
Hybrid Approach for Automated Test
Data Generation

Gagan Kumar1,∗ and Vinay Chopra2

1Computer Science & Engineering I.K.G. P.T.U Jalandhar, Punjab-144603, India
2D.A.V. Institute of Engineering & Technology, Jalandhar,
Punjab-144008, India
E-mail: gagan.daviet@gmail.com
∗Corresponding Author

Received 14 December 2021; Accepted 23 September 2022;
Publication 02 December 2022

Abstract

Software testing has long been thought to be a good technique to improve
the software quality and reliability. Path testing is the most reliable software
testing technique and the key method for improving software quality among
all testing approaches. On the other hand, test data quality has a big impact
on the software testing activity’s ability to detect errors or defects. To solving
testing problem, one must locate the entire search space for the relevant input
data to encompass the different paths in the testable program. To satisfy
path coverage, it is vital test to look at the accumulated test data across
the thorough search area. A new approach based on ant colony optimization
and negative selection algorithm (HACO-NSA) is presented in this research
which overcome the flaws associated with search-based test data by gener-
ated automated test data. The optimum path testing objective is to generate
appropriate test data to maximise coverage and to enhance the test data’s
efficacy, as a result, the test data’s adequacy is validated using a path-based
fitness function. In the NSA generation stage, the suggested method alters

Journal of ICT Standardization, Vol. 10_4, 531–562.
doi: 10.13052/jicts2245-800X.1043
© 2022 River Publishers

532 G. Kumar and V. Chopra

the new detectors creation using ACO. The proposed approach is evaluated
for metrics such as average coverage, average generation, average time, and
success rate and comparison has been done with random testing, ant colony
optimization and negative selection algorithm Different benchmark programs
have been used for object-oriented system. The findings show that the hybrid
methodology escalates the coverage percentage and curtail test data size,
reduces the redundancy in data and enhances the efficiency. The proposed
approach is follows IEEE 829-2008 test documentation in entire testing
process.

Keywords: Test data generation, metaheuristic search, artificial immune
search, ant colony optimization, negative selection algorithm, path coverage.

1 Introduction

Software testing is a critical task in the software development life cycle. It is
an expensive and laborious activity that is often considered time-consuming
in any software development life cycle model [1, 2]. It is used to unfold the
software code’s bugs and errors [3]. Testing can be applied to the structural
and functional parts [4]. Both structural and functional aspects have their
own significance. Structural testing is considered the strongest among the
two main testing criteria [5]. Structured testing focuses on the program’s
internal structure based on the fitness criteria opted for testing. The program
structure can be evaluated using different means, such as statement coverage,
branch coverage, and path coverage, all are the coverage criteria instances [6].
The most crucial coverage criterion in structural testing is path coverage.
Sometimes it is also named basis path testing [6].

Test data generation is a central objective in software testing [7]. It is an
efficient and effective way to generate equitable test data. The non-linear test
data pattern makes it more complex to generate optimal test data. The test
data generation is tightly correlated with the problem severity. It increases
or decreases with the problem involvedness. Test data can be generated by
adopting either a manual or automated procedure. Manual test dat generation
requires more effort, in comparison to automatic data generation. Automatic
test case(data) generation is a critical task to find an adequate solution for
any problem size [8, 9]. Test data generation is classified as an undecidability
problem since it can be non-deterministic, making it an NP-hard problem.
The current result might not be feasible in the future [10] i.e., program’s
exceptionally nonlinear design makes it difficult for search algorithms to

Hybrid Approach for Automated Test Data Generation 533

generate efficient and optimal test data from a non-linear, complex, and
discontinuous input in the search space.

Path testing is a structural testing approach that ensures individual path
execution at least once. The main issue with path testing is how we produce
effective test records that cover the entire program structure in a limited
period [1]. As its not practicable to cover the entire program strcture, the
path testing method involves adopting subset paths and searching the test
data to unfold it. Many researchers have proposed distinguished automatic
test data generation approaches for path testing [11], such as random, sym-
bolic, dynamic, and search-based testing. All three approaches to test data
generation are inadequate to sustain enough appropriate test data. As a
result, search-based testing is the day’s trend for generating test data [12].
Many researchers has been working on search-based testing. Meta-heuristics
search-based algorithms are more robust in this field because due to their fault
revealing capability. Genetic algorithm(GA), ant colony optimization (ACO),
and simulated annealing (SA) are the popular meta-heuristic search-based
algorithm [13]. However,search-based algorithms still have some issues, such
as getting stuck in local optima, complete coverage, total generations and exe-
cution time. Despite search-based algorithms, artificial immune algorithms
are also used for data generations, which significantly improves search-
based algorithms [14, 15]. The negative Selection algorithm [16, 17] colonel
selection algorithm [18] is being also applied in test data generation. A hybrid
approach based on the artificial immune algorithm NSA and metaheuristic
algorithm PSO is also proposed for test data generation [19]. Most work in
data generation is proposed and implemented on modular/structural program-
ming, with only a few researchers’ work on object-oriented concepts. This
research proposed a new hybrid approach centred on ant colony optimization
and negative selection algorithm applications to automatically generate test
data on object-oriented systems that have not been applied earlier. The results
give valuable test data that could traverse all program paths timely compared
with the other techniques. The key aspects are summarised as follows:

• To obtain total path coverage for test data generation, the ant colony
optimization (ACO) algorithm has been integrated with negative selec-
tion algorithm (NSA) applications, such as (hamming distance). Path
coverage is calculated using a fitness function which considers the
reachability within program structure.

• To validate the effectiveness, some well-known programmes are used,
as well as a comparison with random testing, ant colony optimization,
and the negative selection technique.

534 G. Kumar and V. Chopra

• The entire process is organised as per IEEE 829-2008 test
documentation.

The paper is organised as follows: In the next section, we will briefly
describe test data generation process. At the same time, related work for
automated test data generation, the applications of metaheuristic and artifi-
ciacil immune algorithms are are surveyed in Section 3. In Section 4 Ant
Colony Optimization (ACO) and Negative Selection Algorithm (NSA) are
briefly discussed. In Section 5 problem formulation is discussed. In Section 6,
the overall framework of ACO-based test data generation is addressed. In
Section 7, hybrid algorithm for generating test data is presented. Then, the
experimental analysis is employed in Section 8. Besides the discussion of our
studied is also discussed in Section 9. Finally, the concluding remarks are
given in Section 10.

2 Test Data Generation

Test data generation is a complex problem when used as automated. In earlier
work, search-based test data were widely studied, and maximum study was
based on the procedure-oriented system in structural testing. Various methods
have been deployed in the literature to automatically generate test data to
enhance the coverage ratio and bring the data’s size down for different
coverage criteria [20]. The most adopted test data generation techniques in
which the researchers have a keen interest are random, symbolic, dynamic,
and search-based test data generation techniques [6]. In the random testing
procedure, the test information has been chosen self-assertively from a search
space, the data generated through the random technique shows a high redun-
dancy ratio, the symbolic technique generated test data in static form and
assigned static values to a variable instead the absolute values and Dynamic
techniques, necessitate the actual execution for a limited input area [6].
All above three-technique were not so competent. They primarily generate
the test data with high redundancy and data size constantly surges in this
technique for slightly complex data structures, and the input data size is also
inadequate. Search based test data generation is the most potent searching
technique to locate the test data in the search space [21, 22]. SBST techniques
using search-based optimization algorithms alongside fitness function gets
popularity in the research areas [23]. SBST is presented in Figure 1 as a
sequence diagram [24]. To use the metaheuristic approach to identify data in
the search space, we must first convert the source code into a control flow
graph (CFG), Figure 1 diagrammatically represent the source code [25].

Hybrid Approach for Automated Test Data Generation 535

Figure 1 Test data generation as a sequence diagram.

A control flow graph (CFG) is a directed graph with the following
definition:

F(G) – (N, E, s, e)
N – N is a set of nodes where each node corresponds to a statement.
E – E is a set of edges representing a control flow between nodes and is
labelled with a predicate.
S – Entry node
E – Exit node

The control flow graph is a reference for locating an input that directs
the software through various paths. CFG can be thought, as an optimization
problem to increase coverage criteria. The control flow graph for Minmax
Problem is presented in Figure 2.

3 Related Work on Test Data Generation

Some studies on metaheuristic algorithms like ACO, PSO, ABC, GA, FA,
and artificial immune algorithms such as NSA and clonal selection to develop
test data/cases have been published in recent years. X. Zhu [26] projected
a new approach base on PSO, in which the weight of inertia is modified
based on fitness value. It uses branch coverage as fitness criteria. Sanjay Sing-
hal [27] projected a hybrid approach by combining GA and PSO(GPSCA).
It uses data flow coverage by applying the dominance concept between two

536 G. Kumar and V. Chopra

Figure 2 Control flow graph for minmax.

nodes and multiobjective coverage criteria. J. Wang et al. [28] projected an
approach IGA based on a Genetic Algorithm (GA) for automatic test case
generation. They have compared IGA with traditional GA for triangle classifi-
cation problems using branch fitness criteria. Ahemed and Hermadi [29] pro-
jected a GA based test data generator using multipath fitness. The approach
can synthesize multiple test data to cover multiple target paths. Soma [30]
projected an approach by combining the functionalities of scouts, employed
and onlooker bees in the ABC algorithm. S. Dahiya et al. [31] proposed
a static based symbolic execution approach using the ABC algorithm with
branch distance as the objective function. B. Suri et al. [32] proposed a
regression augmentation testing approach based on the ABC algorithm with
branch distance as the objective function. S. Yang et al. [33] proposed an
approach based on ant colony optimization in which they have improved
local pheromone strategy, pheromone volatilization coefficient and global
path pheromone with statement coverage, branch coverage and condition
coverage as fitness values. J. Chen et al. [34] proposed an approach in which
they reformed ACO into a discrete version by redefining the local transfer,
global transfer, and pheromone update rules with a customised branch fitness
function. P. Sharma [35] has proposed an approach for automated software
testing using a meta-heuristic technique based on an improved ant algorithm
in which she used statement branches and modified decision/coverage as an
objective function. P.R. Srivatsava [36] proposed a meta-heuristic technique
based on ACO for state transition testing. F. Sayyari and S. Emadi [37] has

Hybrid Approach for Automated Test Data Generation 537

proposed an ACO and model-based testing approach. They have used the
Markov model for ant colony reformation. S. M. Mohi-Aldeen [38] have
proposed a new approach based on the artificial immune system in which they
have to use the application of a negative selection algorithm. R. Mohhammad
et al. [19] projected a new approach based on NSA and GA for automated test
data generation, the experimentation of the projected approach has been done
on 11 real world programs, the projected approach is also compared with
random testing approach and negative selection algorithm. A. Pachauri has
projected a test data generation approach based on clonal selection algorithm.
They have used AI and NBD Approximation levels with normalized branch
distance as the objective function to validate the test data. P. Saini et al. [39]
has also projected an approach based on Clonal Selection algorithm. They
have used Korel Distance function for the branch predicate as the objective
function to validate the test data. The central objective of the above sited
research is to explore metaheuristic search capabilities for procedures such as
ACO, PSO, ABC, and GA and Artificial Immune algorithm NSA and Clonal
selection algorithm on benchmark problems in software data creation, which
comprising as triangle classification, prime number generation, quadratic
equation, largest number, telephone system, maxmin etc. Meta-heuristic
methods such as ACO, PSO, ABC and GA have excellent search capabilities,
but all these algorithms have somehow lagged incomplete coverage and are
somehow stuck in local optima [40]. The Artificial Immune algorithm, NSA,
and clonal selection are a new approaches in test data generation. An immune
algorithm has a significant impact on data generation quality and coverage
capabilities, it overcomes issues related with local optima [41].

4 Ant Colony Optimization and Negative Selection
Algorithm

4.1 Ant Colony Optimization

Marco Dorigo introduces the ACO algorithm by studying the foraging
behaviour of the ant colony [10, 42–44]. Ant secretes a pheromone to share
information with other ants during the foraging period. As every ant can
perceive the pheromone trail, the forward direction can be regulated accord-
ing to the pheromone’s intensity on the route. Eventually, it can approach
the food destination rapidly and a positive feedback process through many
revisions. ACO algorithm can identify the optimal solution. ACO has already
been applied to solve the complex optimisation problems in different areas.

538 G. Kumar and V. Chopra

However, ACO-based software testing has not been thoroughly investigated
and remains challenging [10, 45].

In an ant colony system (ACS), searching for an optimal path generates
solutions referred to as a path on the construction graph G = (V, E). The solu-
tion sets can be linked to either the graph G node set V or the graph G edge
set E [10]. The pheromone trail quantity associated with an edge (i,j) indicates
the learnt desirability of selecting node j when the ant is on node I and m ants
are utilised to build a tour in the network given a graph with n nodes. If the
kth ant is still on node I, the current position (i.e., the node I neighbourhood
nodes set for such an ant) can be written as Nk(i) · Nk(i). This contains the
nodes that ant i may visit in the next phase. In general, the selection of a node
from Nk(i) is done probabilistically at each step.

pk(i, j) =
τ(i, j) · [η(i, j)]β∑

u∈Nk(i)
τ(i, u) · [η(i, u)]β

(1)

Once all ants have finished their tour, the pheromone on all edges
is updated using the equation below. Pheromone updating aims to raise
pheromone values associated with good or promising solutions while low-
ering those associated with negative ones.

τ(i, j)← (1− α) · τ(i, j) + ∆τ(i, j) (2)

The pheromone decay parameter α ∈ (0, 1) is used in Equation (2)

∆τ(i, j) =
m∑
k=1

∆τk(i, j) and ∆τk(i, j) (3)

Ant k has deposited pheromone on edge (i,j) [34]. It’s commonly
defined as

∆τk(i, j) =

{
1/Lk if (i, j) ∈ Tk
0 otherwise

Tk denotes the route taken by ant k, while Lk denotes the tour duration.
It is clear from the definition that ∆τk(i, j), is greatly dependent on how well
the ant has performed; the shorter the tour, the more pheromone is deposited.

∆τ(i, j) =

{
1/Lgb if (i, j) ∈ global − best − tour

0 otherwise
(4)

In Dorigo’s modified ant colony system (ACS), [46], ∆τ(i, j) is based
on only the best ant in the tour, where Lgb is the best tour length from the
begining of trial [34].

Hybrid Approach for Automated Test Data Generation 539

4.2 Negative Selection Algorithm (NSA)

In an Artificial Immune System, the Negative Selection Algorithm (NSA)
is possibly the most critical strategy (AIS) [47]. The NSA is a self/non-
self-discrimination computational model first devised as a change detection
tool. It is the initial AIS algorithms, and it has been employed in differ-
ent real-world applications [48]. Artificial immune system is triggered by
the organic behaviour of the Natural Immune System (NIS), a compound
organic organisation that uses rapid and dynamic methods to protect the
body against predefined unfamiliar bodies called antigens. AISs are a few
algorithms inspired by biological systems, such as evolutionary algorithms,
swarm intelligence, and neural networks, that have sparked the researchers
interest [49]. It aims to design immune-based algorithms for solving complex
computations. The immune system’s job is to recognise and classify all cells
in the body as self or non-self. Adverse selection is used to ensure that
self-cells are accepted [50]. The NSA’s primary idea is to create as many
detectors as possible in the search area and then utilise these detectors to
determine whether the new data is self or non-self [51]. The NSA is divided
into two stages: generation (also known as training) and detection (also called
testing stage). In the generation stage, a random method is utilised to generate
the detectors and monitor the process. After the matched candidates are
rejected, the leftovers are kept as detectors [17, 38]. The generation stage
is accomplished when enough detectors (detector sets) are formed. In the
detection stage, the detector sets generated in the previous stage are utilised
to identify whether the input samples are self-or non-self-samples [52, 53].
Figure 3 describes the negative selection algorithm workflow.

Figure 3 Negative selection algorithm.

540 G. Kumar and V. Chopra

5 Problem Formulation

Testing is the pivotal activity in software development, it is also the central
objective. Software testing process must be aligned with the international
testing standards. Generating relevance test data is the decisive task, because
all the testing processes rely on the test data, which further leads to test
case designing. The major work in test data generation domain is done with
search-based approaches and artificial immune algorithms. These approches
some how are not able to fully locate the search space, which reduce the
efficacy and efficiency. In this paper we propse a hybrid approach based
on ant colony optimization (ACO) and negative selective algorithm (NSA)
which is more competent than other approaches in same discipline and are
fully practised to locate the search space, which guides to complete path
coverage with higher efficacy rate. The proposed approach is designed by
adpting the international testing standards documentation such as IEEE 1008
and IEEE 829.

6 Proposed Methodology Framework

In the proposed methodology, the test procedures and both techniques must
work in an aligned manner to produce an optimal outcome. Figure 4 shows

Figure 4 Test data generation framework.

Hybrid Approach for Automated Test Data Generation 541

the test data generation process. The following steps are required to generate
the test data.

1. Convert Program under test to control flow graph (CFG)
2. Apply ACO to CFG for tracing the optimal path
3. Local search is performed to update the pheromone trial alongside the

global best solution, i.e., global search (if required)
4. The negative selection is applied to reduce the redundancy and minimize

the data size.
5. Path-based fitness is computed to find the best solution.
6. The fitness function’s value can guide the technique in the next iteration.
7. Identify traces and use them to count the coverage information.

7 Proposed Methodology

The ACO and NSA algorithms’ primary goal is to solve computational prob-
lems. We propose a hybrid strategy based on Ant Colony Optimization (ACO)
and apply the Negative Selection Algorithm (NSA). Therfore that it can
produce a high-coverage test data set with significant efficacy. The following
is a formal definition of the data creation problem by combining ACO and
NSA applications. Let a program under test P have a test data set as input,
i.e., X = (x1, x2, . . . xn), In the suggested approach, this can be treated
like an ant’s position vector. Assume that each input variable xi, takes its
values in the search space ∈ Di (1 ≤ i ≤ n). As a result, the entire program’s
corresponding input domain can be represented as D = D1 × D2. . . Dn.
It should create a test data set that traverses all elements in connection to a
defined coverage criterion C. We use path coverage as a coverage criterion in
our work. As a result, the objective of test data generation is to prepare a test
input set TIS = {X} that meets the highest possible path coverage criterion.

The search domain in the approach is a topology structure graph. An ant’s
neighbour region is a set of nodes adjacent to its current location in a graph.
Each ant’s position can be considered a test case in the test data generation
process, and it’s usually represented as a vector in the input domain. In this
case, the domain is a continuous Euclidean space. Initially, m ants are placed
randomly over the search domain. For every ant k(1 ≤ k ≤ m). Its position
can be stated as Xk = (xk1, xk2, . . . xkn). The neighbour area can then be
defined as a continuous region in which the distance between any point and
ant k is less than or equal to a given constant r. Where Y = (y1, y2, . . . yn).
In our algorithm, we use the Triangle classifier example to represent the

542 G. Kumar and V. Chopra

ant’s structure and its neighbour. The Triangle Type program has three input
variables, If each input has a range from 0 to 9, the associated test case
might be like: (1,1,1) that is the equilateral triangle and test suite may be TS
= {{2,3,4,“Scalene triangle”}, {4,4,3,“Isosceles triangle”}, {3,3,3,“Equilat-
eral triangle”}, {1,2,3,“It is not a triangle”}, {2,1,0,“It is not a triangle”},
{1,2,0,“It is not a triangle”}, {5,3,5,“Isosceles triangle”}, {4,6,6,“Isosceles
triangle”}}. The proposed hybrid approach modified the pheromone update
rule for test data generation. There is no specified linkage between the
adjacent ants is described in the search space, for the same pheromone,
an individual ant is specified as k(1 ≤ k ≤ m). Its pheromone can be
represented as τ(k), Meanwhile, we’ve set 1 as a default value for (τ0).

7.1 Local Search and Global Search

Each ant seeks a better solution in its immediate area during the scan.
The local search allows the ants to swap positions. Its purpose is for each
ant to randomly travel the solution in the proximity of the maximum radius
rmax. Generally, we set the initial value of the parameter rmax to a constant
based on the characteristics of the problem. However, as the iteration times in
searching increases, it will eventually decrease the value of rmax. ant’s local
shifting can be well defined when ant k walks to a new neighbour position Xk,
and if Xk>f(Xk), then the ant can be transferred to a new position. Otherwise,
it will have to remain in its existing place. Here f(Xk) is the fitness value of
the solution Xk. Global search is applied when the fitness of any node has
a higher value than the average fitness. i.e. f(Xk)> favg(Xk). In that case,
Hamming distance is computed among the nodes to attain the global best
solution.

7.2 Hamming Distance

The Negative Selection Algorithm applications are applied in the next step
in proposed strategy. After finding the new test data sets through Ant Colony
Optimization, NSA is applied to those data sets. In addition to detecting test
data replication occur through ACO, NSA also offers full path coverage and
reduces test suite size to elevate algorithm performance and speed. Let us
consider the test data Td. If it already exists in the newly generated test data
set, discard it from Td. Otherwise, the Hamming distance between the new
detector Td1 from the est data set Td and all detectors Tdi in the set and the
smallest distance obtained will be compared with a threshold value. If the

Hybrid Approach for Automated Test Data Generation 543

distance is lesser than the threshold value, then the test data will be removed
from the test data set Td, or else it is included in the refined data set. This
approach aids in search area coverage as far as possible. It could cover more
paths with a smaller data for the program under test. Subsequently, go for
the nearest test data from the set, i.e., Td2 and calculate t new detector Td1

and Td2. If the fitness value Td1 is greater than Td2, interchange the test data
Td2 with the test data Td1. The following method is used to find the distance
between test data.

1. Generate a new test data x, where x ∈ S;
2. Calculate the similarity of x with every test data di in D∀di ∈ D, which

represents the hamming distance and could be calculating

faff (di, x) =
n∑
i=0

(di
⊕

x)

7.3 Fitness Function

The fitness function has a significant impact on test data validity. The fitness
function preferably applies for the test case refinement. In this study, we have
used a path-based coverage criterion to validate the code’s fitness. Path-based
fitness can be calculated as:

PBFittness = 1− |α ∧ β|
|α ∪ β|

where α and β are the set of nodes in the targeted and executed paths,
respectively |α∧β| presents the total paired nodes in an appropriate sequence
between α and β. The path-based fitness for Minmax CFG for Figure 2 is
1 − 3/6 = 0.5 because the nodes in the target path set (α) contain nodes
{1,2,3,4,5,6,7} and the executed path set (β) contain nodes {1,2,3,5,6,7}, the
fitness value is the ration between matched nodes in the correct order {1,2,3}
and the total nodes in the targeted path {1,2,3,5,6,7}. Figure 5 depicts the
projected approach’s flow chart, with TDGAN as the algorithm.

Algorithm: TDGAN

Input:

1. Source Code of Program Under test P, and its input varibale list
X = (x1, x2, . . . , xn) where ∀x ∈ S;

2. Path Testing Coverage Criterion C;
3. The control flow graph CFG of Program P;

544 G. Kumar and V. Chopra

Figure 5 Flow chart of hybrid approach.

Hybrid Approach for Automated Test Data Generation 545

4. Algorithm parameters α,ϕ, ρ0, q0,T,m and rmax

5. The maximum evolution generation maxGen

Output:

1. Set of test data D = (d1, d2, . . . dn) this met the path coverage
requirement.

2. The set of paths that have been generated, i.e. U = (u1, u2 . . . , un);

Stage 1. Initialization

1. ifx∃S
2. goto initilization;
3. else
4. x@ in search space;
5. end if
6. Call Procedure Fitness
7. get the best one(gbest)from ant’s fitness;
8. while gen<maxGen or TS does not reach full coverage of criterion C do;
9. Call Procedure local Search

10. Generate initial test data set randomly(candidate population);
11. Test if the initial population reach to full coverage of path U goto end
12. Call Procedure Global Search
13. repeat steps until detector number>

max or D reach to full coverage of paths U;
14. End
15. Call Procedure update pheromone
16. for i→ 1:m do
17. decode position ant[i].x[1. . . n]into a test case tci ∈ TS;
18. collect coverage information by executing program with tci
19. End For
20. End while
21. return TS

Subroutine 1: Local Search()

1. repeat for i→ 1:m do
2. apply local search method to ant i, and re-calculate it fittness: goto step 6;
3. end for
4. return

Subroutine 2: Hamming function()

1. Generate a new test data x, where x ∈ S;

546 G. Kumar and V. Chopra

2. Calculate the similarity of x with every test data dj in D∀dj ∈ D by
hamming distance and could be calculating

3. faff (dj , x) =
∑n

j=0 (dj
⊕
x)

4. check the distance faff (dj , x);
5. iffaff (dj , x) < τ then remove the new data set x;
6. else add x to D;
7. end if
8. Return

Subroutine 3: Update Pheromone()

1. for i→ 1:m do
2. Update pheromone
3. foru→ 1 :ant[i].countd
4. ant[k].record[u] = 0;
5. end for
6. ant[i].count = 0;
7. end for
8. Return

Subroutine 4: fitness()

1. fori→ 1 : mdo
2. forj → 1 : ndo
3. Initialize the j-th dimesnsion (ant[i].x[j] of position vector of ant i);
4. End For
5. Calculate the fitness ant[i].fitness of ant i;
6. ant[i].τ0 = 1, ant[i]. count = 0;
7. foru→ 1 : mdo
8. ant[i].record[u] = 0;
9. End For

10. End For
11. return

8 Experimental Evaluation

Real-world benchmark programs are compared from the literature, to deter-
mine the performance. These benchmark programs have been extensively
applied in search-based testing by researchers. The program codes are being
written in object-oriented programming languages such as Java. All these
programs are designed using complex programming structure syntax such as

Hybrid Approach for Automated Test Data Generation 547

Table 1 Benchmark programs
Program Arguments Instructions Branches Lines Complexity Source
Triangle Type 3 50 16 13 9 [54]
DayFinder 3 168 24 24 16 [34]
MinMax 1: N 83 6 12 4 [55]
Isprime 1 34 6 11 4 [56]
BubbleSort 1: N 81 8 15 5 [57]
MidValues 3 37 16 9 9 [58]
LinearSearch 1: N 48 4 10 3 [55]
BinarySearch 1: N 69 6 14 4 [57]
SqRoot 1 27 6 8 4 [59]
Student Grades 1 53 18 19 10 [59]
Greater 3 25 6 12 4 [59]

relational operators, logical operator’s conditional statement, control state-
ments, modularity etc. This made these programs suitable for analysing
various test data generation techniques. These programs often provide a
complex data structure with various types, such as integers, floats, characters,
and strings. Table 1 represents program summary with a different arguments,
such as variables in each program, total instructions, total branches, lines in
the code and the source code’s complexity.

Table 1 presents the different metrics used for program evaluation and
their source

To prove whether the ACO-NSA based test data generation approach is
practical or not, the following test metrics are considered while evaluating the
code such as:

1. Average Coverage (AC), i.e., the average input path coverage throughout
multiple runs.

2. Average Generation (AG), i.e., the average evolutionary generation in
which all paths are covered.

3. Average Time (AT), i.e., the average execution time for all paths in
seconds.

4. Success Rate (SR), i.e., the probability of all paths coverage.

Different tests have been done for the above metrics, such as for AC,
AG, and AT, total test have been set to 1000, and for SR, it was set to 200
to achieve full source program path coverage. The experimental findings of
four algorithms are presented in response to eleven programmes in Tables 3,
4, 5 and 6. The findings show that the ACO-NSA Hybrid approach is better

548 G. Kumar and V. Chopra

Figure 6 Control flow graph of triangle type.

than random testing, ACO and NSA for the maximum number of programs
and comparable to NSA with for metric AG for a few programs. The Hybrid
ACO-NSA approach shows full coverage in the maximum experiments done.
The experimental setup for program triangle type is presented in Table 2. The
Control Flow Graph for program triangle type is presented in Figure 6, and
the data in Table 2 represent the traced paths, complexity, input, and output.

The following table presents the input data flow through different paths
in the triangle program

Table 2 Path Covers by different inputs for triangle type program
S. No Paths Complexity Input Output
1 1→2→3→4→5→12→14→15 9 2,3,4 Scalene
2 1→2→3→4→5→6→8→11→-14→15 9 4,4,3 Isosceles
3 1→2→3→4→5→6→7→14→15 9 3,3,3 Equilateral
4 1→2→13→14→15 9 1,2,3 Not a triangle
5 1→2→3→13→14→15 9 2,1,0 Not a triangle
6 1→2→3→4→13→14→15 9 1,2,0 Not a triangle
7 1→2→3→4→5→6→8→9→11→14→15 9 5,3,5 Isosceles
8 1→2→3→4→5→8→9→10→11→14→15 9 4,6,6 Isosceles
9 1→2→3→4→5→8→11→14→15 9 8,8,7 Isosceles

Hybrid Approach for Automated Test Data Generation 549

Figure 7 shows the output of the triangle type program for 1000 runs:

Not a Triangle Equilateral Isosceles Scalene
Random 139 236 440 185

ACO 126 254 456 164

NSA 117 237 453 193
Hybrid ACO-NSA 83 187 507 223

0
100
200
300
400
500
600

Da
ta

Triangle Classiffier

Random ACO NSA Hybrid ACO-NSA

Figure 7 Test data coverage for triangle type.

The following table shows the comparison of average metric cover-
age:

Table 3 Comparison analysis of average metric coverage (AC)
Average Coverage

Program Random Testing ACO NSA Hybrid ACO-NSA
TriangleType 65.16 72.4 78.23 100
DayFinder 74.83 77.38 90.23 95.55
MinMax 63.7 70.1 71.6 100
Isprime 67.1 78.7 80.78 100
BubbleSort 69.2 75.6 77.9 100
MidValues 54.31 61.81 100 100
LinearSearch 83 89 91.66 100
BinarySearch 70.2 80.4 85.63 100
SqRoot 58.4 64.08 74.4 100
StudentGades 65.23 80.3 94.85 99.2
Greater 69.2 74.11 91.16 100

550 G. Kumar and V. Chopra

The following table shows the comparison of average metric genera-
tion:

Table 4 Comparison analysis of metric average generation (AG)
Average Generations

Program Random Testing ACO NSA Hybrid ACO-NSA
TriangleType 14 9 5 3
DayFinder 24 18 16 8
MinMax 12 8 2 1
Isprime 15 12 7 2
BubbleSort 14 10 3 2
MidValues 11 8 1 3
LinearSearch 15 12 5 2
BinarySearch 15 12 5 1
SqRoot 17 14 7 2
StudentGades 16 13 6 3
Greater 18 14 6 3

The following table shows the comparison of metric average time:

Table 5 Comparison analysis of metric average time (AT)
Average Time (Seconds)

Program Random Testing ACO NSA Hybrid ACO-NSA
TriangleType 0.097 0.086 0.074 0.047
DayFinder 0.172 0.131 0.110 0.095
MinMax 0.108 0.069 0.046 0.025
Isprime 0.116 0.089 0.062 0.031
BubbleSort 0.231 0.213 0.196 0.183
MidValues 0.098 0.088 0.070 0.059
LinearSearch 0.083 0.059 0.041 0.028
BinarySearch 0.078 0.054 0.037 0.026
SqRoot 0.071 0.049 0.041 0.032
StudentGades 0.196 0.169 0.164 0.157
Greater 0.114 0.103 0.097 0.091

Hybrid Approach for Automated Test Data Generation 551

The following table shows the comparison of metric success rates:

Table 6 Comparison analysis of metric success rate (SR)
Success Rate

Program Random Testing ACO NSA Hybrid ACO-NSA
TriangleType 94 99.6 100 100
DayFinder 86 97.8 98.2 99.4
MinMax 92 98.2 100 100
Isprime 92 98.1 98.7 100
BubbleSort 94 99 99.1 100
MidValues 94 99 99.1 100
LinearSearch 90 98.1 99.2 99.6
BinarySearch 92 99 99.1 99.7
SqRoot 91 98 98.8 100
StudentGades 88 98.5 99 99.6
Greater 89 98.2 99.1 100

Graphical representation of the metrics average coverage, average gen-
eration, average time, and success rate is presented in Figures 8 for the
above-cited tables.

0
20
40
60
80

100
120

Co
ve

ra
ge

 P
er

ce
nt

ag
e

Program Name

Average Coverage

Random testing ACO NSA Hybrid ACO-NSA

Figure 8 Comparative analysis of four algorithm for 11 benchmark programs for metric
average coverage (ACG).

552 G. Kumar and V. Chopra

0

5

10

15

20

25

30

No
. o

f G
en

er
at

io
ns

Program Name

Average Generations

Random testing ACO NSA Hybrid ACO-NSA

Figure 9 Comparative analysis of four algorithms for 11 benchmark programs for metric
average generation (AG).

0

0.05

0.1

0.15

0.2

0.25

Ti
m

e
in

 S
ec

on
ds

Program Names

Average Time

Random testing ACO NSA Hybrid ACO-NSA

Figure 10 Comparative analysis of four algorithms for 11 benchmark programs for metric
average Time (AT).

Hybrid Approach for Automated Test Data Generation 553

75

80

85

90

95

100

105

Su
ce

ss
 P

er
ce

nt
ag

e

Program NAMES

Sucess Rate

Random testing ACO NSA Hybrid ACO-NSA

Figure 11 Comparative analysis of four algorithms for 11 benchmark programs for metric
Success Rate (SR).

Comparison of proposed approach with IEEE Std 829-2008

Table 7 Comparison of proposed approach with IEEE Std 829-2008

Program/Metric

System
Identifi-
cation

Overview
of Test
Results
includ-

ing

Overall
Assess-
ment of

the
Soft-
ware
tested

Impact
of test
Envi-

ronment

Detailed
test

results
includ-

ing

Test
Identi-

fier

Test
Sum-
mary

Problem
Encoun-

tered

Deviation
from
Test-
cases

Triangle Type Yes Yes Yes No Yes Yes Yes Nil No

DayFinder Yes Yes Yes No Yes Yes Yes Nil No

MinMax Yes Yes Yes No Yes Yes Yes Nil No

Isprime Yes Yes Yes No Yes Yes Yes Nil No

BubbleSort Yes Yes Yes No Yes Yes Yes Nil No

MidValues Yes Yes Yes No Yes Yes Yes Nil No

Linear Search Yes Yes Yes No Yes Yes Yes Nil No

Binary Search Yes Yes Yes No Yes Yes Yes Nil No

SqRoot Yes Yes Yes No Yes Yes Yes Nil No

Student Grades Yes Yes Yes No Yes Yes Yes Nil No

554 G. Kumar and V. Chopra

9 Discussion

The experimental findings carried out to evaluate the effectiveness of the
proposed methodology are presented in this section, i.e., ACO-NSA test
data generation for path coverage. At the start, the Program’s source code
is converted into a control flow graph, and then ACO-NSA is applied to gen-
erate automated test data. The finding represents that the proposed approach
generates lesser test data in limited generations and has a high coverage ratio.
The results are compared with random testing, ant colony optimization, and
a negative selection algorithm to evaluate the performance of the projected
approach. The performance is measured as Average Coverage (AC), average
generation (AG), success rate (SR), and average time (AT). This section
presents the performance of the proposed approach for different benchmark
programs, which have been the pivot point for researchers in search-based
data generation and immune algorithms.

The researchers widely apply all benchmark programs for test data gen-
eration. These benchmark programs’ design flow structure suited them for
testing various test data generation techniques. All such programs have differ-
ent data structures, codes (LOC), arithmetic, relational and logical operators,
loops and nested loops, conditional statements, arrays, functions and classes
and complexity levels. Table 1 gives a brief description for such programs.

The studies were carried out in a Microsoft Windows 10 environment with
an Intel Core TM i7 2.10 GHz 64-bit processor and 8 GB RAM. The Eclipse
20-3 Java platform is used to code the Program, the MATLAB platform is
used to code the method’s implementation, the generated test data is verified
using the testing tool TestNG, and coverage is recorded through the tool ECL
Emma.

The results from each program are illustrated in this section. The “triangle
type classifier (Tritype)” is a highly recognized programming application for
testing. It seems to be a simple application for the testing process, but it has
all requirements suitable for testing, such as data structures, conditional and
logical operators, conditional and logical statements, functions, and arrays.
It uses three input variables to decide the triangle type (scalene, isosceles,
equilateral, and not a triangle). The search space size is proportional to the
data type. If it is assumed to be an integer type, it may consume two bytes
memory for an individual variable declared. It is challenging to design test
cases corresponding to such an extensive data range from the appropriate
domain corresponding to the variable’s data type. The proposed approach

Hybrid Approach for Automated Test Data Generation 555

guides the method to generate appropriate test data from the domain to
achieve the full path coverage.

Path fitness is applied along with the proposed method to achieve quality
data. The probability of finding the accurate value for all three variables that
execute the critical path, such as the isosceles triangle, depends upon the
three variables, i.e., having any triangle type, it will be 1/3rd. The analysis
reveals that the ACO-NSA is more efficient than random testing, ACO and
NSA using the triangle type classifier program for test data generation.
ACO-NSA requires fewer generations overall than random testing, in com-
parison to ACO, NSA, and hybrid NSA-GA. Its concluded from the results
(Figures 8–11) that the proposed hybrid ACO-NSA approach is suitable for
use in programs that have a complex path with loops and nested selection
because it can accomplish comprehensive path coverage. All the process
has been carried by following IEEE 829-2008 test documentation which is
represented in Table 7.

10 Conclusion

This paper suggested ACO-NSA, a hybrid approach that incorporates ACO
and NSA to create automated software test data by adapting IEEE 829-2008
test documentation standards. This technique applies path-based fitness func-
tions to modify random detector generation, to produce the optimized and
minimal quantity detectors (test data set), and guide the search to paths with
limited likelihood for execution. The proposed approach increases the path
percentage coverage while avoiding redundant data and enhances the relia-
bility and effectiveness. The newly generated results significantly improve
the path coverage, including in complex paths. The average coverage (AG)
also improved significantly in the ACO-NSA approach. The approach also
has a high success rate (SR) with low execution time (ET) and gets fewer
generations to execute the source code. The proposed approach yields better
results by reducing the total generation in test data.

References

[1] S. C. Ntafos, “A Comparison of Some Structural Testing Strategies,”
IEEE Trans. Softw. Eng., vol. 14, no. 6, pp. 868–874, 1988, doi:
10.1109/32.6165.

556 G. Kumar and V. Chopra

[2] G. D. Everett and R. McLeod, Software Testing: Testing Across the
Entire Software Development Life Cycle. 2006.

[3] K. Sneha and G. M. Malle, “Assistant Professor in Computer Sci-
ence Department,” 2017 Int. Conf. Energy, Commun. Data Anal. Soft
Comput., pp. 77–81, 2017.

[4] M. A. Jamil, M. Arif, N. Sham, A. Abubakar, and A. Ahmad, “Software
Testing Techniques: A Literature Review,” 2016, doi: 10.1109/ICT4M.
2016.40.

[5] N. Anwar and S. Kar, “Review Paper on Various Software Testing
Techniques & Strategies,” vol. 19, no. 2, 2019.

[6] O. Sahin and B. Akay, “Comparisons of metaheuristic algorithms and
fitness functions on software test data generation,” Appl. Soft Comput.,
vol. 49, pp. 1202–1214, 2016, doi: 10.1016/j.asoc.2016.09.045.

[7] V. Garousi and M. V. Mäntylä, “A systematic literature review of
literature reviews in software testing,” Inf. Softw. Technol., vol. 80,
pp. 1339–1351, 2016, doi: 10.1016/j.infsof.2016.09.002.

[8] S. Parnami, “Testing Target Path by Automatic Generation of,” vol. 3,
no. 8, pp. 825–832, 2013.

[9] K. Lakhotia and P. Mcminn, “Automated Test Data Generation for
Coverage: Haven’t We Solved This Problem Yet?”

[10] M. Dorigo, M. Birattari, and T. Stützle, “Ant colony optimization arti-
ficial ants as a computational intelligence technique,” IEEE Comput.
Intell. Mag., vol. 1, no. 4, pp. 28–39, 2006, doi: 10.1109/CI-M.200
6.248054.

[11] S. Anand et al., “The Journal of Systems and Software An orchestrated
survey of methodologies for automated software test case generation
Orchestrators and Editors,” vol. 86, no. 2013, pp. 1978–2001, 2015, doi:
10.1016/j.jss.2013.02.061.

[12] M. Harman, S. A. Mansouri, and Y. Zhang, “Search Based Soft-
ware Engineering: A Comprehensive Analysis and Review of Trends
Techniques and Applications,” pp. 1–78, 2009.

[13] M. Harman and P. Mcminn, “A Multi-Objective Approach To Search-
Based Test Data Generation.”

[14] W. Rhmann, “Dynamic Test Data Generation using Negative Selec-
tion Algorithm and Equivalence Class Partitioning,” vol. 8, no. 3,
pp. 189–192, 2017.

[15] J. Al-Enezi, M. Abbod, and S. Alsharhan, “Artificial Immune Systems-
models, algorithms and applications,” Int. J. Res. Rev. Appl. Sci., vol. 3,

10.1109/ICT4M.2016.40
10.1109/ICT4M.2016.40
10.1016/j.asoc.2016.09.045
10.1016/j.infsof.2016.09.002
10.1109/CI-M.2006.248054
10.1109/CI-M.2006.248054
10.1016/j.jss.2013.02.061

Hybrid Approach for Automated Test Data Generation 557

no. May, pp. 118–131, 2010, [Online]. Available: http://bura.brunel.ac
.uk/handle/2438/4643.

[16] R. Rahnamoun, “Distributed Black-Box Software Testing Using Nega-
tive Selection,” vol. 2, no. 3, pp. 151–157, 2013.

[17] S. Mustafa, U. Teknologi, R. Mohamad, and U. Teknologi, “Automated
path testing using the negative selection algorithm,” no. April, 2017, doi:
10.1504/IJCVR.2017.10001815.

[18] A. Pachauri, “Use of Clonal Selection Algorithm as Software Test Data
Generation Technique,” vol. 2, no. 2, pp. 1–5, 2012.

[19] S. M. M. Id, R. Mohamad, and S. Deris, “Optimal path test data
generation based on hybrid negative selection algorithm and genetic
algorithm,” pp. 1–21, 2020, doi: 10.1371/journal.pone.0242812.

[20] S. M. Mohi-Aldeen, S. Deris, and R. Mohamad, “Systematic mapping
study in automatic test case generation,” Front. Artif. Intell. Appl.,
vol. 265, pp. 703–720, 2014, doi: 10.3233/978-1-61499-434-3-703.

[21] M. Harman and B. F. Jones, “Search-based software engineering,”
vol. 43, pp. 833–839, 2001.

[22] G. I. Latiu, O. A. Cret, and L. Vacariu, “Automatic Test Data Generation
for Software Path Testing Using Evolutionary Algorithms,” 2012 Third
Int. Conf. Emerg. Intell. Data Web Technol., pp. 1–8, 2012, doi: 10.110
9/EIDWT.2012.25.

[23] M. Harman, P. Mcminn, and R. Court, “A Theoretical & Empirical
Analysis of Evolutionary Testing and Hill Climbing for Structural Test
Data Generation,” 2007.

[24] Y. Chen, Y. Zhong, T. Shi, and J. Liu, “Comparison of Two Fitness
Functions for GA-based Path-Oriented Test Data Generation,” 2009,
doi: 10.1109/ICNC.2009.235.

[25] H. Tahbildar and B. Kalita, “Automated Software Test Data Generation:
Direction of Research,” vol. 2, no. 1, 2011.

[26] X. Zhu, “Software Test Data Generation Automatically Based on
Improved Adaptive Particle Swarm Optimizer,” pp. 1300–1303, 2010,
doi: 10.1109/ICCIS.2010.321.

[27] S. Singla, D. Kumar, H. M. Rai, and P. Singla, “A Hybrid PSO
Approach to Automate Test Data Generation for Data Flow Coverage
with Dominance Concepts,” vol. 37, pp. 15–26, 2011.

[28] D. A. N. Liu, X. Wang, and J. Wang, “AUTOMATIC TEST CASE
GENERATION BASED ON GENETIC ALGORITHM,” vol. 48, no. 1,
pp. 411–416, 2013.

http://bura.brunel.ac.uk/handle/2438/4643
http://bura.brunel.ac.uk/handle/2438/4643
10.1504/IJCVR.2017.10001815
10.1371/journal.pone.0242812
10.3233/978-1-61499-434-3-703
10.1109/EIDWT.2012.25
10.1109/EIDWT.2012.25
10.1109/ICNC.2009.235
10.1109/ICCIS.2010.321

558 G. Kumar and V. Chopra

[29] M. A. Ahmed and I. Hermadi, “GA-based multiple paths test data
generator,” vol. 35, pp. 3107–3124, 2008, doi: 10.1016/j.cor.2007.0
1.012.

[30] S. Sekhara, B. Lam, M. L. H. Prasad, U. K. M, and S. Ch, “Procedia
Engineering Automated Generation of Independent Paths and Test Suite
Optimization Using Artificial Bee Colony,” vol. 00, no. 2011, 2012, doi:
10.1016/j.proeng.2012.01.851.

[31] S. S. Dahiya, J. K. Chhabra, and S. Kumar, “Application of Artificial Bee
Colony Algorithm to Software Testing,” Softw. Eng. Conf. (ASWEC),
2010 21st Aust., pp. 149–154, 2010, doi: 10.1109/ASWEC.2010.30.

[32] B. Suri, P. Kaur, D. B. Suri, and P. Kaur, “Path Based Test Suite
Augmentation using Artificial Bee Colony Algorithm,” Int. J. Res. Appl.
Sci. Eng. Technol., vol. 2, no. Ix, pp. 156–164, 2014.

[33] S. Yang, T. Man, and J. Xu, “Improved ant algorithms for software
testing cases generation,” Sci. World J., vol. 2014, 2014, doi: 10.115
5/2014/392309.

[34] C. Mao, L. Xiao, X. Yu, and J. Chen, “Adapting ant colony optimiza-
tion to generate test data for software structural testing,” Swarm Evol.
Comput., vol. 20, pp. 23–36, 2015, doi: 10.1016/j.swevo.2014.10.003.

[35] P. Sharma, “Automated Software Testing Using Metahurestic Tech-
nique Based on Improved Ant Algorithms for Software Testing,”
pp. 3505–3510.

[36] P. R. Srivastava, “Automated Software Testing Using Metahurestic
Technique Based on An Ant Colony Optimization,” 2010.

[37] F. Sayyari and S. Emadi, “Automated generation of software testing
path based on ant colony,” 2015 International Congress on Technology,
Communication and Knowledge (ICTCK), 2015, pp. 435–440, doi:
10.1109/ICTCK.2015.7582709.

[38] S. M. Mohi-Aldeen, R. Mohamad, and S. Deris, “Application of Nega-
tive Selection Algorithm (NSA) for test data generation of path testing,”
Appl. Soft Comput. J., vol. 49, pp. 1118–1128, 2016, doi: 10.1016/j.as
oc.2016.09.044.

[39] P. Saini and S. Tyagi, “Test Data Generation for Basis Path Testing
Using Genetic Algorithm and Clonal Selection Algorithm,” vol. 3, no. 6,
pp. 2012–2015, 2014.

[40] C. Mao, X. Yu, J. Chen, and J. Chen, “Generating Test Data for Struc-
tural Testing Based on Ant Colony Optimization,” 2012 12th Int. Conf.
Qual. Softw., no. May, pp. 98–101, 2012, doi: 10.1109/QSIC.2012.12.

10.1016/j.cor.2007.01.012
10.1016/j.cor.2007.01.012
10.1016/j.proeng.2012.01.851
10.1109/ASWEC.2010.30
10.1155/2014/392309
10.1155/2014/392309
10.1016/j.swevo.2014.10.003
10.1109/ICTCK.2015.7582709
10.1016/j.asoc.2016.09.044
10.1016/j.asoc.2016.09.044
10.1109/QSIC.2012.12

Hybrid Approach for Automated Test Data Generation 559

[41] S. M. Mohi-aldeen, R. Mohamad, and S. Deris, “Automatic Test Case
Generation for Structural Testing Using Negative Selection Algorithm.”

[42] a. E. Rizzoli, “Ant colony optimization for real-world vehicle routing
problems,” Swarm Intell., vol. 133, no. 1, pp. 87–151, 2007, doi: 10.100
7/s11721-007-0005-x.

[43] M. Dorigo, V. Maniezzo, and A. Colorni, “Dorigo-Maniezzo-Colomi_
the-Ant-System-Optimization-By-a-Colony-of-Cooperating-Agents,”
vol. 26, no. 1, pp. 1–26, 1999, [Online]. Available: papers: //82ac23f7-
2eaf-4339-a5e1-4600c19d7f01/Paper/p2331.

[44] K. Socha and M. Dorigo, “Ant colony optimization for continuous
domains,” Eur. J. Oper. Res., vol. 185, no. 3, pp. 1155–1173, 2008, doi:
10.1016/j.ejor.2006.06.046.

[45] S. Nallaperuma, M. Wagner, and F. Neumann, “Ant Colony Optimisa-
tion and the Traveling Salesperson Problem – Hardness, Features and
Parameter Settings Categories and Subject Descriptors,” no. I, 2013.

[46] M. Dorigo and T. Stützle, Optimization.
[47] J. Timmis, A. Hone, T. Stibor, and E. Clark, “Theoretical advances

in artificial immune systems,” Theor. Comput. Sci., vol. 403, no. 1,
pp. 11–32, 2008, doi: 10.1016/j.tcs.2008.02.011.

[48] Neal, Mark, Stepney, Susan, Smith, Robert, Timmis, Jon. (2005). Con-
ceptual frameworks for artificial immune systems. International Journal
of Unconventional Computing, pp. 315–338, 2005.

[49] D. Dasgupta, “Advances in artificial immune systems,” IEEE Comput.
Intell. Mag., vol. 1, no. 4, pp. 40–43, 2006, doi: 10.1109/CI-M.2006.24
8056.

[50] E. Bendiab, E. Bendiab, and M. K. Kholladi, “unsupervised classifica-
tion based algorithm,” no. May 2017, 2012.

[51] Z. Liu, T. A. O. Li, J. I. N. Yang, and T. A. O. Yang, “An Improved
Negative Selection Algorithm Based on Subspace Density Seeking,”
IEEE Access, vol. 5, pp. 12189–12198, 2017, doi: 10.1109/ACCESS
.2017.2723621.

[52] H. Hou and G. Dozier, “an evaluation of negative selection algorithm
with constraint-based detectors,” 2006.

[53] P. Agarwal, “Nature-Inspired Algorithms: State-of-Art, Problems and
Prospects,” vol. 100, no. 14, pp. 14–21, 2014.

[54] E. Alba and J. F. Chicano, “Software testing with evolutionary strate-
gies,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif.
Intell. Lect. Notes Bioinformatics), vol. 3943 LNCS, pp. 50–65, 2006,
doi: 10.1007/11751113_5.

10.1007/s11721-007-0005-x
10.1007/s11721-007-0005-x
10.1016/j.ejor.2006.06.046
10.1016/j.tcs.2008.02.011
10.1109/CI-M.2006.248056
10.1109/CI-M.2006.248056
10.1109/ACCESS.2017.2723621
10.1109/ACCESS.2017.2723621
10.1007/11751113_5

560 G. Kumar and V. Chopra

[55] I. Hermadi, C. Lokan, and R. Sarker, “Dynamic stopping criteria for
search-based test data generation for path testing,” Inf. Softw. Technol.,
vol. 56, no. 4, pp. 395–407, 2014, doi: 10.1016/j.infsof.2014.01.001.

[56] S. Kumar, D. K. Yadav, and D. A. Khan, “Artificial Bee Colony based
Test Data Generation for Data-Flow Testing,” Indian J. Sci. Technol.,
vol. 9, no. 39, 2016, doi: 10.17485/ijst/2016/v9i39/100733.

[57] C. C. Michael, G. McGraw, and M. A. Schatz, “Generating software
test data by evolution,” IEEE Trans. Softw. Eng., vol. 27, no. 12,
pp. 1085–1110, 2001, doi: 10.1109/32.988709.

[58] A. S. Ghiduk, “Automatic generation of basis test paths using vari-
able length genetic algorithm,” Inf. Process. Lett., vol. 114, no. 6,
pp. 304–316, 2014, doi: 10.1016/j.ipl.2014.01.009.

[59] R. Malhotra, “Comparison of Search based Techniques for Automated
Test Data Generation,” vol. 95, no. 23, pp. 4–8, 2014.

Biographies

Gagan Kumar, is a research scholar in the department of Computer Science
& Engineering, IKGPTU, Jalandhar, Punjab (India). He is also working
as a faculty member in department of information technology, DAVIET,
Jalandhar, Punjab (India). He obtained post graduate degree in information
technology from Guru Nanak Dev, University Amritsar, Punjab (India) in
2009. His research interest includes soft computing, software engineering &
machine learning.

10.1016/j.infsof.2014.01.001
10.17485/ijst/2016/v9i39/100733
10.1109/32.988709
10.1016/j.ipl.2014.01.009

Hybrid Approach for Automated Test Data Generation 561

Vinay Chopra is presently working as an Assistant Professor in the Depart-
ment of Computer Science & Engineering, DAVIET, Jalandhar, Punjab
(India). He obtained post graduate degree from Thapar University, Patiala,
Punjab, (India) in 2004. He received his Doctorate Degree from Punjabi Uni-
versity, Patiala, Punjab, (India) in 2014. He is holding 16 years of expertise in
his research domain in DAV Institute of Engineering and Technology, Jaland-
har, Punjab, India. His research interest includes soft computing, software
engineering, automata & data sciences.

	Introduction
	Test Data Generation
	Related Work on Test Data Generation
	Ant Colony Optimization and Negative Selection Algorithm
	Ant Colony Optimization
	Negative Selection Algorithm (NSA)

	Problem Formulation
	Proposed Methodology Framework
	Proposed Methodology
	Local Search and Global Search
	Hamming Distance
	Fitness Function

	Experimental Evaluation
	Discussion
	Conclusion

