An Efficient Solution to User
Authorization Query Problem
in RBAC Systems Using
Hierarchical Clustering

K. Rajesh Rao!, Aditya Kolpe!, Tribikram Pradhan'*
and Bruno Bogaz Zarpeldo?

L Department of Information and Communication Technology, Manipal Institute of
Technology, Manipal Academy of Higher Education, Manipal,

Karnataka, India

2Department of Computer Science, State University of Londrina,

Londrina-PR, Brazil

E-mail: tribikram.pradhan @ manipal.edu

*Corresponding Author

Received 23 April 2021; Accepted 26 December 2021;
Publication 07 November 2022

Abstract

Role Based Access Control (RBAC) systems face an essential issue related
to systematic handling of users’ access requests known as the User Authenti-
cation Query (UAQ) Problem. In this paper, we show that the UAQ problem
can be resolved using Unsupervised machine learning following the guaran-
teed access request and Dynamic Separation of Duty relations. The use of
Agglomerative Hierarchical Clustering not only improves efficiency but also
avoids disordered merging of existing roles to create new ones and steers
clear of duplication. With a time complexity of O(n?), the algorithm proves

Journal of Cyber Security and Mobility, Vol. 11_4, 531-548.
doi: 10.13052/jcsm2245-1439.1142
© 2022 River Publishers

532 K. R. Raoetal.

to be one of the fastest and promising models in state-of-the-art. The pro-
posed model has been compared with the existing models and experimentally
evaluated.

Keywords: Hierarchical agglomerative clustering, least privilege principle,
role based access control, separation of duties, user authorization query
problem.

1 Introduction

Role-based access control (RBAC) is an access control mechanism focused
on associating roles to the individual users, proposed by [1]. In 2000, a unified
model for RBAC by Ravi Sandhu et al. was published as a National Institute
of Standards and Technology (NIST) RBAC model and in 2004, the model
was adopted as an American National Standard for Information Technology
(ANSI). The RBAC reference model defines a set of essential RBAC elements
and the relation between them. The users, roles and permissions are the
essential RBAC elements. The set of sessions is also added to the above
elements, where each session is a mapping between an user and an activated
subset of roles that are assigned to the user [2]. Further, research is also
carried out by dynamically assigning the roles to user [3].

The User Authorization Query (UAQ) problem is described as ‘“deter-
mining the set of roles to be activated in a single session for a particular
set of permissions requested by the user” [4]. Further, the UAQ problem
is better resolved by assigning a lower bound or an upper bound to the
permissions being activated for a particular incoming request [5]. In [6, 7]
the optimization objective for extra permissions are considered but failed
to consider the missing permissions when they formulated UAQ as a joint
optimization objective. Hence, [8] came forward with an optimization objec-
tive where the UAQ problem was divided into two subcategories known as:
Core-UAQ problem and the constrained-UAQ problem. Core-UAQ intro-
duces irreducibility, permission-cardinality and role-cardinality constraints.
According to [8], a RBAC system optionally contains any Core-UAQ or
Constrained-UAQ. Research is also carried out to solve the UAQ problem
with constraints like dynamic mutually-exclusive roles (DMER), where users
should not be activated with more than certain number of roles at a time [9].
Rapid growth of research in this field can be observed. The UAQ problem is
now being considered as one of the prime issues regarding effective handling
of incoming users’ requests. We must ensure that our algorithm selects a set

An Efficient Solution to User Authorization Query Problem 533

of roles that covers the desired set of permissions requested by the user in
RBAC.

When determining which set of roles should be activated in a session, one
has to ensure that the desired permissions are covered by the roles and hence
are available to the session. A user may need a set of permissions which are
not included in a single role. In this case two or more roles need to be merged
or clubbed to satisfy the user’s request. However, such merging may not be
haphazard as the following three reasons are listed. Firstly, every company
or organization consists of lower level roles and higher level roles, where
lower level roles are often a subset of higher level roles. Merging haphazardly
may result in merging a lower level role with a high level role which equals
to the higher level role itself. Secondly, in organizations a single user may
have multiple roles and sessions. These roles might be divided based on the
sessions called Dynamic Separation of Duty relations aka DSD relations [10].
This means there is a restrict on the number of roles that can be activated
in a given user’s session. As an example, an employee can request for a
product and he can also approve the request. However, he should not be
able to validate his request. He may authorize others’ requests. Thirdly, while
merging we also need to take care that no two or more roles of different users
are combined because user may get unauthorized privileges which is against
the principle of RBAC mechanism. Hence, in this paper, we suggest merging
of roles of a single user which contain similar types of permissions in a given
session, store them and do the same for the remaining users.

We introduce an efficient model to compute a new set of roles in addition
to the existing sets of roles by merging the existing sets of roles. Here, the
DSD relations and principle of least privilege (the user must be able to
access only the roles that are necessary for its legitimate purpose) is also
taken care of. For this purpose, we use unsupervised machine learning tech-
nique known as Agglomerative Hierarchical Clustering, where the merging is
determined based on minimum Euclidean distance between the permissions
of those roles. This algorithm efficiently computes the difference between
the permissions and combines the roles with a minimum difference in their
permissions.

Our Contributions:

1. The proposed model is developed using Agglomerative Hierarchical
Clustering to solve the UAQ problem in RBAC systems.

2. The proposed model satisfies the constraints on dynamic separation of
duties in RBAC system by generating required roles and matching the

534 K. R. Rao et al.

incoming requests in cubic and linear time respectively, which is more
practical and efficient compared to the state-of-the-art.

The rest of the paper is organized as follows: Section 2 discuss the related
works. In Section 3, the proposed methodology is provided. In Section 4, the
experimental results are presented and finally, Section 5 concludes the paper.

2 Related Work

An user’s request consists of a set of permissions needed for their particular
session. A particular role or set of roles, which contain these permissions,
are chosen and assigned to this user. Various approaches have been utilized
to choose the minimal, maximal or exact set of roles to satisfy the request.
Some of them are discussed next. The first approach demonstrated to optimize
the solution for UAQ can be found using the greedy approach to search
for requested permissions from existing set of roles [4]. In [11], the UAQ
problem is considered as a multi-set of DNA strands, and hence implements
the DNA algorithm. Here the problem is divided into sub-cases like minimal
match, maximal match and exact match. In [5], two methods are suggested
to tackle the UAQ problem. First method uses a backtracking algorithm to
find the best match to any incoming request. This algorithm proves efficient
if the cost of the path to be traversed is more than the already traversed
path. However, in worst case this algorithm takes exponential time. Second
method reduces the UAQ problem into satisfiability problem (SAT) which
works better than backtracking for minimal match case and maximal match
case but not for exact match. In [12] the UAQ problem was transformed
into SAT and solved using sat4j java library. Furthermore, in [8], focus was
to decrease the number of permissions assigned to a user by implementing
a static pruning technique. It also employs a preprocessing technique to
minimize the amount of roles to be taken into consideration and uses depth-
first search based algorithm to solve the UAQ problem. A new and innovative
approach towards the UAQ problem is explained in [13] by assigning weights
to every permission based on its role. The UAQ problem is converted to a
corresponding chromosome and the binary evolution algorithm is used to
solve it. In Table 1, we provide a comparison of the proposed approach with
the existing algorithms.

All existing approaches given in the Table 1 depends on the number of
times the underlying algorithm is used. For example, the algorithm is trig-
gered every time for the acquisition of a permission set requested by the user

An Efficient Solution to User Authorization Query Problem 535

Table 1 Properties of different user authorization query algorithms

Role-Permission

Property UAQin RBAC DNA Reassignment Greedy Approach Proposed Approach
[5] [11] [8]
[12]
a Backtracking DNA-based Reduction to SAT; Pruning and Hierarchical Agglomerative
Algorithm b. Reduction to SAT; comj uli‘n using sat4j to s lvv DFS f; h Clust ign
solving SAT omputing sing satdj to solve searcl stering
a. Only when roles or users
Use of Every time a Every time a Every time a Every time a are modified/added/deleted
Algorithm request comes in request comes in request comes in request comes in b. Every time a
request comes in
Time 06" e oler ()
. o(2") o(2") o(2") b=breadth N U
Complexity for matching the
d=depth . .
incoming requests
Role mapping . Exucl, . Exact. Not Exact, .aafe Exact and
minimal and minimal and . and available L
sub-cases . . applicable minimal matches
maximal matches maximal matches matches

and to generate the required roles. If the algorithm is exponential and there
are multiple requests, then some request might have to wait to get executed.
This decreases the time efficiency of the model. Additionally, role mapping
sub-cases such as exact, minimal and maximal matches helps in providing
the required roles. Hence in Table 1, we have compared algorithm, time
complexity, use of algorithm and role mapping sub-cases with the existing
models. Unlike the existing models we do not need to run our algorithm every
time when a new request for acquisition of permissions comes in. Proposed
algorithm needs to be executed only when the administrator adds new roles
or users or modifies existing roles or DSD relations. To perform such oper-
ations, the proposed algorithm takes cubic time complexity of O(n3) and to
match the incoming request algorithm takes linear time complexity of O(n).
Further, only exact and minimal matches are considered for the requested
permissions because maximal match need not necessarily provide all the
requested permissions and carries a risk of additional permissions being
assigned to the user. The main objective of solving the UAQ problem for
RBAC is acquisition of a permission set requested by the user by generating
and assigning the necessary roles based on the session.

3 Methodology

In this section, we show the design and implementation of the proposed
model to optimize the solution for UAQ in RBAC systems.

Supervised learning algorithms need a labelled dataset which tells the
algorithm whether their predictions/answers are right or wrong. For imple-
menting such algorithms to solve UAQ we would need to supply massive

536 K.R. Raoetal

amounts of data with labels (such as user requests across different sessions
with the right set of roles as outputs) to train the algorithm. Unsupervised
learning, however, does not require a labelled dataset, which means it does
not need to go through the training phase. It can directly be tested. In short,
it saves our time and effort to generate massive labelled datasets. Reinforce-
ment learning is used in cases where datasets are not available. In UAQ, a
set of roles are predefined with certain constraints by the company. Thus,
unsupervised learning seems to be the best option for the UAQ problem in
RBAC systems.

3.1 Design Architecture

Here, the design architecture of the proposed model is presented in Figure 1.
The architecture depicts the control flow of the proposed model and the
detailed description of the activities are given below:

1. A binary dataset containing user-role and role-permission assignments
along with DSD relations are fed into the computational module. This is
done by an admin when roles or users are created or modified.

2. An unsupervised machine learning technique, agglomerative hierarchi-
cal clustering is used to form clusters of similar roles for each user. If
the number of users is n in the input, this algorithm runs n times.

System

User Session

A

I f resul
List of clubbed roles and
. respective permissions

4 A

User request for permissions

Visual Representation
Dendrogram Generation

3 'K

Clustering based on Dynamic
separation of duties

Admin A 2
Create or modify roles in 1 Agglomerative Hierarchical
RBAC Clustering Algorithm

Figure 1 Optimized solution for UAQ using agglomerative hierarchical clustering.

An Efficient Solution to User Authorization Query Problem 537

3. All the roles clustered by the algorithm according to the user following
DSD relations are stored in a data structure or can be directly written
to a file. Thus, these clusters (i.e., optimized set of roles) are stored
and the result file may be overwritten or updated with these clustered
roles. Additionally, respective dendrogram is drawn which accurately
represents the clusters for each user’s roles.

4. A user wanting to gain access to particular permissions requests the
system to obtain optimized set of roles. This request contains a list of
permissions.

5. This request is run through various permission set corresponding to the
clubbed roles of the particular user. The matching permission set is
chosen and its respective role(s) is/are assigned.

3.2 Implementation

3.2.1 Definitions
Here we shall see some definitions which are used throughout this paper.

1. Nodes[]: A list data type where every row of Nodes[] list contains the
resulting clusters formed by the Agglomerative hierarchical clustering.

. ROLES = {R;, Ry, ..., Ry}: Set of roles.

. PERMS ={ Py, P, ..., P,}: Set of permissions.

. Np,: Total number of roles of a particular user w.

. Dynamic separation of duty (DSD) C (2R9LFS x N) is collection of
pairs (rs,n) in DSD, where rs is a set of roles, n is a natural number
with maximum number of roles in rs, i.e., 1 <n < |rs| for rs C ROLES.
Here the DSD relation implies that no user is activated with n or more
roles from the role set s in each (rs,n) € DSD.

D W

3.2.2 Algorithms

Initially, the Algorithm 1 reads the dataset containing role assignments to
users and permissions, performs clustering, creates dendrogram and stores
the result. The generateDSD Relations generates the DSD relations by
taking care that no randomly generated role set has N or more than N
number of roles. The AgglomerativeClustering method returns a set of
mentioned numbered clusters. Euclidean affinity refers to how the distance
is calculated and applying ward’s method for linkage. Suppose there are
30 roles in the dataset for a single user, then setting ¢« = 30 will return 30
numbered points i.e., 30 roles. In the next iteration ¢ is decremented by one
so it returns 29 numbered clusters. Which means that 2 nearest roles have

538 K. R. Rao et al.

Algorithm 1: Agglomerative Hierarchical Clustering based solution for UAQ.

Require: Binary dataset
Ensure: Clustered role and permission set
read(dataset.csv)
Nodes[] < ¢
generateDSDRelations(Ng,, , N)
for : € [Ng,,1] do
//decrementing loop
Nodes[] + Nodes + AgglomerativeClustering(clusters = i,
af finity = euclidean, linkage = ward)
end for
ClubbedRolesList «— generateClubbedRolesList(N odes|])
generateDendrogram(ClubbedRolesList)
StorageOfResults < createFinal List(Clubbed RolesList)

Algorithm 2: Searching the roles for the incoming permissions.

Require: Permission set and StorageOfResults.

Ensure: Assignment of optimized set of roles to the user.
OptimizedRoles < linearSearch({ P, . . ., }, StorageO f Results)
Assign(OptimizedRoles)

been clubbed into a cluster, where nearest here means that these roles have
very similar permissions. Thus, this is how we get our set of clustered roles.
Specific libraries for this function are available in various languages. The
generateClubbed Roles List method analyses every row in the Nodes|] list.
Finds the optimized roles by merging into a cluster. If they belong to the
same DSD role set, it adds them to ClubbedRolesList. Else, it splits them
according to the DSD role sets and adds them to the Clubbed RolesList. The
generate Dendrogram method generates the pictorial representation of how
the hierarchical clustering of roles are supposed to be clubbed for each user.
The createF'inal List method creates merged permissions according to the
merged roles from AgglomerativeClustering and stores them according
to the user and duplication is also removed using this method. The time
complexity of hierarchical algorithm is O(c * n?), where n represents the
number of elements to be clustered and c represents the number of generated
clusters. In the proposed approach, since the value of c is equal to n, the
time complexity is O(n?). The Algorithm 2 takes a set of permissions as an
input from an user, searches for requested permissions from his results file
and assigns a set of optimized roles to the user based on the session.

An Efficient Solution to User Authorization Query Problem 539

4 Experimental Results

In this section, we show some experimental results obtained by applying the
proposed algorithm to real world datasets and compare its performance with
existing algorithms using the synthetic dataset. All the test cases have been
carried out on HP-Probook 440 g4 with Intel Core ¢5(7thGen) Processor and
4 GB RAM.

4.1 Real World Datasets

The proposed algorithm has been applied on real world datasets available
online at HP labs [14]. The number of optimized set of roles and its cor-
responding time taken for the nine real world datasets are summarized in
Table 2. The first column represents the name of the binary dataset, and
its corresponding characteristics are found in [15]. The second column rep-
resents the number of roles generated using simple role mining algorithm.
The third column represents the number of clusters or optimized set of roles
generated using the proposed model. Finally, the fourth column represents
the time taken to generate the optimized set of roles. But for simplicity and
understanding of the algorithm, here, we consider only one user assigned to
different combinations of 8 permissions through 16 roles as shown in Table 3.
Observing Table 3, we understand that roles Rg and R are most similar to
each other because they share many common permissions. Therefore before
Agglomerative Clustering, Nodes < [] and after Agglomerative Clustering
the nodes are given in Figure 2. The first row in the list signifies that there
are 16 clusters made from 16 roles. Next iteration of the for loop returns
15 roles where roles Ry and Rg have been clubbed as represented by '0’

Table 2 Summary of the results obtained using real world datasets

. Generated l'lc?les Usmg Number of Optimized | Time Taken
Dataset Simple Role Mining Algorithm
[15] Set of Roles (seconds)
am. large 430 429 102.6
am. small 225 224 58.4
apj 475 474 3.8
emea 34 33 4
healthcare 16 15 0.83
domino 20 19 0.41
customer 1154 1153 25.23
firewalll 71 70 17.75
firewall2 10 9 20.24

540 K. R. Rao et al.

Table 3 Role-Permission assignments for a user in RBAC

Roles Permissions
Py | Po | Ps | Py | Ps | Pg | Pr | Pg
Ro 1 1 1 1 0 0 0 0
R, 1 0 1 0 1 0 0 0
Ry 0 1 0 0 0 1 1 0
Rs 0 0 1 1 1 0 1 0
Ry 1 0 1 0 0 1 1 0
Rs 0 0 1 0 1 0 1 1
Rg 1 1 0 0 0 0 1 1
R~ 0 1 1 1 0 1 0 0
Rsg 1 0 1 1 1 0 0 0
Ry 0 0 0 1 1 1 0 0
Rio 0 1 0 1 1 1 0 0
Ri1 0 0 0 1 1 0 1 1
Ri2 1 1 0 0 0 1 0 1
Ris 0 1 1 0 1 1 0 0
R4 1 1 0 0 0 1 1 0
Ris 0 0 1 0 0 1 0 1
Nodes€— [[12151411 810 9 713 6 54 2 3 1 0]
[12 01411 810 97 013 54 6 3 1 2]
[1210 1181097 11354 6 3 0 2]
[1212 1181097 10 04 6 3 2 5]
[0 32 118109031 14 67 25]
[1 32 0 809134 41067 2 5]
[1 320 8091344067 25]
[1 36 2 82 0134 42 076 5]
[1 306 06 2134 46 270 5]
[4 316 16 243006 201 5]
[4 302 02043112010 5]
[0 312 121034 42 1410]
[0 312 12103002 1010]
[2 010 101202 20 121 2]
[OO1T 0 101000 00 1010]]

Figure 2 Resulting clusters formed by the agglomerative hierarchical clustering.

at Nodes[1][1] and Nodes[1][8]. Similarly, the next iteration shows that
roles Ry and Rj4 have been clubbed represented by ‘0’ at Nodes[2][2]
and Nodes[2][14] as well as and represented by ‘1’ at Nodes|[2][1] and
Nodes[2][8]. This means roles Ry and Rj4 are in one cluster represented
by ‘0’ and roles R; and Rg are in another cluster represented by ‘1’. A
diagram of a dendrogram makes it more clear and easy to understand the

An Efficient Solution to User Authorization Query Problem 541

3.5 -

30 -

25

2.0 - ‘

1.0 - - - !
05 |

.0

Euclidean distances

R, R: R, R Ru Ry R R R: R, R R, R Ry R Ry
Different types of roles

Figure 3 A Dendrogram shows the relationship between roles from Agglomerative hierar-
chical clustering in RBAC.

hierarchical relationship between roles as shown in Figure 3. The Figure 3
illustrates the arrangement of the clustering for roles based on the increasing
order of Euclidean distance.

Since the real dataset do not have DSD relations, we created it using
the generateDSDRelation function for the roles specified in Table 3 with
the value of N = 9. The generated role sets are rs; = {Ri, Rs, Ro,
Ry, R3, R4, R5, Re} and rsy = {Rio, Ry, Ri5, R13, R11, R4, Rg, Ri2}.
This means role sets 7s; and sy cannot be clubbed together or activated
simultaneously. In the dendrogram, i.e., in Figure 3, we observe that roles
Ry and R4 have been clubbed (this is done in iteration 3 as shown in
Figure 2 which is represented by ‘0’ in the nodes list at positions Nodes[2][2]
and Nodes[2][14]). But as we know, Ry and R4 belong to different DSD
role sets and are not supposed to be activated simultaneously. Thus, the
algorithm discard such merging of roles across different DSD role sets in
the generateClubbedRolesList and the corresponding dendrogram is shown
in the Figure 4. We also observe that roles Rg and R;g have been clubbed in
the second iteration of AgglomerativeClustering function, and also shown
in the Figure 4, but not included in the roles and permissions list below. The
reason for that is roles Ry and R;p when combined give us the same set of
permissions as individual role R, itself. Role R has already been added
to the list before clubbing roles (Ry, R1p). Hence, to remove duplication,
clubbed role (Rg, R1p) has not been added to the final list and such role
duplication has been taken in the create F'inal List function. The final lists of
clusters (i.e., optimized set of roles) and their permissions is given in Figure 4.

542 K. R. Rao et al.

Euclidean distances

R Ry Rz RoRy Ry Rg R Ry R Ro R Ry Re Ry R:
Differant types of DSD role sets

Figure 4 A dendrogram from agglomerative hierarchical clustering by enforcing dynamic
separation of duty in RBAC.

Table 4 The optimized set of roles without role duplication and its corresponding permis-
sions

Clusters Permissions
(Optimized Set of Roles) Pq Ps P3 Py Ps Psg P~ Ps
Rs, Rs 0 0 1 1 1 0 1 1
Ri2, R14 1 1 0 0 0 1 1 1
Rs, Ri1 1 0 1 1 1 0 1 1
Ris, Ris 0 1 1 0 1 1 0 1
R4, Rg 1 1 1 0 0 1 1 1
Ro, R~ 1 1 1 1 0 1 0 0
R2, R4, Re 1 1 1 0 0 1 1 1
Ro, R3, R5, R7 1 1 1 1 1 1 1 1
Rio, R12, R14 1 1 0 1 1 1 1 1
Ri,R3,R5 1 1 1 1 1 0 1 1
Rs, Ri11, Ri3 1 1 1 1 1 1 1 1

4.2 Synthetic Dataset

In this section, we will compare our model with the research work mentioned
in the comparison Table 1 using the synthetic dataset generated by the syn-
thetic data generator as suggested in [16]. Synthetic data generator takes as
input the number of users (#U), number of roles (#R), number of permissions
(#P), maximum number of roles assigned for a user and maximum number of
permissions for a role as shown in Figure 5. Further, as shown in Figure 5, the
synthetic dataset is generated on varying maximum number of roles assigned
for a user, while the other input parameters are constant. Since the synthetic
dataset is generated randomly, here we report the average results by running
the heuristics 5 times for each dataset.

An Efficient Solution to User Authorization Query Problem 543

Table S Users with a varying maximum number of assigned roles

#U 4R 4p #Maximum Roles | #Maximum Permissions
For a User For a User
5 2000 | 4000 500 5
5 2000 | 4000 1000 5
5 2000 | 4000 1500 5
5 2000 | 4000 1800 5

o

>
o

~
T

—©— UAQin RBAC [5]
—E—DNA[11]
Role-permission reassignment [12]

—¥— Proposed model

w
o

w
T

N
T

o
T

o
23

o

Average time taken for optimized role gernation (seconds)
N
2

7
500 1000 1500 1800
Number of roles

Figure 5 Comparison of the time taken by various UAQ algorithms for optimized role
generation.

Figure 5 presents a plot containing the average time taken for optimized
role generation on the y-axis against the varying number of roles used in
the algorithms on the x-axis. The average time taken by the proposed model
varies from 24 milli seconds to 1.1 seconds over number of roles varying
from 500 to 1800. Further, the average time taken by the proposed algorithm
performs effectively for large number of roles when compare to the existing
work for the same operation with exponential time.

In [12], the method for role generation is not included so we could not
compare our clustering algorithm with it. However, in [12], it uses greedy
approach to search and match for the incoming requests. Figure 6 presents a
graph containing the average time taken to search and match the requested
permissions on the y-axis against the varying number of roles used in the
algorithms on the x-axis. The average time taken by the proposed model
varies from 50 milli seconds to 180 milli seconds over number of roles
varying from 500 to 2000. Therefore the proposed model depicts linear
growth where as the greedy approach [12] depicts linearithmic growth. Thus,
the proposed model is most suitable for applications where large number of

544 K. R. Rao et al.

1000

800 [~
—E©— Greedy approach [8]
~3é— proposed model
600 [~

400 -
200
//4*
4
. .
500 1000 1500 2000
Number of roles

Average time taken for search and match roles (milli seconds)

Figure 6 Comparison of the time taken for search and match the incoming request.

roles are assigned for users. Additionally, in the proposed model the maximal
match (which do not provide the requested permissions) do not occur because
in hierarchical clustering the last generated cluster contain all the roles that
can be assigned to the user in a given session (refer Figures 3 and 4).

In [9], the authors consider parametric in some relevant dimensions of
UAQ problem such as number of roles, number of DMER constraints, number
of requested permissions and maximum number of roles that can be activated.
However, these dimensions of UAQ problem do not focus much on the
RBAC’s core principle of least privilege, unlike the proposed model. Further,
it is also observed in [4, 5, 9] that solving UAQ problem using search based
techniques take exponential time when compared to the proposed model with
cubic time.

5 Conclusion

This paper demonstrates that the user authorization query problem can
be efficiently solved using an unsupervised machine learning technique
i.e. Agglomerative Hierarchical Clustering with computational efficiency in
RBAC systems. The model described here computes clusters (i.e., optimized
set of roles) by combining existing roles of a user which are similar and avoids
the duplication in the roles. Based on the requested permissions by the user in
a given session, the algorithm finds the exact or minimal match in linear time.
Unlike the existing proposals the proposed approach generates clusters only if
there is change in the role assignments to users and permissions. Additionally,
it guarantees the requested permissions following dynamic separation of
duties in RBAC.

An Efficient Solution to User Authorization Query Problem 545

The experiment was conducted on real world datasets available on HP
labs. The analysis was performed by considering certain role-permission
assignments of a user and a diagram of dendrogram makes easy to visualize
the clustering of roles. The performance evaluation of the proposed algorithm
compared to the existing algorithms are done by generating synthetic dataset.
With a complexity of O(n?) this approach proves to be one of the fastest
and promising models in the state-of-the-art. The proposed model does not
consider weighted roles which is considered as our future work.

References

[1] F. David and K. Richard. Role-based access controls. In Proceedings of
15th NIST-NCSC National Computer Security Conference, volume 563.
Baltimore, Maryland: NIST-NCSC, 1992.

[2] R. Sandhu, D. Ferraiolo, and R. Kuhn. The nist model for role-based
access control: towards a unified standard. In ACM workshop on Role-
based access control, volume 10, 2000.

[3] K. Rajesh Rao, A. Nayak, I.G. Ray, Y. Rahulamathavan, and M. Rajara-
jan. Role recommender-rbac: Optimizing user-role assignments in rbac.
Computer Communications, 166:140-153, 2021.

[4] Y. Zhang and J.B.D. Joshi. Uaq: a framework for user authorization
query processing in rbac extended with hybrid hierarchy and constraints.
In Proceedings of the 13th ACM symposium on Access control models
and technologies, pages 83-92, 2008.

[5] G.T. Wickramaarachchi, W.H. Qardaji, and N. Li. An efficient frame-
work for user authorization queries in rbac systems. In Proceedings of
the 14th ACM symposium on Access control models and technologies,
pages 23-32, 2009.

[6] N. Mousavi and M.V. Tripunitara. Mitigating the intractability of the
user authorization query problem in role-based access control (rbac). In
International Conference on Network and System Security, pages 516—
529, 2012.

[7] N. Mousavi. Algorithmic Problems in Access Control. Ph.d. disserta-
tion, University of Waterloo, Canada, 2014.

[8] J. Lu, J.B.D. Joshi, L. Jin, and Y. Liu. Towards complexity analysis
of user authorization query problem in rbac. Computers & Security,
48:116-130, 2015.

546 K. R. Rao etal.

[9] A. Armando, G. Gazzarata, and F. Turkmen. Benchmarking uaq solvers.
In Proceedings of the 25th ACM Symposium on Access Control Models
and Technologies, pages 145-152, 2020.

[10] ANSI INCITS. Incits 359-2004, american national standard for infor-
mation technology, role based access control. American National
Standards Institute, 2004.

[11] Z. Tang, R. Guan, and K. Li. User authorization queries in rbac systems
based on dna computation. In 2010 IEEE Fifth International Conference
on Bio-Inspired Computing: Theories and Applications (BIC-TA), pages
174-179, 2010.

[12] J. Lu, Y. Xin, Z. Zhang, H. Peng, and J. Han. Supporting user authoriza-
tion queries in rbac systems by role—permission reassignment. Future
Generation Computer Systems, 88:707-717, 2018.

[13] J. Lu, Z. Wang, D.Xu, C. Tang, and J. Han. Towards an efficient approx-
imate solution for the weighted user authorization query problem.
IEICE TRANSACTIONS on Information and Systems, 100(8):1762—
1769, 2017.

[14] R Schreiber. Datasets used for role mining experiments.

[15] C. Blundo and S. Cimato. A simple role mining algorithm. In Pro-
ceedings of the 2010 ACM Symposium on Applied Computing, pages
1958-1962, 2010.

[16] J. Vaidya, V. Atluri, and J. Warner. Roleminer: mining roles using subset
enumeration. In Proceedings of the 13th ACM conference on Computer
and communications security, pages 144-153, 2006.

Biographies

K. Rajesh Rao received his B.E. degree in Computer Science and Engineer-
ing and an M.Tech. degree in Computer Science and Information Security.
His Ph.D. degree is in the area of Cloud Information Security from Manipal

An Efficient Solution to User Authorization Query Problem 547

Academy of Higher Education (MAHE), Manipal, India. Currently, he is an
Assistant Professor-Senior at Manipal Institute of Technology, MAHE, and is
also associated with City, University of London as a Researcher in the area of
cyber security. His research interests include, but are not limited to security
analytics, access control models, cloud security, internet of things, and soft
computing.

Aditya Kolpe received his BTech in Information Technology from Manipal
Institute of Technology, Manipal and currently working as Associate Soft-
ware Engineer at Oracle. His research interests include cyber security, data
science and machine learning.

Tribikram Pradhan received his Ph.D. from Indian Institute of Technology
(BHU), Varanasi in 2020, where he contributed to the development of a
Multi-objective academic recommender system to provide recommendations
for papers, citations, collaborators, reviewers, and academic venues. He also
proposed a model for automatic meta-review generation considering indi-
vidual reviews of a given research paper. Prior to joining IIT (BHU), he
also worked as an assistant professor in the Department of Information and

548 K. R. Rao et al.

Communication Technology, Manipal Institute of Technology, Manipal. His
research interests include information retrieval, recommender systems, text
mining, social network analysis and natural language processing.

Bruno Bogaz Zarpelao received his BSc degree in computer Science from
State University of Londrina, Brazil, and the PhD degree in Electrical Engi-
neering from University of Campinas, Brazil. He is currently an Assistant
Professor at the Computer Science Department of the State University of
Londrina (UEL), which he joined in 2012. From March 2018 to February
2019, he was a visiting postdoctoral researcher with City, University of
London. His research interests include security analytics, machine learning
applied to cyber security, and internet of things.

	Introduction
	Related Work
	Methodology
	Design Architecture
	Implementation
	Definitions
	Algorithms

	Experimental Results
	Real World Datasets
	Synthetic Dataset

	Conclusion

