Dehradun.
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Figure 14 Comparison of error between Empirical Path loss Models vs Measured Path loss
at Rishikesh.

6 Conclusion and Future Work

Empirical path loss models have been compared with measured path loss
in the fringe areas of the Uttarakhand-India region. Individually propaga-
tion models have been analyzed for different topography and environmental
conditions. These environmental variations have been studied at a given
frequency range.ECC-33 has been analyzed with the COST-231 Model, SUI
Model, Ericsson Model, ECC-33 Model, Walfisch Ikegami Model, and Lee
model. Observations showed that for a Uttarakhand fringe region ECC-33
model predicts better results which are represented as Mean Absolute Error
(MAE), Standard Deviation and Root Mean Square Error (RMSE) values. For
increasing prediction accuracy of the ECC-33 model it is tuned according to
the fringe environmental condition of Uttarakhand. Tuned ECC-33 reduces
the RMSE by 1.1517. For validation tuned ECC-33 model was applied to
Rishikesh i.e. a region similar to Dehradun where it again provides minimum
RMSE. Researchers can design machine learning propagation model using
current approach.
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