
Implementation of Elliptic Curve
Cryptosystem with Bitcoin Curves on

SECP256k1, NIST256p, NIST521p, and LLL

Mohammed Mujeer Ulla1,∗, Preethi2, Md. Sameeruddin Khan1

and Deepak S. Sakkari3

1School of Computer Science and Engineering, Presidency University, Bangalore,
Karnataka, India
2Department of Information Technology, Manipal Institute of Technology,
Bengaluru, Manipal Academy of Higher Education, Manipal, India
3Department of Computer Science and Engineering, Sri Krishna Institute of
Technology, Bangalore
E-mail: mohammedmujeerulla@presidencyuniversity.in;
preethi.srivathsa@manipal.edu; sameerirfan70@gmail.com;
deepakssakkari@presidencyuniversity.in
∗Corresponding Author

Received 23 April 2023; Accepted 27 August 2023;
Publication 18 November 2023

Abstract

Very recent attacks like ladder leaks demonstrated the feasibility of recover-
ing private keys with side-channel attacks using just one bit of secret nonce.
ECDSA nonce bias can be exploited in many ways. Some attacks on ECDSA
involve complicated Fourier analysis and lattice mathematics. This paper
will enable cryptographers to identify efficient ways in which ECDSA can
be cracked on curves NIST256p, SECP256k1, NIST521p, and weak nonce,
kind of attacks that can crack ECDSA and how to protect yourself. Initially,
we begin with an ECDSA signature to sign a message using the private
key and validate the generated signature using the shared public key. Then
we use a nonce or a random value to randomize the generated signature.
Every time we sign, a new verifiable random nonce value is created, and a

Journal of ICT Standardization, Vol. 11_4, 329–354.
doi: 10.13052/jicts2245-800X.1141
© 2023 River Publishers

330 M. M. Ulla et al.

way in which the intruder can discover the private key if the signer leaks
any one of the nonce values. Then we use Lenstra–Lenstra–Lovasz (LLL)
method as a black box, we will try to attack signatures generated from bad
nonce or bad random number generator (RAG) on NIST256p, SECP256k1
curves. The combination of nonce generation, post-message signing, and val-
idation in ECDSA helps achieve Uniqueness, Authentication, Integrity, and
Non-Repudiation. The analysis is performed by considering all three curves
for the implementation of the Elliptic Curve Digital Signature Algorithm
(ECDSA). The comparative analysis for each of the selected curves in terms
of computational time is done with the leak of nonce and with the Lenstra–
Lenstra–Lovasz method to crack ECDSA. The average computational costs
to break ECDSA with curves NIST256p, NIST521p, and SECP256k1 are
0.016, 0.34,0.46 respectively which is almost zero depicting the strength of
the algorithm. The average computational costs to break ECDSA with curves
SECP256K1 and NIST256p using LLL are 2.9 and 3.4 respectively

Keywords: Internet of Things, ECC – elliptic curve cryptography, SEC –
U.S. securities and exchange commission, IEEE – institute of electrical and
electronics engineers, ISO – international organization for standardization,
American national standards institute, The NIST national institute of stan-
dards and technology, American security agency, EdDSA – edwards curve
digital signature algorithm nonce – number only used once, RAG – random
number generator.

1 Introduction

Over recent years huge amounts of sensitive data exchanged in applications
like direct online banking (or third-party applications such as Google Pay,
and Paytm), stock market trading, and remote access to data in health care,
defense sector, automotive sector, retail sector, and many more areas are
too high due to drastic changes in the technology. Many internet security
protocols rely on public-key cryptosystems to attain confidentiality, integrity,
and authentication. A widely adopted public-key protocol over the internet
is the Elliptic Curve Digital Signature Algorithm (ECDSA). Some of the
application areas of ECDSA are TLS, Open PGP, and smart cards, which
can be found in Ripple, Ethereum, and Bitcoin. Due to hardness in discrete
logarithm problems, it is highly secure and due to its small key size, it is a fast
signing algorithm. Due to these features, it has been recommended by IEEE
and NIST since 2000, ANSI since 1999, and ISO since 1998 [1]. A useful
tool in cryptanalysis is lattice reduction. Many cryptosystems like knapsack

Implementation of Elliptic Curve Cryptosystem with Bitcoin Curves 331

and RSA are broken using lattice reduction. In addition, computations in
ECDSA-discrete logarithms and factoring composite numbers are possible
using lattice reduction. An LLL algorithm is one of the most popular
algorithms for lattice reductions by Lenstra, Lenstra, and Lovasz. Many
of the lattice algorithms used today are LLL variants. In this paper, we
focus on applying the LLL algorithm to crack ECDSA on NIST and SECP-
recommended curves like NIST 256p, SECP256k1, and NISP521p [2]. The
paper is organized as follows Section 2 provides a theoretical principal
curve digital signature (ECDSA) and the LLL Algorithm. Section 3 is
described in three parts, A. ECDSA-Disclosing the private key, if nonce
known using NIST256p, SECP256k1, NIST5, B. ECDSA-Disclosing the
private key using Lenstra–Lenstra–Lovasz (LLL) method if nonce known,
C. ECDSA-Disclosing the private key using Lenstra–Lenstra–Lovasz (LLL)
method, if nonce known with real-world ECDSA bugs. Section 4 demon-
strates an analysis of our experimental results and Section 5 summarizes our
conclusions and discusses future work.

2 Theoretical Principle

2.1 Elliptic Curve Digital Signature (ECDSA)

The Elliptic curve digital signature or simply ECDSA is a public key
cryptography encryption algorithm. The keys generated via ECDSA are
exponentially smaller in size than keys generated by any other digital signing
algorithm. For example, to have 128-bit security using RSA requires 3072 bit
key size while ECC requires 256 key size. To have a 256-bit security using
RSA requires a 15360-bit key size while ECC requires a 512 key size.

Figure 1 ECDSA.

332 M. M. Ulla et al.

The steps in ECDSA are as follows:

Alice computations:

(1) Alice selects his private key = P
(2) Alice computes his public key private key P∗G i.e. Private key P times G
(3) Alice finds (x, y) coordinates of point P ∗ G i.e (x, y) = k ∗ G, where

k is a nonce or random value
(4) Alice finds value of r

r = x Mod N (1)

(5) Alice generates the signature for the message M that has to be sent to
Bob

k−1(H(M) + r ∗ privatekey P) (2)

Bob computations:

(1) Once the Bob receives the signed message from Alice, he computes
u1 = H(M)s−1 and u2 = rs−1

(2) Bob computes (x, y) coordinates using u1, u2 i.e., (x, y) = u1G +
u2(privatekey P ∗G)

(3) Computations at Bob side

H(m) + r ∗ privatekey P ∗G
s

H(m) ∗G+ r ∗ privatekey P ∗G
k−1(H(m) + r ∗ privatekey P)

Substituting further we get k ∗G which is same as what we had obtained
in step 1 in Alice computations [3].

2.2 The LLL Algorithm

An efficient way to find reasonably orthogonal basis is the LLL algorithm,
named after its inventors: Lenstra, Lenstra and Lovasz. Conceptually LLL
algorithm consists of two parts:

• Reducing a non-basis vector (working vector) by subtracting multiples
of the current basis vectors

• Deciding whether the working vector becomes the next basis vector or
whether it should replace the basis vector immediately before it.

The Lovász condition is fulfilled if the vectors are close enough to being
orthogonal, or if they are roughly ordered by length.

Implementation of Elliptic Curve Cryptosystem with Bitcoin Curves 333

Lovasz condition obtained by rearranging orthogonal vectors: (δ−µ2
i+1,i)

∥b∗i ∥2 = ∥b∗i+1∥2.
This decision is based on whether or not Lovasz condition is met. Roughly

speaking Lovasz condition determines the working vector is big enough to be
the next basis vector [4]. We keep track of two sets of vectors:

• v⃗1; . . . , the current set of basis vectors which we are trying to reduce to
a nearly orthogonal set.

• v⃗ ∗
1 , v⃗ ∗

2 , . . . , the set of orthogonal basis vector produced by the Gram-
Schmidt reduction.

We also n to keep track of k, this is a number of the working basis vectors
we are trying to reduce. Suppose our basis vectors are v⃗ ∗

1 , v⃗ ∗
2 ,. . . v⃗∗k−1,

v⃗∗k,. . . and suppose we are working to reduce v⃗k. We reduce by expected
fashion by subtracting multiples of v⃗1, v⃗2,. . . v⃗k−1. Now let us consider the
vectors v⃗k−1 and v⃗k, if these were only two vectors we had we might need to
subtract some multiple of new v⃗k from the old v⃗k−1. This requires swapping
v⃗k−1 and v⃗k. But since we have a new k − 1 vector we need to go through
the whole process again, this time with v⃗k−1 with as new working vector.
The decision of whether to swap v⃗k−1 and v⃗k and make v⃗k−1 the working
vector is based on whether the Lovasz condition is satisfied. In addition to
basis vectors v⃗ ∗

1 , v⃗ ∗
2 , v⃗ ∗

3 ,. . . found from the Gram-Schmidt reduction. Let v⃗k
be the working vector and let

µk,k−1 =
v⃗k ∗ v⃗ ∗

k−1

v⃗ ∗
k−1 ∗ v⃗ ∗

k−1

If ||⃗v ∗
k ||2 = (34 −µ2

k,k−1) then we are done with v⃗k for now and can make
v⃗ ∗
k+1 the next working vector, otherwise, swap v⃗k−1 and v⃗k and make v⃗k−1

the working vector [5]. Applying LLL to the basis spanned by (201, 37) and
(1648, 297).We begin by choosing one of these as our first basis vector, then
using it to reduce the second vector to a candidate basis vector.

Step 1: Let us consider our first lattice basis vector v⃗1, as first Gram-Schmidt
vector v⃗ ∗

1

v⃗1 = (201, 37) v⃗2 = (1648, 297) and v⃗ ∗
1 = (201, 37)

Applying Gram-Schmidt reduction to reduce vector v⃗2

v⃗2 = (1648, 297)− (1648, 297) · (201, 37)
(201, 37) · (201, 37)

(201, 37)

≈ (1.133,−6.155)

334 M. M. Ulla et al.

We have:

v⃗1 = (201, 37), v⃗2 = (1648, 297),

v⃗ ∗
1 = (201, 37) and v⃗ ∗

2 = (1.133,−6.155)

Now we use v⃗1 to reduce v⃗2:

v⃗2 = (1648, 297)− (1648, 297) · (201, 37)
(201, 37) · (201, 37)

(201, 37)

v⃗2 = (1648, 297)− 8(201, 37)

v⃗2 = (40, 1)

We have

v⃗1 = (201, 37) and v⃗2 = (40, 1)

v⃗ ∗
1 = (201, 37) and v⃗ ∗

2 = (1.133,−6.155)

Next, we find the magnitude of Gram-Schmidt basis vector ||⃗v ∗
1 ||2

and ||⃗v ∗
2 ||2 and check the Lavasz condition

||⃗v ∗
1 ||2 = 41770||⃗v ∗

2 ||2 = 39.16

µ2,1 =
(40, 1) · (201, 37)

(201, 37) · (201, 37)
= 0.193

3

4
− µ2

2,1 ≈ 0.713

So, ||⃗v ∗
2 ||2! ≥ (34 −µ2

2,1)||⃗v ∗
1 ||2 and we should d swap, making v⃗1 =

(40, 1) and v⃗2 = (201, 37)
Step 2: We have v⃗1 = (40, 1) and v⃗2 = (201, 37) and v⃗ ∗

1 = (40, 1). Now
apply the Gram-Schmidt reduction, using v⃗ ∗

1 = v⃗1

v⃗2 = (201, 37)− (201, 37) · (40, 1)
(40, 1) · (40, 1)

(40, 1) ≈ (−0.799, 31.95)

We have v⃗1 = (40, 1) and v⃗2 = (201, 37) and v⃗ ∗
1 = (40, 1) and

v⃗ ∗
2 = (−0.799, 31.956)

Using v⃗1 to reduce v⃗2

v⃗2 = (201, 37)−
⌊
(201, 37) · (40, 1)
(40, 1) · (401, 1)

⌉
(40, 1) = (1, 32)

Implementation of Elliptic Curve Cryptosystem with Bitcoin Curves 335

We have v⃗1 = (40, 1) and v⃗2 = (1, 32)v⃗ ∗
1 = (40, 1) and v⃗ ∗

2 =
(−0.799, 31.956)
Next, We find the magnitude of Gram-Schmidt basis vector ||⃗v ∗

1 ||2
and ||⃗v ∗

2 ||2 and check the Lavasz condition

||⃗v ∗
1 ||2 = 1601||⃗v ∗

2 ||2 = 1021.7

µ2,1 =

(
(1, 32) · (40, 1)
(40, 1) · (40, 1)

= 0.193

)
(
3

4
− µ2

2,1 ≈ 0.748

)
So, ||⃗v ∗

2 ||2 = (34 − µ2
2,1)||⃗v ∗

1 ||2 and we should swap, making v⃗1 =
(1, 32) and v⃗2 = (40, 1)

Step 3: We have v⃗1 = (1, 32), v⃗2 = (40, 1) and v⃗ ∗
1 = (1, 3)

Now apply the Gram-Schmidt reduction, using v⃗ ∗
1 = v⃗1

v⃗2 = (40, 1)− (40, 1) · (1, 32)
(1, 32) · (1, 3)

(1, 32) ≈ (39.93,−1.25)

We have:

v⃗1 = (1, 32)v⃗2 = (40, 1)v⃗ ∗
1 = (1, 32) and v⃗ ∗

2 = (39.93,−1.25)

Using v⃗11 to reduce v⃗2

v⃗2 = (40, 1)− (40, 1) · (1, 3)
(1, 32) · (1, 3)

(1, 32) ≈ (39.93,−1.25)

We have:

v⃗1 = (1, 32), v⃗2 = (40, 1)v⃗ ∗
1 = (1, 32) and v⃗ ∗

2 = (39.93,−1.25)

Using v⃗1 to reduce v⃗2

v⃗2 = (40, 1)−
⌊
(40, 1) · (1, 32)
(1, 32) · (1, 32)

⌉
(1, 32)

v⃗2 = (40, 1)− 0(1, 32)

v⃗2 = (40, 1)

336 M. M. Ulla et al.

Next, We find the magnitude of Gram-Schmidt basis vector ||⃗v ∗
1 ||2

and ||⃗v ∗
2 ||2 and check the Lavasz condition

||⃗v ∗
1 ||2 = 1025 and ||⃗v ∗

2 ||2 = 1595.94

µ2,1 =
(40, 1) · (1, 3)
(1, 32) · (1, 3)

= 0.070(
3

4
− µ2

2,1

)
≈ 0.745

So, ||⃗v ∗
2 ||2 = (34 − µ2

2,1)||⃗v ∗
2 ||2 and we can move on to the next basis

vector.
v⃗1 = (1, 32) and v⃗2 = (40, 1) correspond to reasonably orthogonal
set of basis vectors.

3 Methodology

3.1 ECDSA-Disclosing the Private Key, If Nonce Known Using
NIST256p, SECP256k1, NIST521

In this section let us use ECDSA, private key, nonce value and how we can
possibly derive the private key if we know the nonce value that is being used
to create the signature. Initially the communication between Alice and Bob
begins with Alice having her private key P and public key i.e., private key
P *G. The process of obtaining private key is as follows, with elliptic curve
cryptography we have curve with equation of form y2 = x3 + ax + b Mod
N. All the points on the curve what we get are from 0 to N− 1 [6]. The curve
itself is defined by values of a, b and large prime number N. We initially
select a point on curve called as generator point G and we add M number of
times with itself until we get another point on elliptic curve which we call it
as private key i.e. G + G + G + · · · + G, the private key is a 256 bit random
value. The public key happens to be the (x, y) coordinates of point M * G
or simply M times G. Once Alice selects her private key P and computes her
public key, she picks up a message that has to be signed with her private key.
Using ECDSA, R and S values are used to create a signature for her message.
Once the signed message is received by Bob he picks up R and S values along
with public key of Alice to determine whether the message is signed by Alice
or not.

Steps to disclose the ECDSA private key, if nonce is known using
NIST256p:

Implementation of Elliptic Curve Cryptosystem with Bitcoin Curves 337

(1) As the first step Alice generates private key
(2) In the next step Alice generates public key = private key*G
(3) Alice has message (M) to be sent to Bob
(4) Alice generates a nonce value or random value (k) and then she finds

values of r and s needed for ECDSA r = k * G and s = k−1 (H(M) + r
∗ private key)

(5) The signature for generated message is (r,s)

Let us assume that Alice has leaked her nonce value k to Bob, and the
steps followed used by Eve to recover private key of Alice if he knows (r,s)
and k is as follows:

(1) Bob has received r = k * G
(2) Bob has received

s = k−1(H(M) + r ∗ private key) (3)

(3) Using Equation (3) we get

s ∗ k = H(M) + r ∗ privatekey (4)

(4) Using Equation (4) we get

r.privatekey = s ∗ k−H(M) (5)

(5) Using Equation (5) we get

Private key = r−1(s ∗ k−H(M))MOD N) (6)

Table 1 – shows ECDSA: Disclosing the private key if nonce is known
using NIST-256P recommended parameters. Table 2 shows ECDSA: Dis-
closing the private key if nonce is known using SEC-256K1recommended
parameters. Table 3 shows ECDSA: disclosing the private key if nonce is
known using NIST-521P recommended parameters.

3.2 ECDSA – Disclosing the Private Key Using
Lenstra–Lenstra–Lovasz (LLL) Method, If Nonce Known

In this section we search for private key used to sign a message with ECDSA.
In this method we will generate two signatures and find the private key
using Lenstra–Lenstra–Lovasz (LLL) method. Despite Alice keeps her nonce
secret, Eve can easily recover the secret key if Alice uses repeated nonce even
for different messages. Let us assume two signatures (r, s1) and (r, s2) derived

338 M. M. Ulla et al.

Table 1 ECDSA: Disclosing the private key, if nonce known (NIST-256P recommended
parameters)
N=11579208921035624876269744694940757353008614341529031419553363130886709
7853951
a=-3
b=4105836372515214212932612978004726840911444101599372555483525631403946
7401291
h=1
Order:115792089210356248762697446949407573529996955224135760342422259061
068512044369
Gx=484395612939064517590525852527979142027629495260417479958440807170824
04635286
Gy=3613425095674979579858512791958788195661110667298501507187719825356841
4405109
Message 1: Hello
Sig1(R,S):87864608172515076324787754002326060342354892015964169418601263
37389749154811391796915453424852201289895723668970375451342341592085483988
31975568810267476
PrivateKey:1826879163101576563045934039929932954962641906739515774355646
8023750731901655
Theprivatekeyisfound:18268791631015765630459340399299329549626419067395
157743556468023750731901655

Table 2 ECDSA: Disclosing the private key, if nonce known (SEC-256K1 recommended
parameters)
N=1157920892373161954235709850086879078532699846656405640394575840079088
34671663
a=0
b=7
h=1
Order:115792089237316195423570985008687907852837564279074904382605163141
518161494337
Gx=5506626302227734366957871889516853432625060345377759417550018736038911
6729240
Gy=3267051002075881697808308513050704318447127338065924327593890433575733
7482424
Message1: Hello
Sig1(R,S):7773499647157869072481902530128808492319852184749699500415381153
024496572628597413358969903295688400058661785083988603187257053615822443
330142691718421644
Random value (k):63076811158092363886617914846091290891
PrivateKey:161229785659609414082520131744863417077744814790685096156346819
55105988655192
Theprivatekeyisfound:161229785659609414082520131744863417077744814790685096
15634681955105988655192

Implementation of Elliptic Curve Cryptosystem with Bitcoin Curves 339

Table 3 ECDSA: Disclosing the private key, if nonce known (NIST-521P recommended
parameters)
N=6864797660130609714981900799081393217269435300143305409394463459185543
1833976560521225596406614545549772963113914808580371219879997166438125
74028291115057151
a=-3
b=1093849038073734274511112390766805569936207598951683748994586394495953
1161507350160137087375737596232485921322967063133094384525315910129121
42327488478985984
h=1
Order:6864797660130609714981900799081393217269435300143305409394463459185
5431833976553942450577433321719753296399637136332111386476861244038034
0372808892707005449
Gx=26617408020502170632287687167233609607298591687569731477066713684188
0294499642780849154508062777190235209424122506555866215711354557091681
4161637315895999846
Gy=37571800257700204635455072244911836035944551347697624866945677796155
4447744055631669123440501294559562144444537289428522585666729196580810
124344277578376784
Message 1:Hello
Sig1(R,S):1189124079878037305949278211963025301559346341707263091869534322
71081694067943402040651927711372576729242699318709436457201951428350265
90909326228526323742666026149665276099943145817528547307557950641078431
10488858317005135339386692549332787085393863647801816716220287492497394
0795949272348183625732014938948579325
Random value (k):1345073822754761250886379837 21177218254
PrivateKey:52306603676855575123284881219115986204474345398586651793401948
786865461869276086442795042889752346555662781627772177764035955238771
55872653821143293053140344
Theprivatekeyisfound:52306603676855575123284881219115986204474345398586651
9340194878686546186927608644279504288975234655566278162777217776403595
523877155872653821143293053140344

on messages msg1, msg2 respectively from same nonce k then r value will
remain same for both messages as the k value is same [7]. So Eve would
detect the private key as follows:

(1) Sig1 = k−1 (Hash(Msg1) + xr) and Sig2 = k−1 (Hash(Msg2) + xr)
(2) Sig1–Sig2 = k−1 (Hash(Msg1)–Hash(Msg2))
(3) K(Sig1–Sig2) = Hash(Msg1)–Hash(Msg2)
(4) k = (Sig1–Sig2)−1 (Hash(Msg1)–Hash(Msg2)) [8]

Using above formula once we have recovered the nonce k then secret
key is recovered using previously described attack. If any nonce for the

340 M. M. Ulla et al.

signature is leaked, then private key can be cracked, and complete signature
scheme is broken. In addition to this if any of the nonce is repeated acciden-
tally then accidental repetition of nonce can be easily detected by Eve and
can recover the private key by breaking complete encryption scheme. Even
leaking fractional parts of nonce can damage signature abruptly. Work by
N.A. Howgrave-Graham, N.P. Smart showed the application of lattice attacks
to crack DSA from partial leakage of nonce [9]. Further to this Nguyen and
Shparlinski continued their work to obtain secret key from 160-bit DSA and
then from every 100 signatures in ECDSA secret key was obtained by just
knowing three bits of each nonce [10]. Further to the research Mulder et. al.
performed more attacks on partial nonce leakage using Fourier transform-
based attack and recovered secret keys from 384-bit ECDSA by knowing
only five bits from each nonce from 4,000 signatures. Most of us would
have heard Minerva attacks which involved several timing side channels were
leveraged to recover partial nonce leakage and these lattice attacks. Using
enough signatures they were able to obtain private key even if size of nonce
was leaked. The latest attack known as Ladder leak attack which is even
worse Fourier analysis attack in ECSDA one could obtain secret keys just
by having 1 bit of nonce is leaked.

A nonce is considered a secret value, and its leakage can potentially
compromise the security of the system. If an attacker gains knowledge of the
nonce, they might be able to launch various attacks depending on the specific
cryptographic protocol in use. Here are a few possible ways a nonce can be
leaked:

1. Side-Channel Attacks: Attackers can exploit side-channel information,
such as timing or power consumption, to infer the nonce value. For
instance, variations in execution times during cryptographic operations
might provide clues about the nonce.

2. Fault Attacks: In some cases, attackers may intentionally introduce
faults into a cryptographic operation to cause errors that leak informa-
tion about the nonce when analysed.

3. Weak Random Number Generation: If the nonce is generated using a
weak random number generator, it might be possible for an attacker to
predict or guess the nonce value.

4. Software Vulnerabilities: Vulnerabilities in the software or implemen-
tation of cryptographic algorithms can sometimes expose the nonce
unintentionally. For example, buffer overflows or memory leaks might
reveal sensitive data like nonces.

Implementation of Elliptic Curve Cryptosystem with Bitcoin Curves 341

5. Protocol Vulnerabilities: Flaws in the design or implementation of the
cryptographic protocol itself could lead to nonce leakage. If the protocol
does not adequately protect the nonce, an attacker might be able to
intercept or manipulate it.

6. Physical Attacks: If an attacker gains physical access to the device or
system where cryptographic operations are taking place, they might be
able to observe the nonce value directly from memory or other hardware
components.

7. Interception of Communication: If the nonce is transmitted over an
insecure channel or not properly protected during communication, an
attacker who intercepts the communication might learn the nonce value.

8. Malware or Spyware: Malicious software running on a system could
potentially capture or exfiltrate nonce values if it manages to compro-
mise the security of the system.

Further to it, even if one manages to keep his nonce secret, never leak
any of the bits and never repeat a nonce. The work by Heninger and Breitner
proved that application of lattice attacks can potentially break the signature
scheme implemented using defective random number [11]. One’s signature
scheme is completely broken if one uses 256-bit ECDSA, if bias of 4 bits is
done using 256-bit ECDSA in your nonce, despite not knowing those biased
values. In our research we use LLL algorithm as a black box, we will try to
attack signatures generated from bad nonce or bad RAG. A “bad nonce” or
“weak nonce” occurs when the same nonce is used for multiple signatures
with the same private key. If an attacker can observe such repeated nonces,
they might be able to recover the private key. Additionally, if a nonce is
generated in a predictable or biased manner, it can also lead to vulnerabilities.
Such nonce will have fixed prefix i.e. where many of the most significant bits
(MSB) will remain same. This attack also works even if most significant
bits (MSB) are not fixed bits. We begin with LLL algorithm with an input
matrix and the algorithm will generate the output new matrix values. In this
input matrix is constructed using a collection ECDSA signatures and the final
output by LLL matrix will enable us to obtain ECDSA private key this is the
resultant of LLL output matrix which will contain signatures of all nonce.
Using obtained nonce we make use of basic attack described earlier to recover
the private key.

A LLL basis reduction algorithm is used to approximate the shortest vec-
tor in higher dimensional space in polynomial time. It also has applications
in cracking many cryptography algorithms, integer programming and number
theory because of its accuracy and performance. A lattice λ is an additive

342 M. M. Ulla et al.

subgroup of real numbers and is represented by a basis vector g1, g2,. . . gn in
N-dimensional space. A lattice point X is an integral, linear combinations of
basis vector: X = g1b1+g2b2+ · · ·+gnbn where the bi are integers. Figure 2
demonstrates a two dimensional lattice having two generator vectors g1 and
g2. We put the generator vectors and columns so that a lattice point X is equal
to the generator matrix G times B where B is a vector of integers where bzn is
a vector or integers. In Figure 3 we take B is equal to integer vector [0, 0] then
X is equals G times B and therefore we get the lattice point as 0. In Figure 4
we take B is equal to integer vector [3,−1] then X is equals G times B and
therefore we get the lattice point as [3,0.5]. Basis reduction is a technique
of decreasing the basis B of a given lattice L to a smaller basis B 0 without
changing the lattice L. Figure 5 depicts a lattice having two different basis in
two dimensions. The determinant of the basis is shaded and the right basis
is reduced and orthogonal. Steps to change the basis but to retain the same
lattice are as follows:

(1) Exchange the two vectors in the basis.
(2) We use −bi for a vector bi ∈ B
(3) We add a linear combination of other basis vectors to bi ∈ B vector.

Any vector v in lattice L, is represented as

v =

m∑
i=0

zibi

Figure 2 Lattice: linear code over real numbers with generator matrix N × N.

Implementation of Elliptic Curve Cryptosystem with Bitcoin Curves 343

Figure 3 Example 1-Integers to lattice.

Figure 4 Example 2-Integers to lattice.

Figure 5 A two dimension lattice with two different basis.

344 M. M. Ulla et al.

Once inducted, we obtain new basis vector b j, where

bj = bj +
∑
i!=j

yibi, yiZ

A lattice L with new basis is represented as

v =
∑
i!=j

zibi + zj

bj +
∑
i!=j

yibi

Thus, despite changing the basis lattice remains same.
A Lenstra-Lenstra-Lovasz (LLL) algorithm is an estimation of the short-

est vector problem; it runs in polynomial time and finds an approximation
within an exponential factor of the correct answer. It is a practical method
with enough accuracy in solving integer linear programming, factorizing
polynomials over integers and breaking cryptosystems. Let b1, b2,. . . ,bn be a
basis for a N-dimensional lattice L, and b∗1,b∗2,. . .b∗n be the orthogonal basis
and we have

ui,k =
b∗kbi
bi ∗ bi

(7)

The reduced basis of LLL is b1, b2,. . . , bn if following two conditions are
met:

(1) ∀i ̸= k, ui, k
1
2 .

(2) for each i, ||b∗i+1 + ui,i+1b
∗
i ||

2 ≥ 3
4 ||b

∗
i ||

2

The constant values between 1
4 and 1, can ascertain that the algorithm will

terminate in polynomial time. The constant chosen here 3
4 is for simplicity of

paper. The second condition highlights the ordering of the basis.Given a basis
b1, b2,. . . , bn in N-dimension space. The LLL works to get the reduced basis
as shown below:

Algorithm 1: LLL Algorithm

Input: b1, b2,. . . ,bn

Continue both the steps until LLL reduced basis is found

Step 1: Gram-Schmidt Orthogonalization

For i = 1 to n do

For k = i–1 to 1 do

m←Closest integer of uk,i

Implementation of Elliptic Curve Cryptosystem with Bitcoin Curves 345

bi ← bi − m bk

End for

End for

Step 2: Check Condition 2, and swap

For i = 1 to n−1 do

If ||b∗i+1 + ui,i+1b
∗
i ||

2 < 3
4 ||b

∗
i ||

2 then

Swap bi+1 and bi

Go to step 1

End if

End for

To perform the attack we use ECDSA and LLL library in python.
We chose ECDSA library as it allows us to input our own nonce’s. There
by allowing us to input nonce’s from bad RAG’s to validate our attack.
This attack is performed on NIST P-256 elliptic curve. We begin by giving
input as two signatures obtained from 128-bit nonce’s. First signatures are
generated then we create the input matrix to LLL algorithm.

N 0 0 0

0 N 0 0

r1 s
−1
1 1 r2 s

−1
2

B

N
0

m1 s
−1
1 m2 s

−1
2 0 B

Input Matrix To LLL Algorithm When The Nonce Bias Is Unknown

In the above matrix N is the order of NIST P-256, The upper bound limit
set for our nonce’s is B (both the nonce’s used in our research study are of
same 128 bits size), m1 and m2 are two input messages and (r1, s1) and (r2, s2)
are the generated signatures for the input message. Once the matrix is ready
it is given as input to black box LLL algorithm, which will output the new
matrix. The output matrix will have one of the nonce utilized to obtain two
signatures. As discussed earlier the procedure to recover private key after
obtaining nonce k. We usually compute r−1(ks–H(m)). Every attacker has an
access to public key corresponding to this signature. Therefore one could eas-
ily ascertain whether we have found the corresponding private key or not by
just computing its corresponding public key and compare it with public key

346 M. M. Ulla et al.

already available. A drawback with this method is there is a noticeable failure
rate for this kind of attack; the failure rate can be decreased if we perform
the same attack with more and more signatures. Table 4 – shows ECDSA:
Disclosing the private key if nonce is known on NIST-256P recommended
parameters using LENSTRA–LENSTRA–LOVASZ (LLL) method.

Table 4 ECDSA: Disclosing the private key using Lenstra–Lenstra–Lovasz (LLL) method,
with bad nonce
N=11579208921035624876269744694940757353008614341529031419553363130886
7097853951
a=-3
b=41058363725152142129326129780047268409114
441015993725554835256314039467401291
h=1
Order:11579208921035624876269744694940757352999695522413576034242225906
1068512044369
Gx=4843956129390645175905258525279791420276294952604174799584408071708
2404635286
Gy=3613425095674979579858512791958788195661110667298501507187719825356
8414405109
Message 1:Hello
Message 2:Goodbye
Sig 1(R,S):
6843699916116213566632831575027916680919552821044868158888556087460606638
197164497954281106906978594318856699527613005888505797620296329843
674872597395472
Sig 2(R,S):
59396660104252040522208448410403058790061382347675159895630126540527959
45686824261114452357845949316447297212726196377981816402001485571832274
64803947630
Random value (k1):54407969052066112710579167385532488796
Random value (k2):139494728666289118543915002337593135844
Private Key:
485886183943992264058930019173371481118995449796748353997063520060271
82977592
The private key is found:
4858861839439922640589300191733714811189954497967483539970635200602718
2977592

Implementation of Elliptic Curve Cryptosystem with Bitcoin Curves 347

3.3 ECDSA – Disclosing the Private Key Using
Lenstra–Lenstra–Lovasz (LLL) Method, If Nonce Known with
Real-world ECDSA Bugs

A recent real time bug is randomness generated in Yubi keys, in which a
bad randomness lead to same value fixed to nearly 80 bits of nonce. Such
real world bugs can be easily attacked than the attack that was performed
in previous section. In section we are not sure about what the fixed 80-bit
values are, whereas in section B we aware that all the fixed 128 bits were all
set with zeros. In this technique we assume that all the received collection of
signatures whose nonce have 80 fixed bits. We also assume that these fixed
80 bits are most significant bits. (Even if they are not most significant bits
still the attack is feasible by just doing left shift one bit at a time which is
equivalent of saying multiplying the signature by 2). Here we are not aware
what these 80 bits are, by subtracting any two nonce’s, the 80 most significant
bits of their differences will all be zeros. We apply the same lattice attack as
explained in section B except our signature values subtracted. With a set of
n signatures and messages we will build the below matrix and is given as
input to LLL algorithm and which will in turn generate a new output matrix.
The output matrix of LLL algorithm is k1–kn, i.e. the variance between the
nonce’s for signatures 1 and n. In this we differentiated nth value from every
entry in matrix, in lieu of having a complete row full of nonce’s we literally
have a row with the variance between every nonce and the nth nonce.

[N] 0 ... 0 0 0

0 [N] . . . 0 0 0

.

0 0 . . . [N] 0 0

[r1 s−1
1 − rn s−1

n] [r2 s−1
2 − rn s−1

n] . . . [rn−1 s−1
n−1 − rn s−1

n] [B/N] 0

[m1 s−1
1 −mn s−1

n] [m2 s−1
2 −mn s−1

n] . . . [mn−1 s−1
n−1 −mn s−1

n] 0 [B]

Input Matrix To LLL Algorithm When The Nonce Bias Is Unknown

One can recover the secret key using below formulations:

(1) Sig1 = k−1
1 (Msg1 + xr1) and Sign = k−1

n (Msgn + xrn)
(2) Sig1k1 = Msg1 + xr1 and Signkn = Msgn + xrn
(3) k1 = Sig−1

1 (Msg1 + xr1) and kn = Sig−1
n (Msgn + xrn)

(4) k1 − kn = Sig−1
1 (Msg1 + xr1)− Sig−1

n (Msgn + xrn)
(5) Sig1Sign(k1 − kn) = Sign(Msg1 + xr1)− Sig1(Msgn + xrn)
(6) Sig1Sign(k1 − kn) = xSignr1 − xSig1rn + SignMsg1 − Sig1Msgn

348 M. M. Ulla et al.

(7) x(Sig1rn − Signr1) = SignMsg1 − Sig1Msgn − Sig1Sign(k1 − kn)
(8) Secret key x = (rnSig1 − r1Sign)

−1(SignMsg1 − Sig1Msgn − Sig1
Sign(k1 − kn)

The secret key can be easily recovered from only five signatures if gener-
ated signatures are produced from nonce’s with 80 fixed bits. To reduce the
error rate we build the above matrix with n = 6. In real world the generating
80 fixed bits are sparse. Such kind of attack is much more robust when applied
with 256 bit elliptic curves, this attack works well even when 4 bits of nonce
are fixed. Implementation does not become complicated rather one needs to
only increase the dimension of lattice i.e., attacker has to only escalate the
value of n and repeat the attack. This technique will increase the running
time of algorithm but not the complexity. In our experiments the value of N
is total number of signatures required to retrieve secret key and are derived
experimentally by trying to attack with dissimilar number of signatures on
different amount of fixed bits. The value of N = 2 when nonce had the first
128 bits fixed to 0, the value of N = 3 when 128 bits are fixed and we do not
know to what values they are fixed. The value of N = 5 when the nonce had
80 randomly fixed bits.

4 Performance Analysis

In this section, the experimental analysis of running time of algorithm to
crack ECDSA using selected NIST and SECP curves are presented. Table 6
shows time to crack ECDSA algorithm with leak of nonce and ECDSA with
LLL algorithm. Each algorithm is executed on five different intervals of time
with different curves and average execution times to crack the algorithm are
recorded. Among all the three curves NIST256p require less time to crack and
ECDSA with LLL among SECP256k1 and NIST256p, SECP256k1 require
less time to crack. Figure 6 demonstrates average execution time to crack
ECDSA.

Table 5 Features of nodes used in our research

Type of Node Processor CPU Type CPU Speed RAM Operating System

Raspberry pi ARM CPU 64 bits 1.2GHz 1GB Rasbian 5.10

HP LAPTOP Intel Core i3 64 bits 1.99 GHz 4GB Windows 10

Implementation of Elliptic Curve Cryptosystem with Bitcoin Curves 349

Table 6 Elliptic curves average execution time in seconds to crack ECDSA

Average Execution Time (Seconds)

ECDSA with Curves T1 T2 T3 T4 T5 Avg

NIST256p 0.004 0.005 0.060 0.004 0.007 0.016

NIST521p 0.020 0.033 0.017 0.024 0.076 0.034

SECP256k1 0.060 0.016 0.017 0.073 0.068 0.046

LLL with SECP256k1 2.80 3.00 3.17 2.68 2.98 2.926

LLL with NIST256p 3.20 3.64 3.13 3.70 3.39 3.412

Figure 6 Average execution time to crack ECDSA (Seconds).

5 Conclusions

In this paper, curves recommended by various standards are selected and
examined. Each curve applied on ECDSA algorithm is cracked in two ways
if nonce is leaked and another way is by performing lattice attacks using
Lenstra-Lenstra-Lovasz (LLL) algorithm if random number generator gener-
ates bad nonce. The comparative table shows the computation time taken by
each curve when these two algorithms are used. From this analysis it is clear
the computation times of curves increases when field size increases. There-
fore, ECDSA is fragile and we recommend use of EdDSA where nonce’s

350 M. M. Ulla et al.

are generated safely without use of RAG. Further NIST has standardized
use of EdDSA with Curve25519 to overcome side channel attacks. Use
of ECDSA should be done with caution such as nonce used for ECDSA
signatures are never repeated, never revealed (even partially), and generated
safely. Finally we come to a conclusion that elliptic curve cryptography using
the NIST256p, SECP256k1, NIST521p curves and weak nonce are not safe
for the transactions that are confidential and are to be kept secured down the
line.

Acknowledgement

The authors would like to acknowledge the support provided by Presidency
University – Bengaluru, India.

References

[1] Chintan Patel, Nishant Doshi 2021 “Secure Light Weight Key Exchange
Using ECC For User Gateway Paradigm IEEE Transactions on Com-
puter DOI: 10.1109/TC.2020.3026027 Page: 1–1.”

[2] Xiaoqiang Zhang And Xuesong Wang 2018 “Digital Image Encryption
Algorithm Based on Elliptic Curve Public Cryptosystem” IEEE Access
Pages: 70025–70034 ISSN: 2169-3536 Volume: 6.”.

[3] Mohammad Ayoub Khan, Mohammed Tabrez Quasim, Norah Saleh
Alghamdi, Mohammad Yahiya Khan. 2020 “A Secure Framework
for Authentication and Encryption Using Improved ECC for IoT-
Based Medical Sensor Data” IEEE Access Pages: 52018–52027 ISSN:
2169-3536 Volume: 8.

[4] Nizar Ouni and Ridha Bouallegue May 2016 “Performance And
Complexity Analysis of Reduced Iterations LLL Algorithm” Interna-
tional Journal of Computer Networks & Communications (IJCNC)
Vol. 8.

[5] Yunju Park and Jaehyen 2016 Analysis of the upper bound on the com-
plexity of LLL Algorithm, Journal of the Korean Society for Industrial
and Applied Mathematics“ Vol. 20, No. 2, 107–121,

[6] Dan Boneh & Ramarathnam Venkatesan 2001 “Hardness of Computing
the Most Significant Bits of Secret Keys in Diffie-Hellman and Related
Schemes” Lecture Notes in Computer Science – Annual International
Cryptology Conference, volume 1109, pp. 129–142.

Implementation of Elliptic Curve Cryptosystem with Bitcoin Curves 351

[7] Badis Hammi, Achraf Fayad, Rida Khatoun, Sherali Zeadally and
Youcef Begriche 2020 “A Lightweight ECC-Based Authentication
Scheme for Internet of Things (IoT)” IEEE Systems Journal Pages:
3440–3450 DOI: 10.1109/JSYST.2020.2970167, Volume: 14.”.

[8] Joachim Breitner and Nadia Heninger 2019 “Biased Nonce Sense:
Lattice Attacks against Weak ECDSA Signatures in Cryptocurrencies”
Lecture Notes in Computer Science Springer International Publishing –
Financial Cryptography and Data Security.

[9] Javed R. Shaikh, Maria Nenova, Georgi Iliev and Zlatka Valkova-Jarvis
2017 “Analysis of Standard Elliptic Curves for the Implementation
of Elliptic Curve Cryptography in Resource-Constrained E-commerce
Applications” IEEE-COMCAS ISBN:978-1-5386-3169-0.”.

[10] Shen Guicheng, Yu Zhen 2013 “Application of Elliptic Curve Cryp-
tography in Node Authentication of Internet of Things IEEE-IIHMSP
ISBN:978-0-7695-5120-3 DOI: 10.1109/IIH-MSP.2013.118.”.

[11] Ravi Kishore Kodali and Ashwitha Naikoti 2016 “ECDH based Security
Model for IoT using ESP 8266” IEEE – ICCICCT DOI: 10.1109/ICCI
CCT.2016.7988026”.

Biographies

Mohammed Mujeer Ulla, currently working as Assistant Professor- Selec-
tion Grade in School of computer science and engineering since 2017. He is
an alumnus of R.V college of engineering- Bangalore in his UG and PG. And
received the philosophy of doctorate degree in Computer Science and Engi-
neering from Presidency University, Bangalore, respectively. He has many
papers to her credit in reputable international journals, national journals, and
conferences. He has been serving as a reviewer for highly respected journals.
His areas of expertise include internet of Things, Wireless sensor network.

10.1109/JSYST.2020.2970167
10.1109/IIH-MSP.2013.118
10.1109/ICCICCT.2016.7988026
10.1109/ICCICCT.2016.7988026

352 M. M. Ulla et al.

Preethi, received the bachelor’s degree in computer science and engineering
from VTU, Karnataka in 2008, the master’s degree in computer science and
engineering from VTU, Karnataka 2013, and the philosophy of doctorate
degree in Computer Science and Engineering from Presidency University,
Bangalore in 2022, respectively. She is having total 15 years of Teaching
experience. She is currently working as an Assistant Professor-Senior Scale,
Manipal Institute of Technology, Bengaluru, Manipal Academy of Higher
Education, Manipal, India. Her research areas include the Internet of things,
Computer Architecture and cryptography. She has many papers to her credit
in reputed international journals, national journals and conferences. She has
been serving as a reviewer for highly-respected journals.

Md. Sameeruddin Khan, currently working as Professor and Dean in the
School of Computer Science and Engineering, Presidency University, Ban-
galore. He received his B.E in from Gulbarga University, Gulbarga. M.Tech
in in Computer Science and Engineering from Visveswaraih Technologi-
cal University, Belgaum. Doctor of Philosophy in Computer Science and
Engineering from Rayalaseema University, Kurnool, Andhra Pradesh.

Implementation of Elliptic Curve Cryptosystem with Bitcoin Curves 353

Deepak. S. Sakkari, currently working as Professor in the Department of
Computer Science and Engineering, Sri Krishna Institute of Technology,
Bangalore. He received his B. E in Instrumentation and Electronics from
Siddganga Institute of Technology, Bangalore University, M.Tech in Infor-
mation Technology from AAIDU, Allahabad and PhD in Computer Science
Engineering from JNTUH, Hyderabad. He published many paper in Scopus
indexed and SCI journals with Google scholar 9 citations. His research area
includes Wireless Sensor Networks.

	Introduction
	Theoretical Principle
	Elliptic Curve Digital Signature (ECDSA)
	The LLL Algorithm

	Methodology
	ECDSA-Disclosing the Private Key, If Nonce Known Using NIST256p, SECP256k1, NIST521
	ECDSA – Disclosing the Private Key Using Lenstra–Lenstra–Lovasz (LLL) Method, If Nonce Known
	ECDSA – Disclosing the Private Key Using Lenstra–Lenstra–Lovasz (LLL) Method, If Nonce Known with Real-world ECDSA Bugs

	Performance Analysis
	Conclusions

