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Abstract

Smart grid is a system in which it is possible to use voting-based techniques
to resist sabotage of several cyber-attacks. The adaptation of these techniques
can be difficult and useless in the case when the malicious resources (i.e.,
smart meters) of this system can return wrong data in same time; however,
the collusion problem is triggered. To detect and resolve the collusive issue,
spot-checking technique has been proposed by sending randomly certain
number of spotter queries to chosen resources with known correct data
in order to estimate resource credibility based on the returned data. This
work proposes an original method that resist against collusion attacks by
using probability to solving a new spot-checking optimization problem for
smart grid systems, with the objective to minimize probability of accepting
wrong data (PAWD) while respecting an expected overhead constraint. The
proposed solution contains an optimal combination of several parameters, the
number of spotter queries sent, the number of resources tested by each spotter
query, and the number of resources assigned to run the genuine query. The
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optimization procedure includes a new method for evaluating performance
metrics of PAWD and expected overhead in terms of the total number of
query assignments. To demonstrate the proposed optimization problem and
solution procedure, we have provided several illustrative examples.

Keywords: Smart grid, smart meters, cyber-security, vulnerability, data-
integrity, probability, optimization.

Abbreviations

SGN: smart grid
MSM: malicious smart meters
PAWD: probability of accepting wrong data

Nominations

Si: number of smart meters remained in the SGN list after running
i spotter queries

Mi: number of smart meters remained in the MSM list after running
i spotter queries

Q: number of spotter queries
T: number of smart meters tested in each spotter query
G: number of smart meters assigned to run genuine query
ESp: expected number of spotter query assignments during the sending

of spot-queries
EGu: expected number of genuine query assignments
E: total expected number of query assignments (E = ESp + EGu)
Em: maximum expected number of query assignments
SQn: probability that exactly n MSMs are detected during the

spot-query-sending process
C(G,m): conditional PAWD given that m MSMs are chosen for the

genuine query
Pi(n): probability that exactly n MSMs are detected after completion of

i spotter queries
De: detection error, probability that the smart meters will be not

detected after spotter queries.
W: PAWD
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1 Introduction

Smart grid (Figure 1) offers a platform to execute intensive tasks by different
shared resources, such as smart meters, in a distributed and parallel manner
that makes it vulnerable to sabotage attacks. However, these sabotage attacks
can be performed by data modification, data destruction and false data injec-
tion [1, 2]. The smart grid resources manipulation might be sabotaged by
injecting false data and by attempting to get favourable results by accessing
smart meters’ applications and by modifying the generated data. This may
have various effects such as changing the price of electricity consumed,
decreasing the amount of electricity consumed or even causing a blackout.
Thus, smart grid security requirements are really very high in spite of several
existing of security mechanisms to provide confidentiality, to secure commu-
nication between all smart grid resources, and to provide the integrity of the
data generated by smart meters.

Nowadays, several sabotage-tolerance techniques have been applied in
many grid platforms such as volunteer computing systems [3, 4], desktop
grids [5–7], and peer-to-peer grids [8–10], to deal with the verification of
the reliability of job results in various grid systems. Voting-based techniques
using spot-checking are the most applied ones to resist sabotage, assuring
or at least improving reliability of computations and returned data [3], such

Figure 1 Smart grid.
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as majority voting, m-first voting [11] and credibility-based voting [3] with
reputation system [12]. However, these techniques rely on the assumption that
the grid resources behave independently which is not valid where a number
of collusive resources (smart meters in our work) collectively return the same
wrong result (data in our work). Furthermore, sometimes the decision of
voting-based techniques may not be exact as cited in [13–16]. Therefore, one
group of smart meters in a smart grid might develop some form of collective
misbehaviour to sabotage the circulated data by returning a wrong data that is
considered the same wrong results in our work, failing the voting mechanism
[17–20]. In fact, in order to deal with this threat it is necessary to explore the
sabotage-tolerant techniques against collusive smart meters in a smart grid.
To deal with collusion attacks, various approaches have been proposed, for
example, there are approaches based on credibility [3, 9, 21], scheduling and
certification [14, 22], reputation systems [12, 13, 16], and graph clustering
[23]. To the best of our knowledge, no work has been realized by using
probability to optimize the spot-checking policy to test the integrity of the
data sent by smart meters, taking into account expected overhead for smart
grid systems under the collusion attacks.

This work precedes other work, an overview of smart grid cyber-security
[24]. Then it gives a new method by formulating and solving a new spot-
checking optimization problem in smart grid, which finds an optimal combi-
nation of query distribution parameters including the number of deployed
spotter queries, the number of smart meters tested by each spotter query,
and the number of smart meters assigned to perform the genuine query. The
objective of this optimization problem is to minimize probability of accepting
wrong data (PAWD) taking into account on expected overhead.

The rest of the paper is organized as follows. Section 2 presents the
system model and the problem to be addressed in this work. Section 3
describes the algorithm proposed for evaluating system performance metrics
of PAWD and expected overhead. Section 4 presents the formulation of the
considered optimization problems. Section 5 gives illustrative examples to
demonstrate the proposed optimization problems. Finally, section 6 presents
the conclusion of the work.

2 System Model and Problem Statement

In this section, we define our proposed system model, in which we describe
all their components. In other hand, we describe in details the statement
problem that to be dealt in this paper.
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2.1 System Model

The smart grid (Figure 1) is an emerging technology that is revolutioniz-
ing the conventional electric grid by providing new services based mainly
on Information and Communication Technologies (ICT) [14]. This is a
very complex network for energy generation, transmission, distribution and
consumption.

In Figure 2, we show the basic components of a smart grid system, which
consists of N Smart meters. Each Smart meter is connected to a several local
devices or appliances, which are able to communicate with other smart meters
via a home area network (HAN). These smart meters analyze and measure
data about energy usage, number of appliances, energy pricing, etc. and stores
all these data periodically. In addition, these stored data must be returned
to a Supervisory Control and Data Acquisition (SCADA) Center in order
to monitor and control these collected data in real-time, and provide high
security information communication between users and utilities.

The quantity of the energy consumed in a location is calculated by the
smart meter linked to this location, taking into account the price of the energy
on the market during the specific time of this consumption. In addition, the
HAN can supply and sell extra energy to the power grid in order to benefit
from high-energy prices in electricity markets that encourage competition
among power suppliers [24].

Figure 2 Basic components of a smart grid.
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2.2 Problem Statement

In smart grid, malicious attackers or users who can trigger security attacks
to its infrastructure, knowing that the attacker tries to corrupt as many smart
meters as possible, but its capability is limited. The new approach we propose,
has the objective to minimize probability of accepting wrong data (PAWD),
and is based on a spot-checking technique.

In our grid, we focus on smart meters attacks that compromise the
provided resources and services by exploiting some of their vulnerabilities.
In this attack model, we have an adversary, which can compromise the smart
meters, and instruct them to behave maliciously to tamper their data and to
return wrong data to the SACDA control center. We assume that all malicious
smart meters always collude with one another to return incorrect data, the
“honest” smart meters always produce the same correct data for the same
query at the same time t, and the SCADA control center sends randomly
queries to smart meters to return their data at a time t. The smart meter
memory stores both their data at random instances, and all data sent to the
SCADA control center.

At first, SCADA control center sends the query 0 to all smart meters of
SGN and stores the received data in order to initialize the data to be tested
in the next query. Then, when a smart meter receives one of these queries, it
executes respectively the following tasks:

• Step 1. It captures existing data at the same time t;
• Step 2. It returns this data captured at this time t and those stored at the

time t− 1 (stored in the memory of the smart meter);
• Step 3. It stores the data captured at this time t in its memory.

Then, the SCADA control center receives the data sent by the smart
meters, stores the data captured at time t, and checks whether the data
captured at instant t − 1 is identical to the data already stored. If the data
sent at time t and those sent at time t − 1 by the same SM and for the same
request are the same, SCADA considers them as correct data and it stores
them, otherwise, it considers them as wrong data and it refuses them. The new
method we propose, has the objective to minimize probability of accepting
wrong data (PAWD).

The smart grid consists of a static set of S0 smart meters, M0 of which
are malicious. The malicious smart meters collude in producing wrong data
to reduce the efficiency of the voting-based technique against sabotage.
To detect the colluding malicious smart meters (MSM), the SGN sends Q
spot-checking (spotter) queries with known output data to randomly chosen
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smart meters. In addition, the SGN cannot distinguish genuine and spotter
queries and, therefore, generate to any query identical wrong outputs data.

In our grid, each spotter query i is sent to T smart meters, where T is
a predetermined parameter. The smart meters for each spotter queries are
chosen independently. If several smart meters produce identical wrong output
data for the i-th spotter query, they are detected as MSMs and removed from
the list of smart meters. Thus, after the i-th spotter query the list contains
Si ≤ S0 smart meters, Mi ≤ M0 of which are MSMs. Then a new i + 1-th
spotter query is sent to T smart meters. Let G represent the number of smart
meters assigned to perform the genuine query. After completing Q spotter
queries, the genuine query is sent to G smart meters randomly chosen from
the list of SQ remaining smart meters. The data that gets the majority of
votes is accepted. If the wrong output data of the genuine query is accepted,
the genuine query fails.

The problem addressed in this work is to find the combination of queries
distribution policy parameters T, G and Q that minimizes the PAWD subject
to constrained expected overhead. The overhead is proportional to the total
number of queries assignments including the spotter query and the genuine
query assignments.

3 Algorithm for PAWD Evaluation

Before the assignment of the i-th spotter query, the list contains Si−1 smart
meters, Mi−1 of which are MSMs. The probability that m MSMs are among
Mi−1 smart meters randomly chosen for the i-th spotter query is:

SQ(Si−1,Mi−1, T,m), (1)

where

SQ(a, b, c, d) =
Cd
b .C

c−d
a−b

Cc
a

, if c ≥ d

SQ(a, b, c, d) = 0, if c < d

(2)

and m can vary from 0 to T.
Let Pi(m) represent the probability that exactly m MSMs are detected

after completion of i spotter queries. Initially there are S0 smart meters in the
list with M0 of them being MSMs.

Thus,
P1(m) = SQ(S0,M0, T,m) (3)
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Therefore, for 1 < i ≤ Q:

Pi(m) =
m∑
v=0

Pi−1(v) · SQ(S0 − v,M0 − v, T,m− v) (4)

Finally, PQ(m) for m = 0, . . . ,M0 gives the probability that m MSMs
are detected after the spot-checking procedure after Q queries.

On the other hand, the probability that the smart meters will not be
detected is defined as follow:

De = 1− PQ(m) (5)

In addition, the expected number of assignments during the Q spotter
queries executions is:

ESp(T,Q) = T +

Q∑
i=2

(
M∑

m=0

Pi−1(m) · T

)
(6)

And, the expected number of assignments during the Q spotter query
executions is:

EGu(G,T,Q) =
M∑

m=0

PQ(m) ·G (7)

According to the expressions above, the distribution of the number of
detected MSMs after the execution of Q spotter queries and the expected
number of assignments during the spot-checking can be obtained using the
following procedure (Algorithm 1).

If after the spot-checking procedure m MSMs are detected, the SGN sends
the genuine query to G out of S0–m remaining smart meters with M0–m of
them being MSMs. The probability that w out of G chosen smart meters are
MSMs is:

SQ(S0 −m,M0 −m,G,w), (8)

If w MSMs and G–w honest smart meters are chosen, the wrong output
data can be accepted if w > G − w. Thus, the conditional probability of
accepting wrong data (PAWD) given that w MSMs are chosen for the genuine
query is:

C(G,w) =

{
0, if w > G/2
1, if w ≤ G/2

(9)
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Algorithm 1: For detecting MSMs and the expected number of assignments

1: Begin
2: For m = 0 to M do
3: set P1(m) = SQ(S0,M0,T,m);
4: End For
5: ESp = T;
6: For j = 2 to Q do
7: For l = 0 toM0 do
8: set Pj(l) = 0;
9: End For

10: For i = 0 to M0 do
11: set ESp = ESp + Pj−1(i)·T;
12: For k = 0 to i do
13: set Pj(i) = Pj(i) + Pj−1(k) · SQ(S0 − k,M0 − k,T, i− k);
14: End For
15: End For
16: End For
17: End

The conditional PAWD given that m MSMs are detected is:

G∑
w=0

SQ(S0 −m,M0 −m,G,w) · C(G,w) (10)

Thus, the overall PAWD is:

W (T,G,Q) =

M0∑
m=0

(
PQ(m) ·

G∑
w=0

SQ(S0 −m,M0 −m,G,w) · C(G,w)

)
(11)

Notice that the algorithm above can be used to model a situation where
the MSMs cannot distinguish spotter and genuine queries.

4 Optimization Problem Formulation

Based on estimation of attack parameter M0, the SGN can solve the following
optimization problem: find T, G and Q that minimize W(G,T,K) s.t. overhead
constraint:

E(G,T,Q) = ESp(T,K) + EGu(G,T,Q) ≤ Eopt (12)
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Algorithm 2: For obtaining the SGN policy parameters: Gopt, Topt and Qopt

1: Begin
2: For k = 1 to M do
3: set Wmin(k) = 1;
4: End For
5: For g = 1 to S do
6: For t = 1 to S do
7: For q = 1 to Q do
8: For m = 1 to M do
9: EGu = 0;

10: For i = 0 to m do
11: EGu = EGu + Pq(i) ∗ g;
12: End For
13: E = EGu + ESp;
14: if W(t,g,q,m) < Wmin(k) and E(g,t,q) < Ef then
15: Gopt = g;
16: Topt = t;
17: Qopt = q;
18: Eopt = E(g, t, q);
19: Wmin(k) = W(t, g, q,m);
20: End if
21: End For
22: End For
23: End For
24: End For
25: End

Thus, the most conservative SGN policy for any M0 is to minimize:

Gopt, Topt, Qopt = arg min
G,T,Q

(β(T,G,Q,M0)) (13)

s.t.
E(G,T,Q,M0) ≤ Eopt (14)

Finally, the following procedure (cf. Algorithm 2) obtains the SGN policy
parameters: Gopt, Topt and Qopt:

5 Illustrative Examples

Figures 3 and 4 present De and ESp after achievement of spotter queries.
Figure 3 shows De as a function of the number of malicious smart meters
varied between 10 and 90 for N0 = 100, and different combinations of
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Figure 3 Detection error εs as a function of number of malicious smart meters for S0 = 100
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Figure 5 E as a function of number of malicious smart meters for S0 = 100 and different
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T and Q. To detect all MSM it is necessary to choose carefully the good
combination of T and Q, i.e. if we choose a small value of T, we must
increase the number of sent queries, and otherwise, the De detection error
will be remarkable. On the other hand, if we increase T, it will not exceed the
number of MSM remaining in the list, otherwise, the probability of detecting
all MSM tends to zero, i.e. De will be remarkable too, which explains the
great values of De for M = 90.

We notice that all values of MSM have a combination of T and Q, which
error detection value De tends to zero.

Figure 4 presents expected number of spotter query assignments as a
function of malicious smart meters M, Esp = T · Q always holds for the
considered T and Q from M = 10 to M = 80, because the list contains more
smart meters than those are used in any spotter queries. In the case M = 90,
the list of smart meters can contain fewer than T, which explains the decrease
of Esp.

Figures 5 and 6 present E and W after achievement of genuine query.
Figure 5 shows E as a function of the number of malicious smart meters
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Figure 6 W as a function of number of malicious smart meters for S0 = 100 and different
T, G and Q.

varied between 10 and 90 for N0 = 100, E = T ·Q+G always holds for the
considered T, G and Q from M = 10 to M = 80, because the list contains
more smart meters than those used. In the case M = 90, the list of smart
meters can contain fewer than T and Z, which explains the decrease of E.

Figure 6 shows W as a function of the number of malicious smart meters
varied between 10 and 90 for N0 = 100, all combinations have a value of W
thanks to the null value of De and to a good choice of G. So, if De decreases
and G increases then W decrease.

Finally, we deduce that in order to obtain a minimum value for all number
of malicious smart meters, we must choose carefully the good values of the
parameters T, G and Q.

6 Optimal Solutions for the Maximum Value Em

In this section we will present the optimization of the parameters T, G, Q,
E and W as a function of malicious smart meters M for six values of Em in
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three cases: S0 = 10, S0 = 20 and S0 = 50, with M0 = S0 − 2 in the three
cases.

For different Em the optimal solutions behave differently. When Em

is small, the SGN can afford an increase in the number of spotter queries
because T and G remain small. With an increase in S0, the MSM tries to
involve more smart meters into spot-checking, while the overhead constraint
limits the number of spotter queries. The complex interaction between all
MSM policy parameters makes intuitive choice of their optimal combination
impossible and very complex. Thus, the suggested method is necessary to
confront the collusive attacks in an efficient manner.

Figures 7–11 present respectively Topt, Gopt, Qopt, Eopt and W as
a function of malicious smart meters M for S0 = 10 with different
values of Em.

It can be seen that in five cases of Em, Topt decreases with the increase
of M, Qopt increases with the increase of M and Gopt remains always equal
to 1 and W remains always zero, and we notice that in most cases we can
reach a null W with an Eopt < Em. on the other hand, if Em is small, Em =
10, we have a disturbance in the results and the increase of the Gopt values
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Figure 7 Topt as a function of number of malicious smart meters for S0 = 10 and
different Em.
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between M = 4 and M = 8 generates an increase in the values of W which
reaches up to 0.218. However, the increase of the overhead can again lead to
a considerable reduction of W, and an analysis of Eopt curve allows making
the decision about the reasonable overhead level.

Figures 12–16 present respectively Topt, Gopt, Qopt, Eopt and W as
a function of malicious smart meters M for S0 = 20 with different
values of Em.

It can be seen that we can divide this case into two, case 1: W = 0 and
case 2: W > 0:

Case 1: This case is valid for the values Em = 25, Em = 30 and
Em = 35, and Topt decreases with the increase of M, Qopt increases with
the increase of M and Gopt is always equal to 1.

Case 2: This case is valid for the values Em = 10, Em = 15 and
Em = 20, Topt increases with the increase of M, and we notice a disruption
to the values of Gopt that generates an increase value of W which reaches
W = 0.7.
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Figure 12 Topt as a function of number of malicious smart meters for S0 = 20 and
different Em.



254 E. Y. Dari et al.

0

2

4

6

8

10

12

14

16

18

20

1 5 9 13 17

G
op

t

Number of malicious smart meters

Em=10 Em=15 Em=20
Em=25 Em=30 Em=35

Figure 13 Gopt as a function of number of malicious smart meters for S0 = 20 and
different Em.

0

2

4

6

8

10

12

1 5 9 13 17

Q
op

t

Number of malicious smart meter M

Em=10 Em=15
Em=20 Em=25
Em=30 Em=35

Figure 14 Qopt as a function of number of malicious smart meters for S0 = 20 and
different Em.



Optimal Method for Detecting Collusive Saboteur Smart Meters 255

0

5

10

15

20

25

30

35

40

1 5 9 13 17

E
o

pt

Number of malcious smart meters M

Em=10 Em=15 Em=20
Em=25 Em=30 Em=35

Figure 15 Eopt as a function of number of malicious smart meters for S0 = 20 and
different Em.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 5 9 13 17

W
m

in

Number of malicious smart meters M

Em=10 Em=15 Em=20

Em=25 Em=30 Em=35

Figure 16 Wmin as a function of number of malicious smart meters for S0 = 20 and
different Em.



256 E. Y. Dari et al.

We notice in most cases we can reach a null W with Eopt < Em, and the
PAWD W is always decreasing because the probability of detecting MSMs
by the spotter queries and removing MSMs from the list increases with E.
On the other hand, it’s clear that with an increase in the number of malicious
smart meters, the SGN tends to increase the number of smart meters used
for spotter queries and decrease the number of smart meters assigned to the
genuine query.

Figures 17–21 present respectively Topt, Gopt, Qopt, Eopt and W as
a function of malicious smart meters M for S0 = 50 with different
values of Em.

In this case, when S0 = 50, the number of MSMs can be very high.
We can divide it into two cases: case 1: 1 ≤M < 25 and 25 ≤M ≤ 48:

Case 1: 1 ≤M < 25: in this case, we have a perturbation in the values of
Topt andQopt,Gopt andEopt increases with the increase of M, but W remains
almost zero.
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Case 2: 25 ≤M ≤ 48: in this case, Qopt, Eopt and W increases with the
increase of M, Gopt decreases and is fixed in G = 2 with the increase of M,
and Qopt has varied values but with a low thickness.

The best strategy used by SGN is to try to detect all MSMs by sending
spotter queries to as many smart meters as possible, reducing the number
of smart meters allocated to the genuine query. However, the overhead E
increases with the increase of M, and the W decreases with the increase of
the overhead.

It’s clear that with a reduction in M0 the PAWD W decreases. Indeed,
certain knowledge of M0 allows SGN to choose optimal minimizing PAWD
for this parameter.

7 Conclusion

Collusion detection and tolerance deserve great research interest from the
various distributed computing systems such as smart grid. In this paper, we
formulate and solve the spot-checking optimization problem to the collusive
behaviour of the smart meters in smart grid.

A repetitive method is proposed, in this work, to measure and evaluate the
probability of accepting wrong data (PAWD) and the expected overhead in
terms of the total number of query assignments for our system. This method
resolves the spot-checking optimization problem by finding the optimal com-
bination of query send policy parameters (the number of deployed spotter
queries, the number of smart meters tested by each spotter query, and the
number of smart meters for performing the genuine query) minimizing the
PAWD while satisfying the expected overhead parameter.

Finally, the obtained results can contribute in optimal distribution and
assignment of all components of smart grid system for secure, reliable and
cost-aware operation of this system.
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