
Role-based Access Control (RBAC)
Authorization in Kubernetes

Garsha Rostami

Galaxy Consulting L.L.C., Minnesota, USA
E-mail: Galaxy-Consulting-LLC@outlook.com

Received 08 August 2022; Accepted 08 June 2023;
Publication 11 September 2023

Abstract

In computer systems security, role-based access control (RBAC) or role-
based security is an approach to restricting system access to authorized
users [1]. This paper will describe how the Kubernetes RBAC authorization
sub-system works, how to leverage it to secure access to resources in the
cluster, and how to validate the set policies through impersonation to ensure
users and service accounts are granted the intended rights.

Keywords: Kubernetes Role-based Access Control, RBAC, Kubernetes
Role, Kubernetes RoleBinding, Kubernetes ClusterRole, Kubernetes Cluster-
RoleBinding, Kubernetes authorization, Kubernetes API groups, Kubernetes
aggregationRule, Kubernetes impersonation.

1 Introduction

Kubernetes is a very complex system. Managing and securing it requires a
lot of planning and expertise. Role-based Access Control (RBAC) is just one
aspect of overall Kubernetes security system and as such a brief discussion
of overall Kubernetes security is provided in this section.

Journal of ICT Standardization, Vol. 11_3, 237–260.
doi: 10.13052/jicts2245-800X.1132
© 2023 River Publishers

238 G. Rostami

Kubernetes has a layered architecture. Each layer has its own security
requirements and settings. This layered architecture provides defence in depth
which is highly effective and desirable, provided that these layers are properly
protected. [Figure 1] shows an overview of this architecture. Below provides
a brief discussion of these layers from a security standpoint:

Figure 1 Kubernetes layered architecture.

1. A Kubernetes cluster is set up either in a corporate data center or hosted
on a cloud provider’s infrastructure. Either environment will need to
secure the perimeter, servers, and networks through traditional firewalls,
IPsec, etc.

2. Within the Kubernetes cluster, access to the master and worker nodes
must be restricted. Kubelets on nodes use client certificates to commu-
nicate with the API server. If a node is compromised, a skilled attacker
may use those certificates to gain access to the control plain.

3. The control plain is at the heart of a Kubernetes cluster. “etcd” is
the datastore for all Kubernetes information and if compromised, you
should assume that the cluster is compromised. It is recommended to
setup strong credentials (mTLS) from the API server to the etcd and
keep the servers hosting the etcd behind a firewall and allow access in
only to the API server.

4. Access to Kubernetes resources such as Pods, Services, Secrets, etc.
must be regulated and tightly controlled. People and service accounts
must be given enough permissions to perform their function but not
more. This is done through RBAC which is the subject of this article.

Role-based Access Control (RBAC) Authorization in Kubernetes 239

5. Pods running with unconstrained security privileges such as running as
root will pose serious security threats to the worker nodes and potentially
the entire cluster. Kubernetes new Pod Security Policies and OPA (Open
Policy Agent) are some the tools that can be leveraged to mitigate Pod
related security misconfigurations.

6. Within the cluster, Pod to Pod communications should regulated through
network policies so that if a Pod is compromised, an attacker is not
provided with a large attack surface area. It is also highly recommended
to encrypt Pod to Pod communications.

2 Kubernetes Authentication and Authorization Process

Every request that arrives at the Kubernetes API server must first be validated
to ensure that the requester is a valid Kubernetes user and he/she/it (in case the
request is coming from a Kubernetes object) is allowed to make that request.
If the user passes the authentication and authorization process and the request
will need to persist a new object (e.g., a new Pod), then the request is passed to
the “Admission Controllers” to ensure the request is not violating any existing
policies [2].

In Kubernetes, both authentication and authorization methods are plug-
gable and configurable. A cluster admin can configure which authentication
module(s) are used for authentication and authorization; this is demonstrated
in [Figure 2] below:

Figure 2 An illustration of Kubernetes pluggable authentication and authorization modules.

240 G. Rostami

In the above picture, when our hypothetical user “Alice” issues “kubectl
get pods” command, the kubectl utility sends Alice’s credential along with
the command to the API server. Which credential is sent, depends which
authentication module the administrator has configured the API server to
use. For instance, if “X509 Client Certificate” authentication is enabled then
Alice’s client cert is sent. If “OpenID connect” is enabled then kubectl
sends her “id token” (which she got when she was authenticated by an
OpenID Connect provider), in a header called “Authorization” to the API
server [3].

Likewise, depending on which authorization module a Kubernetes admin-
istrator has enabled (Role-Based Access Control (RBAC) or Attribute-Based
Access Control (ABAC)), that particular module will decide if Alice is
authorized to list pods. Since this is a read-only request, the request will not
be evaluated by the Admission Controllers.

Notes:

1. “Node authorization” authorizes Kubelets API requests. It is not used
for authorizing people or service accounts.

2. As alluded earlier, ABAC is another and older method of Kubernetes
authorization. ABAC provides finer grain authorization than RBAC but
it is more complex and generally it is recommended to use RBAC if
possible.

3. Webhook [4] is a custom authorization enabler where authorization
requests are intercepted and posted to a web service that performs
the actual authorization and notifies Kubernetes to allow/disallow the
request.

3 USERS, GROUPS, and Service Accounts in Kubernetes

Before diving into RBAC which is the main topic of this paper, it may be
helpful to briefly discuss Kubernetes users, groups, and service accounts and
how they are created.

• There are two types of users in Kubernetes: regular users (people), and
service accounts.

• Service accounts are created and maintained by Kubernetes. Regular
users, on the other hand, are managed by authentication providers,
outside the Kubernetes environment. In Kubernetes, there is neither
a user object to represent a regular user, nor an API to create/delete
them.

Role-based Access Control (RBAC) Authorization in Kubernetes 241

3.1 Service Accounts

A service account is a type of non-human account that, in Kubernetes,
provides a distinct identity for a service in a Kubernetes cluster. Application
Pods, system components, and entities inside and outside the cluster can use
specific ServiceAccount credentials to identify themselves as that ServiceAc-
count. This identity is useful in various situations, including authenticating to
the API server or implementing identity-based security policies [5].

Service accounts can be created through yaml or command line:

#Yaml
apiVersion: v1
kind: ServiceAccount
metadata:

name: myservice-svc-acct

#Command line
kubectl create serviceaccount myservice-svc-acct

3.2 Regular Users and Groups

As stated earlier, Kubernetes supports a number of authentication providers
such as X509 client certificate, OpenID Connect, and Webhooks. Each
authentication provider manages its users and groups differently. X509 client
certificate is the default authentication provider and is configured out of the
box, so in this paper we will focus on how a Kubernetes admin can leverage
client certificates to manage users and groups. Note that although X509 client
certificate authentication is adequate for small to medium Kubernetes sites,
for large companies, OpenID Connect is recommended [6].

#Generte a private key
Openssl genrsa -out john.doe.key 2048

#Generate a Certificate Signing Request (CSR)
#/CN (Common Name) is the username, and /O (Organization) is the
group(s) the user belongs to. In this example, John Doe is our new users
who will belong to “marketing-dev” and “hr-dev” groups.
openssl req -new -key john.doe.key -out john.doe.csr -subj
"/CN=john.doe/O=marketing-dev/O=hr-dev"

#Encode CSR (base64)
#And also have the header and trailer pulled out.
cat john.doe.csr |base64 |tr -d "\n" > john.doe.base64.csr

242 G. Rostami

#Submit the CertificateSigningRequest to the API Server
#Key elements, name, request, signerName and usages (must be client auth)
cat <<EOF |kubectl apply -f -
apiVersion: certificates.k8s.io/v1
kind: CertificateSigningRequest
metadata:

name: john.doe
spec:

groups:
- system:authenticated
request: $(cat john.doe.base64.csr)
signerName: kubernetes.io/kube-apiserver-client
usages:
- client auth

EOF

#View the CSRs, it will show as "pending" status
kubectl get certificatesigningrequests

#Approve the CSR (Note, you’ll have one hour to approve it, otherwise it will
be garbage collected!)
kubectl certificate approve john.doe

#View the cert request and its status
kubectl get certificatesigningrequests john.doe

Retrieve the certificate from the CSR object (it’s base64 encoded), decode
it and save it to a file

kubectl get certificatesigningrequests john.doe \
-o jsonpath=’{ .status.certificate }’ |base64 --decode > john.doe.crt

#Once the client certificate is generated, the Kubernetes admin will use the
certificate to generate a config file for our new user "john.doe".

#Start by creating the "cluster" section of the config file
kubectl config set-cluster cluster1 \
--server=https://<$MASTER_IP_ADDRESS>:6443 \
--certificate-authority=/etc/kubernetes/pki/ca.crt \
--embed-certs=true \
--kubeconfig=john.doe.conf

#Add our "user" section of the config file
kubectl config set-credentials john.doe \

Role-based Access Control (RBAC) Authorization in Kubernetes 243

--client-key=john.doe.key \
--client-certificate=john.doe.crt \
--embed-certs=true \
--kubeconfig=john.doe.conf

#Create the context section
kubectl config set-context john.doe@cluster1 \
--cluster=cluster1\
--user=john.doe \
--kubeconfig=john.doe.conf

#View the completed config for our user "john.do"
kubectl config view --kubeconfig=john.doe.conf

Finally, the admin will send the generated config file which has the client
certificated embedded in it to user “John Doe”. The user will copy the file to
his home directory under the “./kube” folder. The embedded client certificate
serves as the user’s credentials and his user id and groups he belongs to will
be available for authorization purposes.

4 RBAC Overview

RBAC is an essential part of Kubernetes security to safeguard its resources.
As the [Figure 3] illustrates, it allows Kubernetes administrators to grant
access to Kubernetes resource(s) to subjects(users), to perform select
opeartions on those resource(s):

• Subjects: These include people, service accounts and other Kuberenetes
objects such as kubelets idendified by their X509 client certificates.

• Kubernetes resources: Some resources such as “Persistentvolumes,
Nodes, Storageclasses, Certificatesigningrequests” are cluster scoped,
where as other resources such as “Pods, Services, Deployments, Dae-
monsets” are name space scoped.

• Opeartions/Verbs: These represent permisions such as “get, list, watch,
create, patch, update, delete, deletecollection”.

In order to create RBAC rules, we need to:

1. Determine where the resource is located within Kubernetes “API
Groups” (we will cover API groups this in the next section).

2. Decide the scope of the rule (namespace/cluster). Kubernetes defines
a set of objects to facilitate that, namely “Role” and “RoleBinding”

244 G. Rostami

and “ClusterRole” and “Cluster RoleBinding”. These will be covered
in upcoming sections.

3. Determine appropriate set of permissions a subject will need on a given
resource.

Figure 3 Overview of elements involved in RBAC decision making: Users, Resources, and
Permissions.

5 Kubernetes API Groups and Resources

5.1 Kubernetes API Groups

The API server is implemented as a REST web service. You can examine
the service’s hierarchy by interacting with it through “kubectl proxy” which
creates a proxy server between localhost and the API server:

#Establish the proxy. By default, it uses local port 8081 to interact with the
API server.
kubectl proxy &

#View overall API hierarchy
$ curl http://localhost:8001/

{
"paths": [

"/.well-known/openid-configuration",
"/api",
"/api/v1",
"/apis",
"/apis/",

Role-based Access Control (RBAC) Authorization in Kubernetes 245

"/apis/apps",
"/apis/apps/v1",
"/apis/storage.k8s.io",
"/apis/storage.k8s.io/v1",
"/apis/storage.k8s.io/v1beta1",

]
}
(Listing 5.1.1)

As you can see from the above result (Listing 5.1.1), the API service is
organized into different groups based on functionality and version. This is
just a sample to illustrate the point, there are many other API groups that are
not shown here due to space constraint.

The “core” API group “/api/v1” is the oldest group and contains many
resources such as pods, namespaces, services, etc. If we execute the command
below, we’ll see what resources are available under the core API group and
for each resource what verbs and other attributes are supported. For brevity,
only the Pod resource listed below (Listing 5.1.2) but there are many other
resources available in the core API group:

$ curl http://localhost:8001/api/v1

{
"name": "pods",
"singularName": "",
"namespaced": true,
"kind": "Pod",
"verbs": [
"create",
"delete",
"deletecollection",
"get",
"list",
"patch",
"update",
"watch"

],
"shortNames": [
"po"

246 G. Rostami

],
"categories": [
"all"

],
"storageVersionHash": "xPOwRZ+Yhw8="

}
(Listing 5.1.2)

Similarly, you can examine other API groups such as "/apis/apps/v1", etc.

5.2 Kubernetes Resources

To view all resource types and in which API groups they reside, we can use
“kubectl api-resources” command:

$ kubectl api-resources -o wide #The “-o wide” switch provides more info

[Table 1] shows select output when the above command is executed. Only
a few common resources shown for brevity and results are shown in a table
format for better formatting:

Table 1
Name Short Names API Version Name Spaced Kind Verbs

pods po v1 true Pod [create delete
deletecollection get list
patch update watch]

secrets v1 true Secrets [create delete
deletecollection get list
patch update watch]

serviceaccounts sa v1 true Service
Account

[create delete
deletecollection get list
patch update watch]

services svc v1 true Service [create delete
deletecollection get list
patch update watch]

As we can see, it provides great info such as under which API group the
resource lives, its scope namespace/cluster, and what verbs it supports.

Running the “kubectl api-resources” returns all resources but if say we are
for looking for a specific resource, say “daemonsets”, we could do something
like:

kubectl api-resources -o wide |grep daemonsets

Role-based Access Control (RBAC) Authorization in Kubernetes 247

Table 2
Name Short Names API Version Name Spaced Kind Verbs

daemonsets ds apps/v1 true DaemonSet [create delete
deletecollection get list
patch update watch]

#Result:
As it can be seen result shown in [Table 2], “daemonsets” resides under

the “apps/v1” API group.

6 Kubernetes Role and RoleBinding

Let’s say we want to assign a new user “Jane Doe” read-only access to all
the Pods in the “Marketing” namespace. First, we need to define a “Role” in
“marketing” namespace and assign Jane to that Role.

A Role is a namespaced object that represents a set of permissions
assigned to one or more Kubernetes resource(s) that reside in one or more
API group(s) as depicted in [Figure 4]:

Figure 4 Role.

Here is the yaml representation:

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:

namespace: marketing
name: marketing-pod-reader

248 G. Rostami

rules:
- apiGroups: [""] # "" represents the "core" or "v1" API group.

resources: ["pods"]
verbs: ["get", "watch", "list"]

(Listing 6.1)

Notes:

1. This Role (Listing 6.1) is bound to the “Marketing” namespace. In other
words, RBAC enforces this rule only in the “Marketing” namespace.

2. We can specify multiple commas separated resources, for example to
define a role that includes both “pods” and “daemonsets”, we could
express “resources” as [“pods”,” daemonsets”]. Since “daemonsets” are
in the “apps/v1” API group (see Section 5.2), we also need to add ”apps”
to the “apiGroup”:

rules:
- apiGroups: ["","apps"]

resources: ["pods","daemonsets"]
verbs: ["get", "watch", "list"]

3. We can also set RBAC policy to a specific resource, for instance the
“marketing-pod-reader” Role (Listing 6.1) gives read-only access to all
the Pods in the marketing namespace but we could limit the scope to
specific Pod("inventory-pod" in this case):

rules:
- apiGroups: [""]

resources: ["pods"]
resourceNames: ["inventory-pod"]
verbs: ["get", "watch", "list"]

To assign(bind) user “jane.doe” to the newly created “marketing-pod-
reader”, we need to create a “RoleBinding” object:

Here is the yaml representation:

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:

name: marketing-pod-reader-binding
namespace: marketing

subjects:

Role-based Access Control (RBAC) Authorization in Kubernetes 249

- kind: User
name: jane.doe
apiGroup: rbac.authorization.k8s.io

roleRef: # Signifies the binding to a Role / ClusterRole
kind: Role # In this case we are binding to a “Role”.
name: marketing-pod-reader #Must match the name of the Role or Cluster-

Role to bind to
apiGroup: rbac.authorization.k8s.io

(Listing 6.2)

Figure 5 RoleBinding.

Notes:

1. “RoleBinding” is namespace scoped. In this example (Listing 6.2), it is
bound to the “marketing” namespace.

2. Under “subjects”, we can either specify specific user(s) by setting “-
kind: User” or group(s) by specifying “-kind: Group”. Groups could be
the group specified in the “Subject” of a client certificate (if client certs
are used) or the groups the user belongs to in LDAP/Open ID Connect
systems.

3. Subjects can also be Kubernetes service accounts/group of service
accounts as well, for example:

"marketing-svc1" service account in the marketing name space
subjects:
- kind: ServiceAccount

250 G. Rostami

name: marketing-svc1
namespace: marketing
apiGroup: rbac.authorization.k8s.io

All service accounts in the marketing name space
subjects:
- kind: Group

name: system:serviceaccounts:marketing
apiGroup: rbac.authorization.k8s.io

7 ClusterRole and ClusterRoleBinding

RBAC Role and Role Bindings can also be defined at cluster level. They
are called “ClusterRole” and “ClusterRoleBinding” respectively. This means
these roles and their corresponding role bindings are not bound by names-
paces. [Figure 6] illustrates a POD read -only “ClusterRole”:

Figure 6 ClusterRoleBinding.

As you can see, unlike “Role”, a “ClusterRole” does not have a “names-
pace” element.

Here is the yaml representation of our read only POD ClusterRole:

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole

Role-based Access Control (RBAC) Authorization in Kubernetes 251

metadata:
name: cluster-pod-reader

rules:
- apiGroups: [""] # "" represents the "core" or "v1" API group.

resources: ["pods"]
verbs: ["get", "watch", "list"]

(Listing 7.1)

Once a ClusterRole has been created, we can bind users/groups to it. Here
is the yaml representation of our ClusterRoleBinding object:

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:

name: cluster-pod-reader-binding
subjects:
- kind: User

name: terry.jones
apiGroup: rbac.authorization.k8s.io

roleRef:
kind: ClusterRole
name: cluster-pod-reader #must match the name of the Role or ClusterRole

to bind to
apiGroup: rbac.authorization.k8s.io

(Listing 7.2)

Notes:

1. In this example (Listing 7.2), “Terry.Jones” will have read access to all
Pods regardless of the namespaces they are bound to.

8 ClusterRole and Role Binding (Namespaced)

Often times it is desirable to define and reuse generic roles such as “Reader”,
“Developer,” “Team Lead”, etc. and bind them to namespace scoped role
bindings. In other words, rather than creating a “Marketing Pod Reader”
Role, and an “Accounting Pod Reader” Role, then bind them to RoleBinding
binding in each namespace, we could create a “Pod Reader” ClusterRole and

252 G. Rostami

bind it to namespace scoped RoleBinding. This is illustrated in [Figure 7]
below:

Figure 7 ClusterRole bound to a namespaced scoped Role.

In the above example, the ClusterRole “pod-reader” is defined at the
cluster level and is being shared and bound to the “Marketing” and “HR”
namespaces. “Terry.Jones” and “John.Doe” have Pod read-only access in the
“HR” and “Marketing” namespaces respectively.

Here is the yaml representation:

#ClusterRole definition
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:

name: pod-reader-role
rules:
- apiGroups: [""]

resources: ["pods"]
verbs: ["get", "watch", "list"]

(Listing 8.1)

#HR RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:

name: hr-pod-reader-binding
namespace: hr

subjects:
- kind: User

Role-based Access Control (RBAC) Authorization in Kubernetes 253

name: terry.jones
apiGroup: rbac.authorization.k8s.io

roleRef:
kind: ClusterRole
name: pod-reader-role
apiGroup: rbac.authorization.k8s.io

(Listing 8.2)

#Marketing RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:

name: marketing-pod-reader-binding
namespace: marketing

subjects:
- kind: User

name: john.doe
apiGroup: rbac.authorization.k8s.io

roleRef:
kind: ClusterRole
name: pod-reader-role
apiGroup: rbac.authorization.k8s.io

(Listing 8.3)

9 Aggregating ClusterRoles

Kubernetes RBAC allows aggregating two or more ClusterRoles into a single
ClusterRole. Let’s look at the example below:

The ClusterRole “support” (Listing 9.1) inherits all its rules from “manage-
pods”, manage-endpoints-services, manage-deployments, and “manage-
daemonsets” ClusterRoles. As you can see its “rules:” section is empty.
The “aggregationRule” will cause the control plane to automatically populate
its “rules” with the rules from other ClusterRoles that have a matching label.
As shown below (Listing 9.1), the other ClusterRoles that follow the “sup-
port” ClusterRole all have the matching “‘acme.com/aggregate-to-support:
"true"’ label.

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole

254 G. Rostami

metadata:
name: support

aggregationRule:
clusterRoleSelectors:
- matchLabels:

acme.com/aggregate-to-support: "true"
rules: [] # The API Server fills in the rules form other ClusterRoles with
matching label.
(Listing 9.1)

#If we run the following command, after creating the other ClusterRoles
below, we’ll see all the inherited rules (Listing 9.2):

kubectl describe ClusterRole support
PolicyRule:
Resources Non-Resource Resource Verbs

URLs Names
--------- ----------------- -------- -----
deployments.apps [] [] [get list watch create update patch delete collection]
endpoints [] [] [get list watch create update patch delete]
pods/logs [] [] [get list watch create update patch delete]
pods [] [] [get list watch create update patch delete]
services [] [] [get list watch create update patch delete]
daemonsets.apps [] [] [get list watch create update patch delete]
(Listing 9.2)

#Below (Listing 9.3 through 9.6) are the yaml declaration of the ClusterRoles
that the “support” ClusterRole (Listing 8.1) inherited rules from:

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:

name: manage-pods
labels:

acme.com/aggregate-to-support: "true"
rules:
- apiGroups: [""]

resources: ["pods","pods/logs"]
verbs: ["get", "list", "watch", "create", "update", "patch", "delete"]

(Listing 9.3)

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:

Role-based Access Control (RBAC) Authorization in Kubernetes 255

name: manage-endpoints-services
labels:

acme.com/aggregate-to-support: "true"
rules:
- apiGroups: [""]

resources: ["endpoints","services"]
verbs: ["get", "list", "watch", "create", "update", "patch", "delete"]

(Listing 9.4)

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:

name: manage-deployments
labels:

acme.com/aggregate-to-support: "true"
rules:
- apiGroups: ["apps"]

resources: ["deployments"]
verbs: ["get", "list", "watch", "create", "update", "patch", "delete"]

(Listing 9.5)

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:

name: manage-daemonsets
labels:

acme.com/aggregate-to-support: "true"
rules:
- apiGroups: ["apps"]

resources: ["daemonsets"]
verbs: ["get", "list", "watch", "create", "update", "patch", "delete"]

(Listing 9.6)

10 User Facing Built-in ClusterRoles

In addition to being able to create custom Role and ClusterRoles, Kubernetes
provides some built-in ClusterRoles as described in [Table 3] below. Spe-
cial Care must be taken when binding users/groups to these ClusterRoles,
particularly the “cluster-admin” ClusterRole.

256 G. Rostami

Table 3 Built-in User-facing roles [7].
ClusterRole Description
cluster-admin Allows super-user access to perform any action on any resource. When

used in a ClusterRoleBinding, it gives full control over every resource in
the cluster and in all namespaces. When used in a RoleBinding, it gives full
control over every resource in the role binding’s namespace, including the
namespace itself.

admin Allows admin access, intended to be granted within a namespace using a
RoleBinding. If used in a RoleBinding, allows read/write access to most
resources in a namespace, including the ability to create roles and role
bindings within the namespace. This role does not allow write access to
resource quota or to the namespace itself. This role also does not allow
write access to Endpoints in clusters created using Kubernetes v1.22+.

edit Allows read/write access to most objects in a namespace. This role does not
allow viewing or modifying roles or role bindings. However, this role
allows accessing Secrets and running Pods as any ServiceAccount in the
namespace, so it can be used to gain the API access levels of any
ServiceAccount in the namespace. This role also does not allow write
access to Endpoints in clusters created using Kubernetes v1.22+.

view Allows read-only access to see most objects in a namespace. It does not
allow viewing roles or role bindings. This role does not allow viewing
Secrets, since reading the contents of Secrets enables access to
ServiceAccount credentials in the namespace, which would allow API
access as any ServiceAccount in the namespace (a form of privilege
escalation).

11 Validating RBAC Rules Through Impersonation

The principle of least privilege (POLP) requires giving each user, service
and application only the permissions needed to perform their work and no
more [8].

When granting access to Kubernetes resources, administrators must
ensure that the principal of least privilege is observed. This can be achieved
through “impersonation”. That is an administrator can impersonate the
subject he/she is granting access to and validate the outcome.

A user (if granted that privilege), can act as another person through imper-
sonation headers [9]. Impersonation can be achieved through Kubernetes API
REST calls or through the “kubectl” utility. For this discussion we will use
kubectl.

To see this in action, recall that in Section 6 of this paper we created
a ClusterRole named “pod-reader-role” that gives read access to Pods. We
also created a RoleBinding named “marketing-pod-reader-binding” in the

Role-based Access Control (RBAC) Authorization in Kubernetes 257

“Marketing” namespace with “John.Doe” as the subject. As Kubernetes
admins we want to ensure that John has the intended rights which is “John
Doe has read-only access to all Pods in the ‘Marketing’ namespace”, nothing
more and nothing less:

#Rather than literally executing commands on behalf of Terry, we will use
the convenient
#“auth can-i” command to assess permissions. ’--as=john.doe’ impersonates
john:

#Can John list Pods in the Marketing namespace? The answer should be yes
kubectl auth can-i list pods -n marketing --as=john.doe
yes # Kubernetes response

#Can John list Pods in the “kube-system” namespace? The answer should no.
#Even though "pod-reader-role" is a ClusterRole, it is bound to a RoleBinding
in
#Marketing namespace. This limits the scope of John’s rights only to the
Marketing
#namespace
kubectl auth can-i list pods -n kube-system --as=john.doe
no # Kubernetes response

#Can John list Pods at the cluster level? The answer should be no, his rights
are limited to the Marketing namespace.
kubectl auth can-i list pods --as=john.doe
no # Kubernetes response

#Can John create deployments in the Marketing namespace? The answer
should be no
kubectl auth can-i create deployments -n marketing --as=john.doe
no #Kubernetes response

12 Conclusion

Kubernetes has become the facto standard for hosting modern cloud-native
applications. It provides many benefits such as application load balancing,
high availability, ease of deployment, ease of scale up/down based on busi-
ness demands, etc. It has a layered architecture. Each layer has its own
security requirements and settings. This layered architecture provides defence
in depth which is highly effective and desirable, provided that these layers
are properly protected. The focus of this paper of was protecting Kubernetes

258 G. Rostami

the control plane layer (more specifically the objects in the etcd database)
through Role Based Access Control (RBAC). Through RBAC we can exer-
cise fine grain access control on all Kubernetes objects such as PODs, name
spaces, secrets, deployments, end points, etc. RBAC enables us to create roles
(permission sets on Kubernetes objects) and bind them to Kubernetes users,
allowing users to perform specific operations such as list, create, delete, etc.
Roles can be defined at the name space (Role) or cluster level (ClusterRole).
Users can be bound to Roles at the name space (RobeBinding) level, or to
ClusterRoles at the cluster level (ClusterRoleBinding). ClusterRoles can also
be bound to users at the name space level through RoleBinding. Using this
technique, Kubernetes admins can create generic roles such as “Developers,
Team Leads”, “Deployment”, “Readers”, etc. scoped at the cluster and bind
them to users at individual name spaces. This will provide great reusability
and reduces administrative burden of managing Roles at individual name
space. RBAC also provides some built-in ClusterRoles such as “cluster-
admin”, “admin”, “edit”, and “view” that Kubernetes admins can leverage as
needed (see Table 3). Kubernetes RBAC also provides role aggregation fea-
ture where super ClusterRoles can be created to automatically inherit rights
from one or more ClusterRoles. Finally, impersonation allows Kubernetes
admins to impersonate users to ensure they have just the right level of access
to Kubernetes object to do their jobs (no more, no less).

References

[1] Role-based access control (Wiki):
https://en.wikipedia.org/wiki/Role-based_access_control.

[2] Using Admission Controllers (Kubernetes documentation):
https://kubernetes.io/docs/reference/access-authn-authz/admission-con
trollers.

[3] OpenID Connect Tokens (Kubernetes documentation):
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
#openid-connect-tokens.

[4] Webhook Mode (Kubernetes documentation):
https://kubernetes.io/docs/reference/access-authn-authz/webhook/.

[5] Kubernetes Service Accounts
https://kubernetes.io/docs/concepts/security/service-accounts/.

[6] Configure Kubernetes to use OpenID Connect Authentication
https://youtu.be/M9KABid_sCY.

[7] User-facing roles (Kubernetes documentation):

https://en.wikipedia.org/wiki/Role-based_access_control
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers
https://kubernetes.io/docs/reference/access-authn-authz/authentication/#openid-connect-tokens
https://kubernetes.io/docs/reference/access-authn-authz/authentication/#openid-connect-tokens
https://kubernetes.io/docs/reference/access-authn-authz/webhook/
https://kubernetes.io/docs/concepts/security/service-accounts/
https://youtu.be/M9KABid_sCY

Role-based Access Control (RBAC) Authorization in Kubernetes 259

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#user-fac
ing-roles.

[8] Best Practice Guide to Implementing the Least privilege (Netwrix):
https://www.netwrix.com/guide_to_implementing_the_least_privilege_
principle.

[9] User impersonation (Kubernetes documentation):
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
#user-impersonation.

Biography

Garsha Rostami is the CEO of the Galaxy Consulting L.L.C. in Min-
nesota, USA which provides custom Kubernetes training materials for clients.
He also owns and manages the technology focused The Learning Channel
on YouTube. He received his bachelor of science in Computer Science from
university of New Brunswick in Fredericton, Canada. He has been in the
computing business for the past 30 years and has worked for a variety of
private and public companies including Target Corporation in Minneapolis
where he was a Principal engineer.

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#user-facing-roles
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#user-facing-roles
https://www.netwrix.com/guide_to_implementing_the_least_privilege_principle
https://www.netwrix.com/guide_to_implementing_the_least_privilege_principle
https://kubernetes.io/docs/reference/access-authn-authz/authentication/#user-impersonation
https://kubernetes.io/docs/reference/access-authn-authz/authentication/#user-impersonation

	Introduction
	Kubernetes Authentication and Authorization Process
	USERS, GROUPS, and Service Accounts in Kubernetes
	Service Accounts
	Regular Users and Groups

	RBAC Overview
	Kubernetes API Groups and Resources
	Kubernetes API Groups
	Kubernetes Resources

	Kubernetes Role and RoleBinding
	ClusterRole and ClusterRoleBinding
	ClusterRole and Role Binding (Namespaced)
	Aggregating ClusterRoles
	User Facing Built-in ClusterRoles
	Validating RBAC Rules Through Impersonation
	Conclusion

