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Abstract

The bottleneck of all cryptosystems is the difficulty of the computational
complexity of the polynomials multiplication, vectors multiplication, etc.
Thus most of them use some algorithms to reduce the complexity of the
multiplication like NTT, Montgomery, CRT, and Karatsuba algorithms, etc.
We contribute by creating a new release of NTRUencrypt1024 with great
improvement, by using our own polynomials multiplication algorithm operate
in the ring of the form Rq = Zq[X]/(XN + 1), combined to Montgomery
algorithm rather than using the NTT algorithm as used by the original version.
We obtained a good result, our implementation outperforms the original one
by speed-up of a factor up to (X10) for encryption and a factor up to (X11)
for decryption functions. We note that our improved implementation used the
latest hash function standard SHA-3, and reduce the size of the public key,
private key, and cipher-text from 4097 bytes to 2049 bytes with the same
security level.
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1 Introduction

The recent advanced research in quantum technologies to build quantum
computers, quantum communication systems [1], and Quantum devices [2,3],
can provide many advantages and new solutions to the big problems in
different sciences domains. For example, this technology can solve many
problems in chemical, physical sciences, health, and environmental sciences,
etc. The high performances of the quantum computer and the quantum
communication networks can improve considerably the efficiency of machine
learning applications, the Internet search engines, the data transmission, and
the security of the sensitive data [4, 5].

But such evolution represents a potential threat to our currently widely
deployed public-key cryptographic systems. The quantum computer can
break the classical cryptosystems based on computational difficulties, such
as RSA and ECDH in polynomial time. Therefore, the challenge of the
cryptographic community right now is to build a Post-Quantum cryptosystem
able to resist quantum computer attacks. In response, the NIST(National
Institute of Standards and Technology) published, in November 2017, an
official Call for Proposals and Request for Nominations for Public Key
algorithm. The competition is still in process to standardize one or more
post-quantum cryptosystems (PQC) [6].

Lattice-based cryptography is an exciting field of research and one of the
most promising candidates for post-quantum cryptography standardization
project. Besides the conjectured security against quantum attacks, lattice-
based schemes tend to be algorithmically simple and highly parallelizable [7].

NTRUencrypt is one the most important post-quantum cryptosystem
(Based on Lattices cryptography) candidates submitted to this competition
during the first round [8]. the authors proposed three versions with different
parameters NTRUencrypt443 and NTRUencrypt743 and NTRUencrypt1024
with both approaches PKE(Public Key Encryption) that achieves CCA-2
security via NAEP transformation and KEM (Key Exchange Mechanism).
We notice that during the second round the authors replaced those versions by
new versions with other parameters, the candidate is now namely NTRU [9].

In this work, we focused only on NTRUencrypt1024 (referred into the
original document by ss-NTRU-pke and ss-NTRU-kem).

1.1 Our Work

The bottleneck for all cryptosystems based on Lattices is the complexity
cost of the multiplication (polynomials multiplication, vectors multiplica-
tion, etc.) in cryptographic functions. Thus the majority of them use some
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algorithms to improve the performance of the cryptographic functions (like
NTT, Montgomery, CRT, etc.). In particular, The NTRUencrypt1024 used the
NTT algorithm for this end [8].

We contribute by creating an improved release of the NTRUencrypt1024,
namely NTRUboost, named XKhwarizm [10] combined to Montgomery algo-
rithm [11] operates in the ring of the form Rq = Zq[X]/XN +1) rather than
using the NTT algorithm using our own algorithm. After testing (100 times)
our release, we obtained a great improvement of cryptographic functions. The
result was a speed-up by a factor up to (X10) for encryption function and a
speed-up by a factor up to (X11) for decryption function.

Our release used the latest KECCAK hash function, which has recently
been standardized as SHA3 in FIPS202 [12], rather than SHA2 hash func-
tions. And also, our implementation generates the polynomials according to
Centred Binomial Distribution rather than Gaussian samplers [13]. We also
successfully reduce the size of the public key, private key, and cipher-text
from 4097 bytes to 2049 bytes by using the modulus value q = 12289 rather
than the value q = 1073750017 with the same security level.

1.2 Outline

The remainder of our work is organized as follows:
Section 1: this introduction;
Section 2: preliminaries: Then we recall the necessary knowledge of the
Lattices-Based-Cryptography, and a brief description of the NTT algorithm
and Montgomery algorithm are presented, and we give some related works
that use NTT, Montgomery, or other algorithms;
Section 3: We recall the description of the original NTRUencrypt submitted
to NIST competition;
Section 4: We present our contribution by describing our Xkhwarism algo-
rithm combined with the Montgomery algorithm and we describe our release
NTRUboost ;
Section 5: We present the obtained result of our implementation compared to
the original one;
Section 6: Finally we give a conclusion and our future research orientation.

2 Preliminaries

In the remainder of this paper, we use the following notations: LBC for
Lattice-Based-Cryptography [7]; L(B) Lattice of Rn generated by a base
B = (~e1, . . . , ~en), is defined by L(B) = {~v ∈ Rn, with (a1, . . . , an) ∈ Zn

and ~v = a1 ~e1 + · · · + an ~en}; R = Z[X]/(XN + 1) the ring polynomial
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modulus the ideal f(x) = XN + 1 with coefficient in Zn; and Rq the
quotient ring polynomial with coefficients in [−q/2, q/2]; fntt = NTT (f) is
the NTT transformation function that returns the polynomial into NTT form
and the f = invNTT (fntt) is the transformation function that returns the
normal polynomial form; we also note

∑n
i=0 hntti =

∑n
i=0 fNtti.gNtti

the point-wise multiplication of two NTT polynomials form and we also
note it hNtt = fNtt ◦ gNtt ; we refer to sampCBD(seed) the polynomial
sampled according to Centred Binomial Distribution and sampDGD(seed)
the polynomial sampled according to Discrete Gaussian Distribution.

2.1 Number Theoretic Transform (NTT)

The NTT is a particular case of Discrete Fourier Transform (DFT) defined
in a positive Integer group and finite fields whereas the DFT is defined in
complex numbers group [14]. It is useful for polynomials multiplication and
it is allowed to reduce the number of multiplications from O(n2) to O(n ∗
log(n)). In fact, many LBC schemes are based on operations in polynomial
rings of the form R = Z[X]/(XN + 1) used this method [8, 9, 13, 15].

The Principe of NTT algorithm is as follow:
1. Having the polynomials P(x) of degree n, and Modulus M where 1 ≤
n < M ;

2. Finding an integer k > 1 and search prime number such that N =
k.n+ 1 with N ≥M ;

3. The multiplicative group zN has size ϕ(N ) = N − 1 = k .n and a
generator g ;

4. Defining the primitive nth root of unity ω = gk (mod N ) and
ωn = gkn = gω(N ) = 1 mod N .

Note that the multiplication of two polynomials with degree n and the
coefficients are almost m , the bound of output is m2 .n then we choose
M = m2 .n + 1 .

2.1.1 NTT function definitions
For a polynomial f =

∑n−1
i=0 fiX

i ∈ Rq, the NTT functions are defined by
the equation bellows:

NTT (f) = fNtt =
n−1∑
i=0

fNttiX
i (mod q). (1)

with fNtti =
n−1∑
j=0

γjfjω
ij (mod q). (2)

where γ =
√
ω.
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The inverse of NTT function to return back to the normal form is:

invNTT (fNtt) = f =
n−1∑
i=0

fiX
i (mod q). (3)

with fi = n−1γ−i
n−1∑
j=0

fNttjω
−ij (mod q). (4)

2.2 Montgomery algorithm

In 1985, In his paper [11] under the title “Modular Multiplication With-
out Trial Division,” Peter Montgomery introduced, an efficient algorithm
for modular multiplication without division and increasing significantly the
speed of multiplication of two numbers. More concretely it is a method to
compute a (mod N). And it is also suitable for computing multiplication ab
(mod N).

2.2.1 Algorithm description
We choose two integers R and N, with R > N and gcd(N,R) = 1. For 0 <
T < NR the Montgomery reduction of T (mod N), is TR−1 (mod N).
The algorithm is as follow:
——————————————————————————————-
Algorithm 1: Montgomery reduction of T (mod N).
——————————————————————————————-
Input: The integers T,N and R with R = 2k > N and gcd(R,N) = 1.

1. m = T (−N−1) (mod R);
2. t = (T +mN)/R
3. if(N < t)t = t−N .

Output: The product t = T (mod N).
——————————————————————————————-
The clam is : t = TR−1 (mod N) ; tR = T (mod N) with 0 < t < N

TR−1 = (T + T (−N−1)(modR)N)/R (mod N). (5)

For the multiplication of two integers a and b modulus N , ab (mod N),
by using the Montgomery reduction the process of the algoritm is as follow:
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——————————————————————————————-
Algorithm 2: The Montgomery modular multiplication.
——————————————————————————————-
Input: The integers a, b N , and R with R = 2k > N and gcd(R,N) = 1.

1. a′ = aR (mod N); b′ = bR (mod N)
2. N ′ = N−1 (mod R);
3. c′ = (a′b′)R−1 (mod N) and c = c′R−1 (mod N)
4. c′ = (a′b′)R−1 = (a′b′ + a′b′(−N ′) (mod R)N)/R (mod N);
5. c = c′R−1 = (c′ + c′(−N ′) (mod R)N)/R (mod N)

Output: The product c = ab (mod N).
——————————————————————————————-
The clam is : c = ab (mod N).

c′R−1 = (a′b′)R−1R−1 = (a′R−1)(b′R−1) = ab (mod N). (6)

2.3 Related Works

There are many candidates submitted to NIST who used one or more multipli-
cation algorithms to improve the performance of their cryptosystems. In this
section, we present a citation of two important cryptosystems that used the
NTT algorithm and the Montgomery algorithm to increase the cryptographic
functions.

2.3.1 E. Alkim et al. work (NewHope)
The NewHope cryptosystem is a new version of Ring-LWE(Ring Learning
With Error) created by Lyubashevsky, Peikert et Regev and published in
2010 [13]. The Domain of NewHope is the Ring polynomials of the form
Rq = Zq[X]/XN + 1) and all the polynomials are chosen according to
the Centred Binomial Distribution rather than the preview version where the
polynomials are chosen according to the Discrete Gaussian Distribution [13].
This cryptosystem use only KEM “Key Exchange Mechanism” scheme,
and it adopts the NTT algorithm combined with Montgomery Algorithm
for increasing the speed performance. The author argues that “the choice
of q = 12289 as a prime number, allows an (NTT) to be faster and more
efficient”. This cryptosystem is already integrated by GOOGLE in its new
release of Google Chrome browser namely “CANARY”.

2.3.2 Jeffry Hoffstein et al. work (FALCON)
FALCON is a lattice-based signature scheme [15]. It is based on NTRU
assumption and also submitted to the NIST competition. The same as
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NewHope, to improve the speed performance of the system, the authors
of FALCON used NTT algorithm and the Montgomery algorithm. The
FALCON domain of computation is the ring polynomials of the form
Rq =Zq[X]/XN + 1). The degree N is normally a power of two (typically
512 or 1024) and q is a specific small prime (the recommended parameter is
q = 12289).

3 NTRU Cryptosystem

3.1 A View of NTRU

NTRU was created in 1996 by the three mathematicians J. Hofstein, J. Pipher,
and J. H. Silverman, and published in 1998 [7]. It is completely constructed
on Lattice-Based-Cryptography. NTRU was considered reliable by the IEEE
P1363.1 standard and in April 2011, NTRUEncrypt was accepted in the
X9.98 standard. Its domain of computation is the ring polynomials of the
form Rq =Zq[X]/XN − 1) with N prime number and q power of two, or
the ring polynomials of the form Rq =Zq[X]/XN + 1) where N is power
of two and q prime number. There are several versions since its creation and
the latest versions are the NTRUencrypt candidate submitted to NIST during
the first round and the NTRU candidate submitted during the second round.
In terms of security, NTRUencrypt resisted for 20 years of cryptanalysis.

3.2 Lattice Problems and Security

The schemes constructed from lattice-based cryptography typically enjoy a
worst-case hardness guarantee [16, 17]. That warrants very strong security.
It is based on mathematical concepts and theories to encrypt and decrypt, as
well as to demonstrate the complexity and the difficulty of breaking those
cryptographic systems.

3.2.1 Lattice problems
Many cryptanalysis works are performed, their principal goal was to check
the robustness of the Lattices-Based Cryptography, by posing the hardest
problems on points lattices in Rn, and the best tools used to prove the
security is Lattice reduction (Gram-Schmidt, LLL, BKZ algorithms) and
Meet-in-The-Middle attack (MIM) [16].

The principal Lattice problems are SVP and CVP defined as follow:
The Shortest Vector Problem (SVP): Finding (SVP) in Lattice L(B) is

finding a non-zero vector that minimizes the Euclidean norm. Formally the
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problem SVP is to find a non-zero vector:

ṽ ∈ L(B) ∀x̃ ∈ L(B) we have ‖ṽ‖ ≤ ‖x̃‖. (7)

The Closest Vector Problem (CVP): Given the Lattice L(B) and a vector
~w ∈ Rn to find a vector ṽ ∈ L(B) “Closest” to ~w, is to find a vector ~v ∈ L(B)

that minimizes the Euclidean norm ‖~w − ~v‖ where:

‖~w − ~v‖ = min{‖~w − ~v‖/ṽ ∈ L(B)}. (8)

The NTRU assumption is defined by: “Having h = g/f it is hard to find
f and g, and it can be reduced to the uniqueSVP for the NTRU lattices” [16].

3.2.2 NTRU security
In fact, mathematicians often estimate the projected security of cryptographic
systems by plotting the evolution in “running time” and “space requirements”
of the best-known attacks according to the level of security needed.

For measuring the security level of Lattice-Based Cryptosystems, Martin
R. Albrecht et al. developed an estimator as described in the paper under
the title “Estimate all the LWE, NTRU schemes” [18]. This tool helps the
researchers in this area to check the security level of their cryptosystems. The
estimator gives the result as follows:

1. The security level of NTRUencrypt1024 with parameters {q =
1073750017, n = 1024 p = 2}, provides 256 bits for classical security
and 198 bits for quantum security [18].

2. And for the sequence parameters {q = 12289, n = 1024} used by
FALCON, the NTRU assumption provides 263 bits for classical security
and 230 for quantum security [15]. We note that our “NTRUboost”
release is based on the same NTRU assumption and uses the same
sequence parameters.

In its report[8240], NIST states that the security of NTRU is based on
stronger assumptions than LWE or RLWE Lattice-based schemes [19].

It is important to note that IND-CPA security only models passive
adversaries. Active adversaries are modeled using IND-CCA security (Indis-
tinguishably under a Chosen-Ciphertext Attack). There are efficient and
generic techniques to upgrade IND-CPA schemes to IND-CCA security [20].

3.3 Description of NTRUencrypt1024 Post-Quantum
Cryptosystem

The NTRUencrypt candidate [8] submitted to NIST competition during
the first round with three versions: The NTRU443 and the NTRU743
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versions both use Karatsuba multiplication algorithm to increase the speed
performance, but the NTRUencrypt1024 release uses the NTT algorithm.
We also note that the NTRUencrypt uses the two approaches, the pub-
lic key encryption (PKE) scheme and Key Exchange Mechanism (KEM)
scheme.

In this subsection, we describe the original cryptographic algorithms of
NTRUencrypt1024, and for illustrating our contribution and our improve-
ment, we modified the original algorithms by introducing the use of the NTT
functions, the sampling function sampDGD(seed), and the use of SHA-2
hash function. Fore more details, the reader can see the original documents
in [8].

3.3.1 Parameters
As described by the authors, the cryptosystem uses the sequence parameters
{N = 1024, q = 1073750017, p = 2, σ = 724} and seed and the domain of
NTRUencrypt1024 is the Ring polynomials of the form Rq =Zq[X]/XN +
1). We also note that this version of NTRUencrypt takes the private key F in
the form F = p ∗ f + 1 [21]. This form allows us to avoid the computation
of the inverse of f (mod p) because F = p ∗ f + 1 (mod p) = 1.
——————————————————————————————-
Algorithm 3: Keys Generation.
——————————————————————————————-
Input : the sequence parameters {N = 1024, q = 1073750017, p = 2, σ =
724} and seed.
1. f, g← sampDGD(seed) ;
2. FNtt← Ntt(F=p*f+1);
3. gNtt← Ntt(g);
4. FqNtt← inverse(FNtt) (mod q);
5. hNtt← FqNtt ◦ gNtt;
Output: the public key hNtt and the private key FNtt.
——————————————————————————————-

In the keys generation function we remark that in line2 and line3 we
transform the polynomial (F, g) from normal form to NTT form(FNtt, gNtt),
and in line4, we compute the inverse FqNtt of FNtt by just computing the
inverse of the FNtt coefficients modulus q, and in the last line, we compute
the public key hNtt in the NTT form by the point wise multiplication (◦) of
FqNtt and gNtt polynomials.
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——————————————————————————————-
Algorithm 4: Encryption .
——————————————————————————————-
Input: The public key hNtt, the message with its length msg,len, and the
seed
1. m← padding(msg,len) ;
2. rseed← HashSHA2(m‖hNtt) ;
3. r← sampDGD(rseed) ;
4. e← sampDGD(rseed) ;
5. rNtt← Ntt(r) ;
6. eNtt← Ntt(e) ;
7. tNtt← rNtt ◦ hNtt (mod q) ;
8. tseed← HashSHA2(tNtt) ;
9. mask← sampDGD(tseed) ;
10. M←m−mask (mod p) ;
11. cNtt← tNtt+ p ∗ eNtt+M ;
Output: The cipher-text cNtt.
——————————————————————————————-
The computation used by the NTT transformation function of the polynomial
r in line5, and the r in line6 and the point wise multiplication (◦) of rNtt and
hNtt in line7 are very costly, whereas the computational cost of the other lines
are less important.
——————————————————————————————-
Algorithm 5: Decryption .
——————————————————————————————-
Input: The private key FNtt and the cipher-text cNtt.
1. MNtt← FNTT ◦ cNtt (mod q) ;
2. tNtt← cNTT −MNtt ;
3. tseed← HashSHA2(tNTT) ;
4. mask← sampDGD(tseed) ;
5. maskNtt← Ntt(mask) ;
6. mNtt←MNtt+maskNtt (mod p) ;
7. rseed← HashSHA2(mNtt—hNTT) ;
8. m← inverseNtt(mNtt) ;
9. r← sampDGD(rseed) ;
10. rNtt← Ntt(r) ;
11. eNtt← p−1 ∗ (tNtt− rNtt ◦ hNtt) ;
12. e← inverseNtt(eNtt) ;
13. result← check(e) ;
14. msg,len← Extract(m).
Output: the message msg and its length len.
——————————————————————————————-
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In the Decryption function, the most cost time is taken by the point wise
multiplication ( ◦) of the private key FNtt and the cipher-text cNtt in line1,
the transformation of the mask from normal form to NTT form maskNtt
in line5, and also the inverse transformation of mNtt from the NTT form to
normal form m as in line8 and the transformation of r from normal form to
NTT form in line10, and the computation of e, eNtt in line11 and line12.

4 Our Contribution

Our contribution consists of the creation of a new version of NTRUen-
crypt1024, named NTRUboost with great improvement of speed performance
of encryption and decryption functions. The principal improvements of our
implementation are:

1. We used our multiplication algorithm, named XKhwarizm combined
to Montgomery algorithm operates in the ring of the form Rq =
Zq[X]/(XN + 1). Our algorithm used the multiplication and the mod-
ulus reduction(%) as the principal operations. The complexity of the
polynomial coefficients multiplication is O(n2) but the complexity of
modulus reduction of the polynomial coefficients is only O(n), and our
algorithm does not need any pre-computed data when NTT algorithm
needs to pre-compute two arrays (powers of the root of unity), and for
increasing the modulus reduction we used the Montgomery algorithm.

2. The polynomials are sampled according to Centred Binomial Distribu-
tion (sampCBD() function) rather than Discrete Gaussian Distribution
(sampDGD() function). Additionally, the implementation of this sam-
pling algorithms is much easier to protect against timing attack and does
not decrease the security”, see [13].

3. Our release integrates the new standard SHA-3 (Keccak hash functions)
rather than SHA-2, of course, that also increases the security and prevent
in the event of a fault of SHA-2 [12].

4. And we can use alternatively the modulus q = 12289 like NewHope
[13] and FALCON schemes [15] rather than using the big modulus q =
1073750017. Both provide almost the same security level, and the same
speed performance, as we are going to present in the next subsection.

5. Our implementation reduces the size of the public key, the private key,
and the cipher-text from 4097 bytes to 2049 bytes.

In this section, we describe the XKhwarizm algorithm and our
NTRUboost cryptosystem release.
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We note that our release implementation is developed with the C++
programming language rather than the C programming language as in the
original implementation, and the test was performed in the platform PC-
TOSHIBA –Satellite, Processor Intel, Core™i7 -2630QM CPU, 2GHz, RAM
8GO, under environment Windows 7-32 bits and Dev-C++ 4.9.9.2.

4.1 XKhwarizm Algorithm Description

The domain of our multiplication algorithm combined to Montgomery
algorithm is the polynomials ring Rq =Zq[X]/XN + 1).

This algorithm allows us to multiply two polynomials f and g modulus
the integer q with degree less than N for each polynomial, and we obtained
directly a polynomial h reduced to a degree less than N in Rq. Formally that
means:

f(x) =

N−1∑
i=0

fix
i mod q, g(x) =

N−1∑
i=0

gix
i mod q. (9)

h(x) =
N−1∑
i=0

hix
i mod q, Xkhwarizm(f, g) = h mod q. (10)

——————————————————————————————-
Algorithm 6: Polynomial multiplication algorithm in Rq .
——————————————————————————————-
Input: Polynomials f and g, with their degrees less than (N), and q;
Function Xkhawarism (f,g) :
1. . for : int i = 0 to n− 1 do :
2. ... if fi! = 0 then
3. ...... for : int j = 0 to n− 1 do :
4. ......... if gj ! = 0 then :
5. ............ if((i+ j) < N) then : hi+j ← hi+j + fi.gj ;
6. ............ else : hi+j−N ← hi+j−n + fi.gj ;
7. ............ endif
8. ......... endif
9. ...... endfor
10. ... endif
11. .endfor
12. for : integer i = 0 to n do: hi ←Montgomery(hi, q);
End-function.
Output:The result polynomial of product h;
——————————————————————————————-
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Our algorithm used two principal operations the multiplication and the mod-
ulus(%). The polynomial coefficients multiplication with the complexity cost
O(n2) performed from line2 to line12, but the complexity cost of modulus is
only O(n) as in line13, used Montgomery reduction.

4.2 Benchmarking Between NTT and XKhwarizm Algorithms

We did a benchmarking between our proposal XKhwarism algorithm and
NTT algorithm by using the parameters of NTRUencrypt1024 and NTRU-
boost releases. To do so, we compare the cost of the polynomials multiplica-
tion of two polynomials X and Y generated in the ring Rq =Zq[X]/XN+1)
with the sequences parameters {N = 1024, q = 1073750017} and {N =
1024, q = 12289} respectively.

For using NTT functions we computed, the root[1024] and the inverse
of the root[1024], for more details the reader can see the original implemen-
tation of NTRUencrypt1024 at NIST website [8]. The modulus q = 12289
is recommended by the authors of NewHope and FALCON candidates also
submitted to NIST competition and the value of modulus q = 12289 increases
the security by minimizing the probability of decryption failure.

In their latest report [8240] [19], NIST experts did not appreciate the big
modulus q = 1073750017.

In this case, we show that our algorithm is about 10 times faster than NTT
algorithm, but in practice, we not always compute the invNTT() function
in cryptographic algorithms, the authors of NTRUencrypt used the public
key, the private key, and the cipher-text in NTT form as presented by the
Algorithm.2 and the algorithm.3, the invNTT function is called only at the
end of decryption function to product the plain-text in normal form.

4.3 Our NTRUboost Post-quantum Cryptosystem Description

In this part, we describe the proposed cryptosystem NTRUboost release
of NTRUencrypt1024. And for illustrating our contribution and our

Table 1 Speed benchmarking between NTT algorithm and our algorithm of two polynomials
multiplication Z=X*Y. (ms)
NTT Algorithm Time Time
q = 1073750017 Time Xkhwarizm Algorithm q = 1073750017 q = 12289
XNtt 31ms Z=Xkhwarizm(X,Y) 9ms 9ms
YNtt 30ms ... ...
ZNTT = XNtt ◦ Y Ntt 1ms ... ... ...
Z = InvNTT (ZNtt) 30ms ... ... ...
Total cost 92ms ... 9ms 9ms
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improvement, we modified the original algorithms of keys generation,
encryption, and decryption by introducing our Xkhwarizm(.) function, the
sampling function sampCBD(seed), and the use of SHA-3 hash function, the
algorithm discription of our release is as follow:
—————————————————————————————
Algorithm 7: Keys Generation.
——————————————————————————————-
Input : the sequence parameters {N = 1024, q = 12289, p = 2} and seed.
1. f,g← sampCBD(seed) ;
2. Fq ← inverse(F=p*f+1);
3. h← Xkhwarizm(Fq, g);
Output: the public key h and the private key F.
——————————————————————————————-
Our keys generation algorithm contains just 3 lines. We replace the three NTT
functions Ntt(F), Ntt(g) and their point-wise product as in the original algo-
rithm, only by single-function Xkhwarizm(Fq, g) without pre-computed
data, when we must pre-computing the roots and the inverse of the roots
arrays for using NTT functions.
——————————————————————————————-
Algorithm 8: Encryption .
——————————————————————————————-
Input: The public key h, the message with its length msg,len, and the seed
1. m← padding(msg,len ;
2. rseed← HashSHA3(m—h) ;
3. r← sampCBD(rseed) ;
3. e← sampCBD(rseed) ;
4. t← Xkhwarizm(p ∗ r, h)(modq) ;
5. tseed← HashSHA3(t) ;
6. mask← sampCBD(tseed) ;
7. M←m−mask (mod p) ;
8. c← t+M + p ∗ e ;
Output: The ciphertext c.
——————————————————————————————-
The same for our encryption algorithm, we replace the NTT transformation
functions and the inverse NTT transformation functions, and the point-wise
product as in the original algorithm, by only Xkhawarizm(.) function.
Then, all the polynomials are computed in the normal form, and we reduced
the code size from 11 lines to 8 lines and we don’t need any pre-computation
data.
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—————————————————————————————
Algorithm 9: Decryption .
——————————————————————————————-
Input: The private key F and the ciphertext c.
1. M← Xkhwariem(F, c) (mod q) ;
2. t← c−M ;
3. tseed← HashSHA3(t) ;
4. mask← sampCBD(tseed) ;
5. m←M +mask (mod p) ;
6. rseed← HashSHA3(m—h) ;
7. r← sampCBD(rseed) ;
8. e← p−1(t−Xkhwarizm(r, h)) ;
9. msg,len← Extract(m).
Output: the message msg and its length len.
——————————————————————————————-
Our decryption algorithm uses Xkhwarizm(.) function in line1 and line8,
it replaces the NTT transformation functions as in the original decryption
Algorithm 3, especially the point-wise multiplication, and the inverse NTT
transformation (inverseNtt(.)). We reduced the code size from 14 lines to
9 lines with no pre-computation.

5 Analysis and Result of Our NTRUboost Implementation

In this section, we present our result by doing a benchmarking between our
NTRUboost implementation and the original version of NTRUencrypt1024.
We note that all the parameters fixed by the authors are kept. We exchange
only the NTT transformation functions by our Xkhwarizm functions and the
use of the Montgomery algorithm.

And we used sampCBD() function to generate the polynomials according
to Centred Binomial Distribution inspired by NewHope implementation [13]
which integrates the SHA3 (shake128, shake256) hash functions, therefore,
we included the library files (fips202.c,fips202.h...).

Our implementation reduce the size of the public key, private key, and
the cipher-text, as we updated in parameter file “param.h” by SECRETKEY-
BYTES=2049; PUBLICKEYBYTES=2049; CIPHERTEXTBYTES=2049.
Both cryptosystem implementations described in this paper are available on
the website of at Sources Code.

We note that Both implementations are performed in the platform PC-
TOSHIBA–Satellite, Processor Intel, Core™i7 2630QM CPU, 2GHz, RAM
8GO, under environment Windows 7-32 bits and Dev-C++ 4.9.9.2.

https://drive.google.com/open?id=1Y-YdPA2_syC6fIvCOoiVIZHHRlsEClwT
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5.1 Results and Analysis

After simulation of our NTRUboost and NTRUencryption, by executing
100 times each implementation with the parameters sets {N = 1024, q =
1073750017, p = 2} and {N = 1024, q = 12289, p = 2} alternatively, we
obtained drastic result by increasing the performance of the cryptographic
functions. We reported the median values of the processes key genera-
tion, encryption, and decryption, in Table 2, Table 3, and in Figure 1, in
Milliseconds by using the platform cited above:

We remark in Table 2, that for the sequence parameters {N = 1024, q =
1073750017, p = 2}, our NTRUboost achieves 13ms and 22ms for encryp-
tion and decryption functions respectively, when the NTRUencrypt1024
achieves 140ms and 240ms for encryption and decryption functions respec-
tively. The same result is obtained, as presented in Table 3, by using the
sequence parameters {N = 1024, q = 12289, p = 2}.

We improving the speed performance by factors up-to×10 for the encryp-
tion function, and up-to ×11 for the decryption function as it is illustrated in
Figure 1.

In terms of the speed performance, the impact of the value size of
parameter q is so negligible when performing the cryptographic functions
of NTRUboost and NTRUencrypt by using the parameters q = 12289 and
q = 1073750017 alternatively. But in terms of the memory size needed; the
sizes of cipher-text, plain-text and keys are 2 times greater when we use the
modulus q = 1073750017 rather than using the modulus q = 12289.

But, as we showed in Table 2, Table 3, and as illustrated in Figure 1 below,
the key generation function is not improved, because for NTRU schemes we
should computing the inverse polynomial of the private key (see Algorithm.7
line.2), which is very costly in terms of the time by using the extended
Euclidean algorithm. The speed of key generation algorithms of our release
and NTRUencrypt are almost the same values 80ms and 85ms respectively.
In conclusion, we did better by implementing our Xkwarizm(.) in the
cryptographic functions of our NTRUboost post-quantum cryptosystem.

Table 2 Speed performance benchmarking between NTRUboost and NTRUencrypt1024
(ms) with q = 1073750017

Schemes KeysGen Encryption Decryption
NTRUencrypt1024 80ms 140ms 240ms
NTRUboost 85ms 13ms 22ms
Speed-up 1 times 10 times 11 times
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Table 3 Speed performance benchmarking between NTRUboost and NTRUencrypt1024
(ms) with q = 12289

Schemes KeysGen Encryption Decryption
NTRUencrypt1024 80ms 140ms 240ms
NTRUboost 85ms 13ms 22ms
Speed-up 1 times 10 times 11 times

Figure 1 Speed performance benchmarking between our NTRUboost and NTRUen-
crypt1024 (in Milliseconds).

6 Conclusion

In this paper, we evoked that the cryptographic community is very worried
about the security of the systems and the persons’ private life when the
quantum computer will be generalized, and the necessity to build robust
post-quantum cryptosystems able to resist eventual quantum attacks.

In this context, we contribute by improving the performance of NTRUen-
crypt which were candidates to the NIST standardization project. We create
a boosted release of NTRUencrypt post-quantum cryptosystem that uses
our “XKhawarism” algorithm combined with the Montgomery algorithm
rather than using NTT algorithm. The result obtained after executing both
implementations with the same parameters set proof that the performance of
our NTRUboost is greater than the original NTRUencrypt by a factor up to
×10 for the encryption and decryption functions.

We also improve the security performance by using the latest standard
of hash functions SHA-3, we reduce the rate of the decryption failure by
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using small modulus integer; we reduce the code size of the software, and
our implementation does not use the pre-computed data which reduce the
size of the implementation source code.

We not that we can use alternatively our implementation with the modulus
parameter q = 12289 or q = 1073750017 or other prime numbers, by just
modify this value in parameters file “param.h” of the software.

The limitation of our solution is that we can’t improve the key generation
function because the computation of the inverse of the private key (f ), which
uses the euclidean algorithm, is very expensive.

For our future works, we hope to improve our Xkhwarism polynomial
multiplication algorithm which operates in the ring Rq =Zq[X]/XN + 1),
for adapting it to parallel computation and fully exploiting the computing
power offered by modern processors, by inspiring from Chmielowiec.A work
[22].
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