
Time Lag-Based Modelling for Software
Vulnerability Exploitation Process

Adarsh Anand1, Navneet Bhatt1,∗, Jasmine Kaur1

and Yoshinobu Tamura2

1Department of Operational Research, University of Delhi, India
2Department of Industrial & Management Systems Engineering, Faculty of
Knowledge Engineering, Tokyo City University, Japan
E-mail: adarsh.anand86@gmail.com; navneetbhatt@live.com;
jasminekaur.du.aor@gmail.com; tamuray@tcu.ac.jp
∗Corresponding Author

Received 10 January 2021; Accepted 15 March 2021;
Publication 14 June 2021

Abstract

With the increase in the discovery of vulnerabilities, the expected exploits
occurred in various software platform has shown an increased growth with
respect to time. Only after being discovered, the potential vulnerabilities
might be exploited. There exists a finite time lag in the exploitation process;
from the moment the hackers get information about the discovery of a
vulnerability and the time required in the final exploitation. By making use of
the time lag approach, we have developed a framework for the vulnerability
exploitation process that occurred in multiple stages. The time lag between
the discovery and exploitation of a vulnerability has been bridged via the
memory kernel function over a finite time interval. The applicability of the
proposed model has been validated using various software exploit datasets.

Keywords: Exploits, patch, security, updates, vulnerability, vulnerability
discovery models.

Journal of Cyber Security and Mobility, Vol. 10 4, 663–678.
doi: 10.13052/jcsm2245-1439.1042
© 2021 River Publishers



664 A. Anand et al.

1 Introduction

The rapid growth of new technology has impacted the concern of software
firms towards the security profile of a software product. In spite of upgrading
a software product with the addition of new features, the software program
still contains various flaws. The addition of new code and features conse-
quently increases the potential flaws present in the software and hence affects
the security of the software system. In the operational phase of software, some
bugs that are identified are more dangerous than the others and may weaken
the security profile of the software system. Thus, these flaws are noted as
software vulnerabilities. A number of definitions for ‘vulnerability’ have been
proposed, but the definition given by Krsul highlights all the different areas
in which a vulnerability can be originated as “an instance of a mistake in
the specification, development or implementation of a software such that its
execution may violate the security policy” [1]. These flaws are accidentally
created during the software development life cycle (SDLC) and later came
into the existence as a vulnerability and are required to be patched speedily.
The impact of these vulnerabilities ranges from inconvenience to economic
damage. A well-known vulnerability named Code-Red contained in Windows
operating system affected more than three million computers worldwide.
Another vulnerability caused by the ‘Slammer worm’ was discovered in
2003 and it exploited 75 thousand computers within 15 minutes. Likewise,
in Oct. 2014, a flaw existed in Windows operating system that allowed the
intruders to remotely install malware into the target computer.

Vulnerabilities are normally discovered during the operational phase of
software, and, the discovery is majorly credited to the external detectors
available in the field. If a vulnerability has been discovered by a black hat
user then the probability of exploiting the vulnerability significantly rises.
Instead of alerting the software vendor, the black hat user might exploit the
vulnerability himself and likely sell the information to the hacker group. A
vulnerability in software undergoes a life cycle, going from first identifica-
tion to its eventual patching. As described by Ozment, the various stages
accompanied by a vulnerability can be described as following events [2]:

• Injection date: “It is the date on which a vulnerability is first checked in
the source code or the code is built or compiled.”

• Discovery date: “It corresponds to the date on which a loophole is first
detected.”

• Disclosure date: “It is the date on which the vendor is notified by the
detector.”



Time Lag-Based Modelling for Software Vulnerability Exploitation Process 665

• Public date: “It corresponds to the event on which a detailed description
of the vulnerability is made publicly known.”

• Patch date: “The patch date is the time instance on which a fix is supplied
for the vulnerability.”

• Exploit date: “It is the date on which an exploit for the vulnerability is
released.”

The collection of different vulnerabilities identified in software systems
have been maintained by different databases such as National Vulnerability
Database (NVD), CERT, Exploit Database (EDB), and security focus. The
organizations like CERT inform the vendor when a vulnerability is detected
and allocates a time interval for delivering a patch for the discovered vul-
nerabilities. After the time window, the vulnerability information is revealed
to the public. Similarly, organizations like EDB provide vulnerability exploit
information for the vulnerabilities that can be exploited and failure in provid-
ing a suitable patch for the vulnerabilities might be disastrous for both users
and vendor(s).

This article attempts to provide a mathematical framework that can model
the vulnerability exploit process by making use of vulnerability discovery
models (VDMs). To outline the discovery of a vulnerability in a software sys-
tem, various VDMs are available to predict the rate at which vulnerabilities
are discovered. The VDMs are time-based models that help in assessing the
security profile of a software system by determining the loopholes present
in the software, and the respective rate at which vulnerabilities are identi-
fied. Further, the VDMs can be utilized to assess the information related
to exploited vulnerabilities as those vulnerabilities which are not patched
might get exploited based on their characteristics. Thus, the goal of this paper
is to develop a model that can furnish a functional relationship that exists
between the vulnerability discovery and vulnerability exploit phenomenon.
Our model allows a software vendor to assess the exploit status of vulnerabil-
ities in software and to allocate resources in the development of patches. To
our knowledge, no previous work has used VDMs in studying the exploit
phenomenon of vulnerabilities. The exploits occur after a time-lag in the
vulnerability discovery process. In this paper, we have considered that after
the discovery of vulnerabilities in a software system a significant time lag
happens after that only the vulnerabilities are exploited. The proposal helps in
knowing the exploit trend based on the number of vulnerabilities discovered.

The paper is divided into various sections. In Section 2, we review the
relevant literature. Section 3 provides the proposed modeling framework
describing the vulnerability exploit phenomenon based on the discovered



666 A. Anand et al.

vulnerabilities. In Section 4, we present an empirical illustration of the
developed proposal. Finally, Section 5 concludes the work.

2 Literature

The classification of vulnerability discovery models (VDMs) is grouped in
time-based and effort-based modeling. The prior captures the vulnerabilities
discovered with respect to the time, and the latter predicts the vulnerabilities
based on the efforts applied. The criteria to predict the vulnerabilities consid-
ered time as the governing factor, which was also a major attribute of most
of the VDM papers in the literature. It was Anderson who shows the vulner-
ability discovery phenomenon follows a similar software reliability growth
modeling trend [3]. In particular, Rescorla estimates linear and exponential
trends in the discovery of vulnerabilities [4]. The models performed well in
the case of the Redhat 7.0 version, however unable to capture the trend in the
case of WinNT4, Solaris 2.5.1, and FreeBSD datasets. Later, Alhazmi and
Malaiya developed an S-shaped logistic growth model (AML) to anticipate
the behavior of vulnerabilities discovered as per the learning phenomenon
accompanied by the users [5]. The AML model fitted the data sets of different
types of software effectively and closely. Of late, many researchers have
deduced VDMs based on different discovery patterns [6–13].

The vulnerability exploit phenomenon has received increasing attention
in the domain of cybersecurity. However, there exists little work in this line
of research as related to the works proposed for predicting vulnerabilities
in a software system. The majority of work has been done in predicting the
cyber exploit based on the machine learning approach. Bozorgi et al. [14]
considered a model that gathers features from a database namely Open Source
Vulnerability Database (OSVDB) which is now discontinued to predict the
exploits based on the Proof of Concepts (PoCs) availability. In their work,
73% of vulnerabilities were recorded as exploited as compared to ones
recorded in the literature [15, 16]. Later, Sabottke et al. [17] developed an
exploit prediction model using a dataset acquired from Twitter having links
to CVE-IDs and from Symantec threat signatures for the positive labels.
Of late, Almukaynizi et al. [18] deduced a model that considers data from
various sources to predict the likelihood of exploitation, and Bhatt et al. [19]
developed an exploit prediction framework and claimed it a highly effective
approach for the exploit that could be seen in the wild.



Time Lag-Based Modelling for Software Vulnerability Exploitation Process 667

3 Mathematical Modeling

The proposal is developed based on the following assumptions that have been
considered in this research work:

• The potential number of vulnerabilities is fixed during the discovery
process.

• The number of vulnerabilities that are discovered at any time point t is
directly proportional to the remaining number of potential vulnerabili-
ties which are undiscovered at that time t.

• Discovery and exploitation process are connected to each other.
• The exploitation takes place after the vulnerabilities are discovered in

software.

This section is divided into two major parts. In the first section, we
talk about the vulnerability discovery phenomenon and its modeling, and
the second part discusses the vulnerability exploit process for the discovery
modeling. These two categories provide a brief outline of the discovery
phenomenon for the exploited vulnerabilities.

3.1 Vulnerability Discovery Process

During this stage, vulnerabilities are discovered in a software system.
The vulnerability discovery phenomenon considered during this stage is
considered as proposed by Rescorla [4]. The model assumed that the
number of vulnerabilities discovered at any time point or the vulnera-
bility intensity is proportional to the remaining number of undiscovered
vulnerabilities.

The differential equation depicting the discovery scenario can be mathe-
matically modeled as:

dΩ1(t)

dt
∝ (N − Ω1(t)) (1)

where N , the total number of the potential vulnerabilities; Ω1(t), the cumu-
lative number of discovered vulnerabilities by time t. The vulnerability
discovery process will capture the left-over undiscovered vulnerabilities with
a constant rate α. The above differential Equation (1) can be written as:

dΩ1(t)

dt
= α(N − Ω1(t)) (2)



668 A. Anand et al.

The solution of the above Equation (2) can be found using the initial
condition, Ω1(0) = 0. A closed form of the above Equation (2) can be
written as:

Ω1(t) = N(1− e−αt) (3)

Equation (3) represents the number of active vulnerabilities discovered
by time t which might get exploited. The discovery model has been obtained
by using the non-decreasing mean value function which follows the expo-
nential growth pattern in discovery process. Further, other forms of discovery
patterns can also be used such as logistic, hump-shaped, etc.

3.2 Vulnerability Exploitation Process

The objective of this research is to study the effect of the time lag between
vulnerability discovery and its exploitation. The time lag approach has been
utilized by making use of distributed time lag approach. The time delay
during the exploitation process is established as a weighted response. The
time delay is measured over a definite interval of time using the appropriate
memory kernel. Since, after the discovery of vulnerabilities there exists a
finite time lag before the software vulnerability is exploited. Hence, the
functional relationship between the discovery and exploitation process is dis-
cussed below. The vulnerabilities which got discovered in the previous stage
will become the potential vulnerabilities that might be exploited for this stage,
as some of the vulnerabilities would be exploited after the discovery. Hence,
the vulnerabilities discovered as given in Equation (4) can be considered as
an upper limit for the next stage. Hence, the equation for exploitation process
can be written as:

dΩ2(t)

dt
= b(Ω1(t)− Ω2(t)) (4)

where Ω2(t), the cumulative number of vulnerabilities exploited by time t; b,
constant rate of exploitation process.

To capture the time gap between the vulnerability discovery and its final
exploitation, a distributed time lag approach has been utilized to understand
the exploitation process. Further, using the ideology given by Diamond it
has been assumed that the vulnerabilities discovered in past time would be
exploited in the present time [20]. And, the time lag that has been considered
is continuously distributed rather than discrete time lags as advocated by
Cushing [21]. To describe this phenomenon, the influence of time delay
in Equation (4) can be measured through an appropriate memory kernel



Time Lag-Based Modelling for Software Vulnerability Exploitation Process 669

over a finite past time. Therefore, Equation (4) can be rewritten as an
integro-differential equation in the presence of time lag as:

dΩ2(t)

dt
= b

∫ t

0
K(t− τ)(Ω1(t)− Ω2(t))dτ (5)

In this paper, we have limited ourselves by considering a weak memory
kernel form for the analysis, i.e.,

K(t) = ve−vt (6)

where, v represents the parameter or rate at which past has a bearing on the
present. In Equation (6), v−1 can be described as the time scale of the system.
So, with the passage of time the weighted response of kernel gets influenced
and falls exponentially. It implies that the kernel would be less reliable when
the past is remoter [21]. The reason for considering the weak memory kernel
function is because as soon as the vulnerabilities are discovered the chances
of getting exploited is more as the patches for the vulnerabilities are normally
provided by the vendors instantly and then exploitation would not be possible.

In order to solve Equation (5), the expressions for Ω1(t) and the kernel
function from Equations (3) and (6) are plugged into it. Then, the Equation (5)
can be written as:

dΩ2(t)

dt
= b

∫ t

0
ve−v(t−τ)(N(1− e−ατ )− Ω2(τ))dτ (7)

After solving the Equation (7) by using the Laplace transformation, with
initial condition Ω2(t = 0) = 0, the cumulative number of exploited
vulnerabilities by time t can be written as:

Ω2(t) = N
(

1−
(

1− v

2A

)
e−

v
2
t −
(
e−αt − e−

v
2
t

(
cos (At) +

1

A

(v
2
− α

)
sin (At)

))
bv

α (α− v) + bv

)
(8)

where, A =
√
bv − V 2

4

Hence, the Equation (8) represent the two-stage vulnerability exploitation
process by considering the impact of time delay in the vulnerability discovery
process and is comparable to the model proposed by Aggarwal et al. [22].



670 A. Anand et al.

4 Parameter Estimation

To exemplify the accuracy and predictive ability of the proposed model based
on the time delay approach, we have used two software vulnerability exploit
data sets. The two data sets used in the analysis are of the well-known
software platforms, namely Microsoft (DS-I) and Solaris (DS-II), obtained
from Exploit Database (https://www.exploit-db.com/). It is important to note
that the data sets considered in this paper are of mature software releases
and all of these have similar ages (compiled for the period of around 14–16
years). The parameter estimation for the proposed model has been performed
in SPSS software based on the non-linear least square method. Furthermore,
we have evaluated various goodness-of-fit comparison criteria.

For DS-I, the data set corresponds to vulnerabilities exploited in applica-
tions for the Microsoft Windows platform, and the data has been collected
from the year 1995 to 2018. For DS-II, the data set corresponds to vulnera-
bilities exploited in Solaris operating system from the year 1990 to 2018. The
parameter estimation and comparison criteria of the proposed model have
been calculated and can be viewed respectively through Tables 1 and 2.

From Table 1, it can be clearly noticed that the parameters α and b
describing the rate of exploitation is higher than the rate of discovery of a

Table 1 Parameter estimates

Dataset

Parameter Estimates DS-I DS-II

N 8579.98 229.05

v 0.0984 0.1020

α 0.3656 0.8500

b 0.5818 0.8796

Table 2 Comparison criterion

Comparison Criteria Dataset

DS-I DS-II

MSE 354980 396

Bias −119.96 −3.39

Variation 541.90 18.11

RMSPE 555.02 18.43

R2 0.973 0.935

https://www.exploit-db.com/


Time Lag-Based Modelling for Software Vulnerability Exploitation Process 671

 

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

0 5 10 15 20 25 30

C
um

ul
at

iv
e 

Ex
pl

oi
te

d 
V

ul
ne

ra
bi

lit
ie

s

Years

Windows

Actual Predicted

Figure 1 Goodness of fit curve for windows exploit data.

 

0

50

100

150

200

250

0 5 10 15 20 25Cu
m

ul
at

iv
e 

Ex
pl

oi
te

d 
V

ul
ne

ra
bi

lit
ie

s

Year

Solaris

Actual Predicted

Figure 2 Goodness of fit curve for Solaris exploit data.

vulnerability. It is because discovering the vulnerability might take a signifi-
cant time. But once the vulnerabilities are discovered the rate of exploitation
would be larger as hackers already know about the vulnerabilities. The
parameter N represents the total number of potential vulnerabilities to be
identified in a software system.



672 A. Anand et al.

Table 2 provides the comparison criterion calculated to provide the sig-
nificance of the proposed model. The validation for the proposed model has
been considered by computing various criteria, such as Mean Square Error
(MSE), Coefficient of Determination (R2), Bias, Variation and Root Mean
Square Prediction Error (RMSE) and their respective formulas can be found
in [23].

Figures 1 and 2 deals with the cumulative number of vulnerabilities
exploited with respect to years for datasets DS-I and DS-II. As can be seen
in Figure 1, the predicted values obtained through the model are quite close
to the actual dataset. Similarly, in Figure 2, the goodness of fit is quite good
on the S-Shaped predicted data. This supports the predictive capability of the
model.

5 Conclusion

As software becomes increasingly important in systems that perform complex
and critical activities, e.g., stocks, banking, etc., the need for safe and secure
software system also increases. In order to achieve better performability,
software should avoid the breaches which arise due to the loopholes that
are released as the part of the software. Hence, the software developer
needs to continuously monitor the exploitation process for the vulnerabilities
discovered in order to schedule patches required for their removal. In this
paper, a mathematical model has been proposed that relates the exploitation
phenomenon as a two-stage process. In the first stage the vulnerabilities are
discovered and then after a finite time lag their exploitation might happen. We
have considered memory kernel function to join the discovery and exploita-
tion process for a vulnerability. A weak memory kernel has been utilized to
denote the real-life aspect of the discovery and exploitation process based on
the time of discovery, when the vulnerabilities are discovered the chances
of getting exploited also increases if the vendor fails to provide a proper
patch. Further, the validity and accuracy have been tested on two different
vulnerability exposure data sets.

References

[1] Krsul, I. V. 1998. Software vulnerability analysis. Purdue University,
West Lafayette, IN.



Time Lag-Based Modelling for Software Vulnerability Exploitation Process 673

[2] Ozment, J. A. 2007. Vulnerability discovery & software security, Doc-
toral dissertation, University of Cambridge.

[3] Anderson, R. 2002. Security in open versus closed systems—the dance
of Boltzmann, Coase and Moore. Technical report, Cambridge Univer-
sity, England.

[4] Rescorla, E. 2005. Is finding security holes a good idea?, IEEE Security
& Privacy, 3(1), 14–19.

[5] Alhazmi, O.H., Malaiya, Y.K. and Ray, I., 2007. Measuring, analyzing
and predicting security vulnerabilities in software systems. Computers
& Security, 26(3), 219–228.

[6] Anand, A. and Bhatt, N. 2016. Vulnerability discovery modeling and
weighted criteria based ranking. Journal of the Indian Society for
Probability and Statistics, 17(1), 1–10.

[7] Anand, A., Das, S., Aggrawal, D. and Klochkov, Y. 2017. Vulnerability
discovery modelling for software with multi-versions. In Advances in
reliability and system engineering. Mangey Ram and J. Paulo Davim,
eds. Springer, Cham. pp. 255–265.

[8] Bhatt, N., Anand, A., Yadavalli, V.S.S. and Kumar, V. 2017. Modeling
and characterizing software vulnerabilities. International Journal of
Mathematical, Engineering and Management Sciences, 2(4), 288–299.

[9] Bhatt, N., Anand, A., Aggrawal, D. and Alhazmi, O.H. 2018. Catego-
rization of Vulnerabilities in a Software. System Reliability Manage-
ment: Solutions and Technologies, Adarsh Anand and Mangey Ram, eds.
CRC Press, Boca Raton, FL, pp. 121–135.

[10] Bhatt, N., Anand, A. and Aggrawal, D. 2019. Improving system reli-
ability by optimal allocation of resources for discovering software vul-
nerabilities. International Journal of Quality & Reliability Management.
37(6/7), 1113–1124.

[11] Anand, A., Bhatt, N. and Alhazmi, O.H., 2020. Modeling Software
Vulnerability Discovery Process Inculcating the Impact of Reporters.
Information Systems Frontiers, doi: 10.1007/s10796-020-10004-9

[12] Liu, Q. and Xing, L., 2021. Survivability and Vulnerability Analysis
of Cloud RAID Systems under Disk Faults and Attacks. International
Journal of Mathematical, Engineering and Management Sciences, 6(1),
15–29.

[13] Anjum, M., Kapur, P.K., Agarwal, V. and Khatri, S.K., 2020. Assess-
ment of software vulnerabilities using best-worst method and two-
way analysis. International Journal of Mathematical, Engineering and
Management Sciences, 5(2), 328–342.



674 A. Anand et al.

[14] Bozorgi, M., Saul, L.K., Savage, S. and Voelker, G.M., 2010, July.
Beyond heuristics: learning to classify vulnerabilities and predict
exploits. In Proceedings of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data mining. pp. 105–114.

[15] Edkrantz, M. and Said, A., 2015. Predicting cyber vulnerability exploits
with machine learning. In Thirteenth Scandinavian Conference on
Artificial Intelligence, pp. 48–57.

[16] Allodi, L. and Massacci, F., 2014. Comparing vulnerability severity and
exploits using case-control studies. ACM Transactions on Information
and System Security (TISSEC), 17(1), 1–20.

[17] Sabottke, C., Suciu, O. and Dumitraş, T., 2015. Vulnerability disclosure
in the age of social media: Exploiting twitter for predicting real-world
exploits. In 24th {USENIX} Security Symposium ({USENIX} Security
15). pp. 1041–1056.

[18] Almukaynizi, M., Nunes, E., Dharaiya, K., Senguttuvan, M., Shakarian,
J. and Shakarian, P., 2019. Patch before exploited: An approach to
identify targeted software vulnerabilities. In AI in Cybersecurity. Leslie
F. Sikos, ed. Springer, Cham. pp. 81–113.

[19] Bhatt, N., Anand, A. and Yadavalli, V.S.S., 2020. Exploitability pre-
diction of software vulnerabilities. Quality and Reliability Engineering
International, 37(2): 648–663. doi: 10.1002/qre.2754

[20] Diamond Jr, A.M., 2005. Measurement, incentives and constraintsin
Stigler’s economics of science. The European Journal of the History
of Economic Thought, 12(4): 635–661.

[21] Cushing, J.M., 1975. An operator equation and bounded solutions of
integro-differential systems. SIAM Journal on Mathematical Analysis,
6(3): 433–445.

[22] Aggarwal, R., Singh, O., Anand, A. and Kapur, P.K., 2019. Model-
ing innovation adoption incorporating time lag between awareness and
adoption process. International Journal of System Assurance Engineer-
ing and Management, 10(1): 83–90.

[23] Anand, A., Kapur, P. K., Agarwal, M., and Aggrawal, D., 2014. Gener-
alized innovation diffusion modeling & weighted criteria based ranking.
In Proceedings of 3rd International Conference on Reliability, Infocom
Technologies and Optimization (pp. 1–6). IEEE.



Time Lag-Based Modelling for Software Vulnerability Exploitation Process 675

Biographies

Adarsh Anand did his doctorate in the area of Software Reliability Assess-
ment and Innovation Diffusion Modeling in Marketing. Presently he is
working as an Assistant Professor in the Department of Operational Research,
University of Delhi (INDIA). He has been conferred with Young Promising
Researcher in the field of Technology Management and Software Reliability
by Society for Reliability Engineering, Quality and Operations Management
(SREQOM) in 2012. He is a lifetime member of the SREQOM. He has pub-
lications in journals of national and international repute. His research interest
includes software reliability growth modelling, modelling innovation adop-
tion and successive generations in marketing, and social network analysis. He
has worked with CRC Press for two editorial projects; “System Reliability
Management: Solutions and Technologies” and “Recent Advancements in
Software Reliability Assurance”. He has also authored one text book with
CRC group; “Market Assessment with OR Applications”.

Navneet Bhatt received his B.Sc. in Computer Science, M.Sc. in Applied
Operational Research and Ph.D. degrees from University of Delhi in 2011,
2013 and 2021, respectively. He is a lifetime member of the Society for
Reliability Engineering, Quality and Operations Management (SREQOM).



676 A. Anand et al.

His current research is focused on Software Vulnerability Discovery Mod-
eling, Software Reliability, Machine Learning and Multi-criteria decision
modeling.

Jasmine Kaur is presently pursuing Ph.D. from Department of Operational
Research, University of Delhi, Delhi (INDIA). She obtained her B.Sc. (H)
Mathematics, M.Sc. in Applied Operational Research, M.Phil. in Operational
Research degree in 2013, 2015 and 2017 respectively from University of
Delhi, Delhi (INDIA). She joined as a research scholar in the Department
of Operational Research in 2015. Her research areas are Software Reliability
and Software Security. She has publications in journals of national and
international repute.

Yoshinobu Tamura received the BSE, MS, and Ph.D. degrees from Tottori
University in 1998, 2000, and 2003, respectively. From 2003 to 2006, he
was a Research Assistant at Tottori University of Environmental Studies.
From 2006 to 2009, he was a Lecturer and Associate Professor at Fac-
ulty of Applied Information Science of Hiroshima Institute of Technology,
Hiroshima, Japan. From 2009 to 2017, he was an Associate Professor at



Time Lag-Based Modelling for Software Vulnerability Exploitation Process 677

the Graduate School of Sciences and Technology for Innovation, Yamaguchi
University, Ube, Japan. From 2017 to 2019, he has been working as a Doctor
at the Faculty of Knowledge Engineering, Tokyo City University, Tokyo,
Japan. Since 2020, he has been working as a Doctor at the Faculty of
Information Technology, Tokyo City University, Tokyo, Japan. His research
interests include reliability assessment for open-source software, big data,
clouds, reliability. He is a regular member of the Institute of Electronics,
the Information and Communication Engineers of Japan, the Operations
Research Society of Japan, the Society of Project Management of Japan, the
Reliability Engineering Association of Japan, and the IEEE. He has authored
the book entitled as OSS Reliability Measurement and Assessment (Springer
International Publishing, 2016). Dr. Tamura received the Presentation Award
of the Seventh International Conference on Industrial Management in 2004
, the IEEE Reliability Society Japan Chapter Awards in 2007, the Research
Leadership Award in Area of Reliability from the ICRITO in 2010, The Best
Paper Award of the IEEE International Conference on Industrial Engineering
and Engineering Management in 2012, Honorary Professor from Amity Uni-
versity of India in 2017, the Best Paper Award of the 24th ISSAT International
Conference on Reliability and Quality in Design in 2018.




	Introduction
	Literature
	Mathematical Modeling
	Vulnerability Discovery Process
	Vulnerability Exploitation Process

	Parameter Estimation
	Conclusion

