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Abstract

Recent studies have found the mapping relationship between channel state
information used in commercial Wi-Fi devices and environmental changes
in the indoor environment, which can be used for sensing purposes. With
the advantages of low cost and wide deployment of Wi-Fi facilities, passive
indoor tracking systems based on Wi-Fi have huge potential. This article
proposes and builds a passive indoor tracking system using commercial Wi-Fi
devices, which realizes the function of tracking the human body’s trajectory
in indoor environment. The system uses only commercial Wi-Fi devices.
It processes the collected channel state information data by sending and
receiving two pairs of Wi-Fi devices, and extract the movement information
the messy data to obtain the trajectory of the human body. The system
conducts a geometric feature analysis in the complex plane to obtain accurate
displacement information, and utilize a fusion algorithm, combining the AoA
(Angle of Arrival) information obtained by MUSIC algorithm, to obtain
accurate human trajectory. In the experiment, the complex plane geometric
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feature analysis algorithm reaches centimeter-level accuracy in obtaining
displacement information, while the system reaches decimeter-level accuracy
on in obtaining indoor human trajectory on a simulation dataset.

Keywords: Wi-Fi, channel state information, angle of arrival, MUSIC
algorithm.

1 Introduction

The essence of the Wi-Fi-based trajectory tracking system is to collect and
analyse the CSI (Channel State Information) to obtain the attributes of the
wireless link channel. Then, the motion trajectory and position information
of the human body is analysed [1]. At present, there are two mainstream ideas
for CSI positioning [2, 3]: (1) Establishing a location fingerprint database
for matching positioning. The environment easily affects this method. The
fingerprint matching algorithm is time-consuming and has poor position-
ing accuracy for moving targets; (2) Estimating multipath parameters to
establish a geometric model for positioning. Scholars at home and abroad
have proposed localization models such as Spotfi [4], Dynamic MUSIC [5],
Widar2.0 [6], and MuTrack [7]. The localization accuracy can reach sub-
meter level when tracking moving targets. Most CSI indoor positioning
schemes are only suitable for single-person trajectory tracking, and the
path of multi-person trajectory tracking [8] is being explored. The passive
trajectory tracking and positioning system of Wi-Fi devices is mainly based
on AoA (Angle of Arrival) estimation. The Widar [9, 10] is proposed and
developed by Dan Wu et al. It is a series of passive indoor human trajectory
tracking systems, which achieve decimeter-level accuracy in indoor posi-
tioning and tracking of the human body. It has also developed a single-link
tracking solution that only requires a pair of transceivers. An amplitude-based
MUSIC (Multiple Signal Classification) algorithm is proposed by Karanam
et al. [11] to achieve trajectory tracking in a multi-person environment.

At present, the method of AoA estimation applied in the field of Wi-Fi
positioning mainly includes the multi-signal classification algorithm (Multi-
ple Signal Classification, MUSIC) [12] based on matrix eigenspace decompo-
sition and the expectation maximization algorithm (Expectation Maximizes,
EM). In the research of location based on Wi-Fi, a super-resolved MUSIC
algorithm for jointly estimating AoA and ToF (Time of Flight) is used in
the literature [13]. The CSI magnitude-based Doppler-MUSIC algorithm is
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used the literature [14]. Then, the Doppler-MUSIC algorithm is used for the
denoised CSI and the conjugate multiplication method is used to complete the
joint estimation of Doppler frequency shift and AoA in the literature [15, 16].
An improved algorithm of the EM algorithm in the literature [10], SAGE
(Space-alternating Generalized Expectation-Maximization, Subspace Alter-
nating Generalized Expectation-Maximization) algorithm is used to complete
the joint estimation of AoA, ToF and Doppler frequency shift. Literature [19],
Doppler-MUSIC is used to obtain accurate DFS (Doppler Frequency Shift)
information from noisy CSI samples. Literature [20], the problem of joint
multipath parameter estimation is expressed as a maximum likelihood esti-
mation problem and solved by SAGE algorithm.

In the literature [13], Manikanta Kotaru et al used different subcarriers
and antennas in the Wi-Fi system to construct a virtual antenna array, and
used the super-resolution MUSIC algorithm to overcome that the number
of received signals in the MUSIC algorithm must be less than the number
of antennas. For Wi-Fi devices with few antennas (usually no more than
three), the signal AoA and ToF are jointly estimated to distinguish the direct
transmission path and the reflection path based on ToF. In addition, a series of
achievements of Wi-Fi perception in other application scenarios are also eye-
catching. In terms of non-contact breath detection, YouWei Zeng et al propose
the processing method of the CSI quotient in the literature [17], which
compare the CSI data obtained from two antennas with half a wavelength
apart in space. Then, the best projection axis in the complex plane is found
to complete the respiratory frequency estimation. However, the human body
reflection path signal (belonging to the non-line-of-sight signal) is weaker
than the static signal (including the line-of-sight signal). To extract the human
body reflection multipath, the two above problems must be solved. One is
the phase noise and the other is the static signal. It is no longer suitable to
use the CSI linear phase denoising method [18] like static data. In terms
of gesture recognition, the Widar 3.0 [11] system introduces a deep neural
network based on body coordinate velocity information, which can achieve
high cross-domain recognition accuracy in different environments with only
one training. However, in the process of reproducing Widar 3.0, there will
be unstable estimated value hopping phenomenon, when the SAGE (Space-
alternating Generalized Expectation-Maximization) algorithm and the GPM
algorithm are used to obtain the AoA of the line-of-sight channel in static
state. In this paper, the MUSIC algorithm is combined to make the calibration
for variable static AoA.
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2 System Model

The purpose of this study is to use commercial Wi-Fi devices to track two-
dimensional trajectories of human motion in an indoor environment, as shown
in Figure 1. In the sensing application of Wi-Fi devices, the number of
antennas is less and the signal-to-noise ratio is low. When tracking a moving
human body, it is limited by the sampling rate (about 200 Hz). The number
of snapshots (multiple CSI frames measured in a short period of time are
regarded as measured in the same environment, and multiple snapshots in the
time domain are used to make up for the lack of signal-to-noise ratio) is also
less. When measuring signal AoA with the MUSIC algorithm, the resolution
is limited by the array aperture at low signal-to-noise ratios and small snap-
shot counts. The commonly used Wi-Fi equipment with only three antennas
is reconsidered. When measuring the signal AoA, a linear antenna array is
used. When the antenna interval is the largest (d = λ/2), the antenna array
has the largest aperture (3 − 1) • λ/2. In the Wi-Fi, the 2.4 GHz frequency
band is about 0.12 m, and the 5 GHz band is only 0.06 m. This makes its
angular resolution very low. Even when using the super-resolution MUSIC
algorithm in the literature [17], the accuracy of AoA estimation is very low,
and it is difficult to meet the requirements of tracking the two-dimensional
trajectory of human motion in indoor environments.

However, the length change of the dynamic reflection path could be more
accurately estimated in the complex plane trajectory analysis algorithm based

Figure 1 System model.
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on the CSI quotient. In the simplified model, when the dynamic reflection
path increases or decreases by one wavelength and the reflection point (the
human body) is half a wavelength away or closer to the starting device, the
CSI quotient rotates one revolution in the complex plane. Therefore, the path
variation length calculated by the complex plane trajectory algorithm based
on the CSI quotient is more accurate, but its disadvantage is that the absolute
length of the path could not be determined, so it is impossible to use this
algorithm only to calculate the human motion trajectory.

The design idea of the system model in this paper is to use a rela-
tively accurate CSI quotient complex plane trajectory analysis algorithm to
obtain accurate relative change information of the human body reflection
path length, and then fuse the AoA information obtained by the MUSIC
algorithm with a large error, so as to calculate the precise absolute position
information of the human body or the human body part and obtain the
accurate estimation of the activity trajectory of the human body or the human
body part. On the one hand, the results of AoA estimation provide absolute
position information for the relative displacement information obtained by
the CSI quotient complex plane trajectory analysis algorithm. On the other
hand, the relative displacement information obtained by the CSI quotient
complex plane trajectory analysis algorithm can average the AoA results over
the time span of the entire motion trajectory, reducing the impact of the low
accuracy of the AoA estimation algorithm on the results.

3 Spatial Trajectory Estimation Based on CSI Quotient

The spatial trajectory estimation based on the CSI quotient is an important
module of the passive indoor trajectory tracking system based on Wi-Fi
designed and implemented in this paper. The CSI quotient is used to estimate
the length change of the dynamic reflection path, which is the ToF change
information of the reflected signal of the human body. Then, the precise
relative displacement information is calculated.

3.1 CSI Quotient Model

The CSI quotient is proposed in the literature [17] that the CSI data col-
lected by two receiving antennas connected to the network card of the same
receiving equipment and close to each other in space are calculated to obtain
the CSI quotient data processing method. Due to the existence of CSI noise,
it is very difficult to directly use CSI data to extract and analyse human
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multipath features. In contrast, the CSI quotient data obtained from CSI
quotient processing retain the geometric characteristics of CSI data on the
complex plane, while greatly reducing the amplitude and phase noise. In this
paper, the CSI quotient data are used to calculate the path length variation.

The mathematical model of the CSI quotient is as follows:

H1(k, t)

H2(k, t)
=
Anoise(t) • ej(k•(λb(t)+λo)+β(t)) • (A1(t)ejθ1(t) +Hs,1)

Anoise(t) • ej(k•(λb(t)+λo)+β(t)) • (A2(t)ejθ2(t) +Hs,2)

=
A1(t)ejθ1(t) +Hs,1

A2(t)ejθ2(t) +Hs,2

=
A1(t)ejθ1(t) +Hs,1

A2(t)ej∆θ(t) • ejθ1(t) +Hs,2
(1)

Thereinto, H1(k, t) and H2(k, t) are the CSI data of the subcarrier
number k received on the first and second antennas in the first t CSI data
frame respectively. Anoise(t) • ejk•(λb(t)+λo)+β(t) is the amplitude and phase
noise in the first t CSI data frame, since the same network card receives
the same frame of data and the noise part is exactly the same for the two
antennas. A1(t)ejθ1(t) and A2(t)ejθ2(t) are the amplitude and phase of the
dynamic path in the CSI data received by the two antennas respectively. Hs,1

and Hs,2 represent the amplitude and phase of the static path in the CSI
data received by the two antennas. ej∆θ(t)in the simplified result represents
the phase difference of the dynamic path on the two antennas. It could be
seen that the CSI quotient can theoretically play a role in suppressing the
amplitude and phase noise introduced by the wireless network card in the
process of receiving signals. In addition, in the processing of actual data, the
CSI quotient is also very effective in suppressing glitches and fluctuations in
the data.

The literature [17] points out that the simplified result of Equation (1)
could be approximated as A1e

jθ1(t), the Möbius transform of this term on the
complex plane, which could be regarded as its translation, scaling, mirroring
and inversion transformation on the complex plane. On the complex plane,
A1e

jθ1(t) represents an arc with a rotation angle θ1(t). If the arc does not
contain the origin after translation and scaling, its rotation direction remains
unchanged after Möbius transformation. Therefore, the CSI quotient data
retain the geometric characteristics of the dynamic components in the CSI
data on the complex plane. The amplitude and phase characteristics of the
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dynamic path components contained in the CSI data could be extracted and
analysed by analysing the CSI quotient.

The collected CSI data is first calculated by the ratio between the receiv-
ing antennas on each frame and each subcarrier to obtain the CSI quotient on
each frame and each subcarrier, and to be averaged among the subcarriers.
Some sub-carriers in the actual received data are of poor quality, and there
are problems such as inconspicuous reflection on the dynamic path, too
small amplitude or serious noise. The operation of averaging between sub-
carriers weakens the influence of these sub-carriers, and also enhances system
stability.

CSI ∈ C3×30×200 Ratio between antennas−−−−−−−−−−−−−−→ CSIratio ∈ C30×200

Average between subcarriers−−−−−−−−−−−−−−−−−→ CSIratio ∈ C200 (2)

In contrast, the original CSI data are very messy on the complex plane,
while the trajectory of the CSI quotient on the complex plane is related to the
dynamic path and is relatively regular. It could be seen that, in the measured
data, the CSI quotient could process the CSI data to such an extent that its
dynamic path features could be extracted by analysing its geometric features
on the complex plane for subsequent algorithm processing.

3.2 Complex Plane Trajectory Analysis Algorithm

The above dynamic path features are mainly manifested in the correlation
between the dynamic path length variation and the rotation angle of the
complex plane CSI quotient trajectory.

CSI(t) = Hs +A(t)ejθ(t)

= Hs +A(t)e−j2π
d(t)
λ (3)

CSIratio = Coffset +A′(t)e−j2π
d(t)
λ (4)

In Equation (3), Hs is the sum of static path components, A(t)ejθ(t)

is the amplitude and phase of the dynamic path with the largest amplitude
and moderate frequency, λ is the wavelength and d(t) is the path length
respectively. The static component includes the direct path component and
the reflected path component of all static objects, as well as the reflected
path component of objects that move slowly and are considered stationary
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Figure 2 Schematic diagram of trajectory model on complex plane of CSI quotient.

for a short time. According to the theoretical derivation of the CSI quotient in
Section 3.1, the CSI quotient in Equation (4) could be expressed as the offset
Coffset of the scaled dynamic path trajectory on the complex plane, which is
a complex number.

As shown in Figure 2, on the complex plane Zs, the static path component
of the CSI quotient is represented,Zd represents the dynamic path component
of the CSI quotient, and Z = Zs + Zd represents the CSI quotient. When
the reflection path grows, the CSI quotient trajectory on the complex plane
rotates Coffset clockwise to form an arc centered on the circle Coffset . On the
contrary, when the reflection path is shortened, the CSI quotient trajectory on
the complex plane is a counter clockwise arc.

The dynamic components contained in the actual collected CSI data
usually include multiple dynamic paths, such as the dynamic paths reflected
by different body parts of the human body, the reflection paths of the human
body that are re-reflected by objects such as walls, and the dynamic paths
caused by other moving objects in the environment. These extraneous path
components are usually smaller in magnitude and higher in frequency than
the body reflected path, causing glitches and jitters. Alternatively, they are
lower in frequency, causing a slow drift of the offset Coffset .

The input of the algorithm is the CSI quotient. The algorithm flow is
shown in Figure 3.

Firstly, the trajectory jitter caused by high-frequency components is
filtered out by the Savitzky-Golay filter, then the maximum value of its
imaginary part is used to segment, and the entire trajectory on the complex
plane is divided into several arcs. The segmented results include inferior
arc segments whose shape is close to a circle, and superior arc segments
generated by the change of the path length variation trend. For inferior
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Figure 3 The complex plane trajectory analysis algorithm.

arc segments, the average method is used to find the center of the circle.
For superior arc segments, the center of adjacent superior arc segments is
directly used by utilizing the slow change of static and low-frequency path
components. Next, the relative phase corresponding to each point on the arc
is calculated according to the center of each arc. Then, the dynamic path
phase is calculated. Finally, the dynamic path length is calculated according
to Equation (5).

d(t) = −λθ(t)
2π

(5)

It should be noted that θ(t) is obtained to only represent the increment
of the dynamic component phase in the first t frame of CSI (Channel State
Information) data relative to the dynamic component phase in the first frame
of CSI (Channel State Information) data. So d(t) is obtained to represent the
relative change information of the dynamic path length, not the absolute path
length.

3.3 Computation of Space Trajectories

In the above algorithm, the path length of the wireless signal reflected by
the dynamic object in space could be obtained. In order to obtain the spatial
trajectory of the dynamic object that is from the human body, we also need to
use the spatial position of the transceiver device, in addition to the reflection
path length of the human body. The scenario of indoor two-dimensional
trajectory estimation of the human body is considered. For the reflection path
length on a pair of transceiver devices, single-dimensional information could
be only used. The position estimation is limited to an ellipse, and the specific
position of the human body on the ellipse could not be measured. Therefore,
two pairs of transceivers are used to receive. In order to conveniently use
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Figure 4 Path diagram.

the path length to calculate the position information, two transceiver pairs
are arranged in a horizontal plane, and their direct transmission paths are
perpendicular to each other, as shown in Figure 4.

In the scenario shown in Figure 4, the transmitting device Tx and the two
receiving devices Rx1 and Rx2 are used, and the effective trajectory tracking
range is the area marked by the shadow. The result of the above algorithm is
the relative change information l1,r(t) and l2,r(t) of the reflection path length.

l1,r(t) = l1(t)− l1,0
l2,r(t) = l2(t)− l2,0

(6)

Thereinto, l1(t) and l2(t) are the lengths of the reflection paths on the
two pairs of transceiver devices respectively, which are the distance from the
reflective object (human body) to the transmitting device, and the sum of the
distances from the reflective object to the receiving device. Corresponding to
a+b in Figure 4, l1,0 and l2,0 respectively represent the initial values of the
lengths of the two reflection paths.

A Cartesian plane rectangular coordinate system is established on the
plane where the two transceiver pairs are located. The lines where Tx-Rx1
and Tx-Rx2 are located are respectively used as the x and y axes, as shown
in Figure 5. From the spatial position relationship, the following equations
could be obtained:{√

(x(t)− x0)2 + (y(t)− y0)2 +
√

(x(t)− x1)2 + (y(t)− y1)2 = l1(t)√
(x(t)− x0)2 + (y(t)− y0)2 +

√
(x(t)− x2)2 + (y(t)− y2)2 = l2(t)

(7)
Thereinto, (x0, y0) is the coordinate of the sending device Tx. (x1, y1)

and (x2, y2) are the coordinates of the sending devices Rx1 and Rx2 respec-
tively. According to the equation system, (x(t), y(t)) is the coordinate of the
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Figure 5 Schematic diagram of path length calculation location.

reflecting object at the moment t. In fact, this system of equations describes
the intersection of two ellipses with Tx, Rx and Tx, Rx2 as the focuses
respectively, as shown in Figure 4. There are two or more intersection points.
The meaningful intersection positions could be distinguished by judging
according to the effective tracking range.

It should be noted that the initial values l1,0 and l2,0 of the reflection path
length are assumed to be known here. The determination method involves the
results of the AoA estimation, which will be introduced in the Section 4.2.

4 AoA Estimation Based on Music Algorithm

4.1 Improved MUSIC Algorithm for Joint Estimation of AoA
and ToF

For applying the MUSIC algorithm to the Wi-Fi passive positioning system,
there are the following challenges:

• Insufficient resolution due to the limited number of Wi-Fi antennas:

Common commercial Wi-Fi devices generally have fewer antennas. In the
research in the field of Wi-Fi perception, the more Wi-Fi wireless network
cards Intel 5300 NIC are widely used as an example. This network card
supports up to 3 antennas for sending or receiving. The maximum number
M = 3 of antennas in the antenna array is used for the MUSIC algorithm.
The covariance matrix RX of the antenna array output signal obtained in
the MUSIC algorithm is an order square matrix M = 3. Therefore, the
noise space En is removed in the process of applying the MUSIC algorithm,
and the signal space Es could accommodate at most two eigenvectors. In an
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indoor environment, due to the reflection of objects such as walls, floors and
human bodies, the number of Wi-Fi signal multipaths is often greater than
two. Therefore, the classic MUSIC algorithm could not accurately estimate
and distinguish the signal AoA in an indoor environment.

• It is difficult to effectively select the reflection path of the human body
in a multipath environment:

In the results of the MUSIC algorithm, the sources of AoA are messy. It is
difficult to distinguish the AoA of the human body reflection path only based
on the AoA information estimated by the classical MUSIC algorithm.

• Insufficient utilization of subcarrier dimension information:

The CSI information has a small length in the antenna array dimension
(only three antennas), but a large length in the frequency dimension (for
example, the Intel 5300 NIC could measure the CSI value at the center
frequency of 30 subcarriers). The classic MUSIC algorithm only utilizes
the dimension of the antenna array, but could not make good use of the
information in the dimension of the subcarriers in the CSI.

Faced with these problems, this research refers to the literature [13]
of the construction of a virtual antenna array. The super-resolution AoA
estimation is completed by the MUSIC algorithm with spatial smoothing.
The frequencies of all 30 sub-carriers on the three antennas in the 3× 30 CSI
data are used to form a virtual antenna array. The received signal matrix is
constructed with the spatial smoothing technology. Specifically, the received
signal matrix is expressed as:

CSIsmoothed

=



csi1,1 csi1,2 . . . csi1,16 csi2,1 csi2,2 . . . csi2,16

csi1,2 csi1,3 . . . csi1,17 csi2,2 csi2,3 . . . csi2,17

...
...

...
...

...
...

...
...

csi1,15 csi1,16 . . . csi1,30 csi2,15 csi2,16 . . . csi2,30

csi2,1 csi2,2 . . . csi2,16 csi3,1 csi3,2 . . . csi3,16

csi2,2 csi2,3 . . . csi2,17 csi3,2 csi3,3 . . . csi3,17

...
...

...
...

...
...

...
...

csi2,15 csi2,16 . . . csi2,30 csi3,15 csi3,16 . . . csi3,30


(8)
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Correspondingly, the steering vector A corresponding to the spatial spec-
tral function in the super-resolution ToF-AoA MUSIC algorithm is also
expressed as follows:

A(θ, τ) =

[
Ω1(τ) Ω2(τ) . . . Ω15(τ) Φ(θ)Ω1(τ)

Φ(θ)Ω2(τ) . . . Φ(θ)Ω15(τ)

]
(9)

Thereinto, Φ(θ) = e−j2πd sin(θ)f/c represents the phase shift caused
by the signal θ of AoA between two antennas with distance d. Ωk(τ) =
e−j2π(k−1)∆fτ represents the phase shift of a signal on the sub-carrier k
numbered, it is as relative to the sub-carrier 1 numbered.

Correspondingly, the peak search is performed on the two-dimensional
spatial spectral function. The AoA and ToF corresponding to a series of peaks
are the joint estimation results of AoA and ToF.

4.2 AoA Matching and Dynamic Path AoA Selection Algorithm

In the above-mentioned AoA-ToF estimation algorithm based on the MUSIC
algorithm, the AoA of the signal arriving at the Wi-Fi antenna array from
each frame of the original CSI data is analyzed. Several AoA estimates are
outputted in each frame to form multipath AoA map within a period of
time. The data required for trajectory tracking are the target object, which
is the human body. There is the trajectory information within a period of
time and the position of the target object at each moment in the time period.
Specifically, for a series of results of the MUSIC algorithm, it is necessary
to match the AoA estimation results of the same signal source in each
two adjacent frame results in terms of time sequence, and obtain the time
sequence AoA of each path for further processing.

In addition, the results of the MUSIC algorithm also include multiple
paths other than the human body reflection path and the AoA estimation
results corresponding to the error results generated by noise. It is necessary
to reduce the influence of noise. Then, the AoA estimate corresponding to the
human body reflection path is selected according to the changes.

This paper refers to the methods in the literature [10], introduces the
model of graph theory for modeling, and converts the path matching problem
into a binary integer programming (Binary Integer Programming, BIP) to
solve.

That each frame containing n AoA-ToF estimates is considered. The
AoA-ToF map is composed of frame AoA-ToF data. The AoA-ToF estimates
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of a series of frames resulting from the MUSIC algorithm are regarded as
vertices. The relationship between AoA-ToF estimates of adjacent frames is
regarded as an edge. The weights represent the influence of possible edges
on the planning problem goal. The path matching problem is to add connect-
ing edges between the vertices corresponding to the AoA estimates of the
same path in adjacent frames. The n connected subgraphs are formed. Each
subgraph represents the AoA estimate of a path in them frame measurement.

Specifically, an undirected weighted graph G = (V,E,W ) is defined to
build the model.

V is the set of vertices and is represented by a matrix Vm×n whose
element represents the AoA-ToF estimate j in the frame i.

E is a set of edge and is represented by an adjacency matrix Em−1×n×n
whose element ei,j,k is 0 or 1. They indicate that there are respectively
connected and unconnected edges between vertices. In this problem, there
are the two following constraints. Firstly, there are only connected edges
between the vertices of adjacent frames. This constraint is reflected in the
definition of the adjacency matrix Em−1×n×n. Secondly, it is necessary to
find a perfect match between the AoA-ToF estimates of adjacent frames. That
is a one-to-one matching relationship, which is expressed as the following
constraints: 

∑
j

ei,j,k = 1∑
k

ei,j,k = 1
(10)

W represents the edge weight. The matching of AoA-ToF estimates
between adjacent frames is based on AoA and ToF estimates. Due to the high
sampling rate, the difference between AoA and ToF of the same path between
adjacent frames is less. The AoA and ToF distances are used as planning
targets. The weight matrix is defined. The matrix elements are calculated as
follows:

wi,j,k =
[
wθ wτ

]
×
[
|θi,j − θi+1,k| |τi,j − θi+1,k|

]T
(11)

Thereinto, wθ and wτ represent the weights to consider AoA and ToF in
the planning problem.

The planning objective function L(E) for the BIP(Binary Integer Pro-
gramming)could be defined according to the above model:

L(E) = E •W (12)
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The binary adjacency matrix E is used as the planning variable and
L(E) is used as the objective function to solve the BIP problem under the
constraints of Equations (10). The path matching of the AoA-ToF map is
completed according to the planning results.

Finally, the Hamp filter is used to filter out outliers for the matching
results of each path. According to the actual situation, the AoA information
of the path within the target perception area and the fluctuation level closest
to the human body is selected as the estimation of the AoA sequence of the
human reflection path to complete the path selection.

5 Fusion Algorithm and System Design

The super-resolution MUSIC algorithm and the complex plane trajectory
analysis algorithm used in the system, as well as the path matching and
trajectory calculation methods used to process the results of the both have
been introduced in the previous in detail. The principle and implementation
method of the fusion algorithm are introduced here.

Compared with the AoA information estimated by the super-resolution
MUSIC algorithm, the results l1,r(t) and l2,r(t) of the complex plane tra-
jectory analysis algorithm have great advantages in accuracy and reliability.
Therefore, in the fusion algorithm, the AoA information is used to determine
the initial value of the path length l1,0 and l2,0. The final result of the human
motion trajectory is calculated with the initial path length l1,0, l2,0 and the
path change information l1,r(t), l2,r(t).

The key to the fusion algorithm lies in the determination of the initial path
length. For a piece of CSI data, a set of initial path lengths is found, so that
the dynamic path AoA estimation result matches the path calculated with this
set of initial path length and dynamic path length change estimation to the
greatest extent. In this paper, the initial path lengths l1,0 and l2,0 are set as the
optimization variables. A loss function is defined to calculate the trajectory
difference between AoA and dynamic path length under this set of initial path
length assumptions. Finally, the optimizer provided by Scipy is used to obtain
the initial path length as its estimate, which minimizes the loss function.

The algorithm steps are as follows:

Step 1. Determine the initial path length
Define the loss function:

loss(l1,0, l2,0) =
∑
t

(θ1(t)− θ1(t; l1,0, l2,0))2 + (θ2(t)− θ2(t; l1,0, l2,0))2

(13)
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Thereinto, θ1(t) and θ2(t) are the calculation results of the AoA of the
two receiving antenna arrays by the MUSIC algorithm. θ1(t; l1,0, l2,0) and
θ2(t; l1,0, l2,0) are the trajectories C(t; l1,0, l2,0) calculated from the path
lengths determined by the complex plane trajectory analysis algorithm, when
the initial path lengths on the two receiving antenna arrays are assumed to
be l1,0 and l2,0 respectively. The AoA is calculated under the known antenna
placement.

Specifically, a set of initial path lengths is given to obtain the absolute
path lengths l1(t) and l2(t) under the assumption:

l1(t) = l1,r(t) + l1,0

l2(t) = l2,r(t) + l2,0
(14)

Then, according to the above trajectory calculation method, the trajectory
under this assumption is calculated on the basis of the following equations:{

‖C(t; l1,0, l2,0)− CT ‖2 + ‖C(t; l1,0, l2,0)− CR1‖2 = l1(t)

‖C(t; l1,0, l2,0)− CT ‖2 + ‖C(t; l1,0, l2,0)− CR2‖2 = l2(t)
(15)

Respectively calculate θ1(t; l1,0, l2,0) and θ2(t; l1,0, l2,0) according to the
trajectory C(t; l1,0, l2,0) and the coordinates and orientation of the receiving
antenna. Then recalculate the value of the loss function.

According to the above principle, the value of the initial path length is
determined by taking l1,0, l2,0 as the optimization variable and the function
loss(l1,0, l2,0) as the optimization objective.

(l̂1,0, l̂2,0) = arg min
(l1,0,l2,0)

loss(l1,0, l2,0) (16)

Step 2. Calculate the motion trajectory
Determine the absolute length of the dynamic path according to the ini-
tial length of the path. Calculate the motion trajectory according to the
intersection equation of the two ellipses expressed in Equation 3.7.

6 Test Results and Performance Analysis

6.1 Performance Analysis of Trajectory Estimation Module
Based on CSI Quotient

In order to analyze the feasibility and accuracy of the CSI quotient-based
trajectory estimation algorithm in human tracking scenarios, the simulation
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Figure 6 Error cumulative distribution function of trajectory estimation based on CSI
quotient.

data of indoor human tracking scenarios are used in this paper to test the
module in two frequency bands 2.4 GHz and 5 GHz. In the CSI quotient
trajectory estimation module experiment with simulated data, the average
error in the 5 GHz band is 29.2 cm, and the median is 24.1 cm. The average
error in the 2.4 GHz band is 9.4 cm, and the median is 5.8 cm. The CDF
statistics of the errors are shown in Figure 6.

In the simulation results, the centimeter-level error is achieved in the
2.4 GHz frequency band, and the effect is significantly better than that of
5 GHz. The main reason is that the wavelength of the 5 GHz band is short,
and the phase of the dynamic component of the CSI quotient changes too fast
when the dynamic path length change rate is larger. Under the limited sam-
pling frequency (200 Hz), the complex plane trajectory analysis algorithm
could not effectively track its phase.

6.2 Performance Analysis of AoA Estimation Module Based on
MUSIC Algorithm

In order to test the feasibility of the AoA estimation module and further
analyze the improvement of the system design for the AoA-based positioning
scheme in this paper, the dynamic path AoA estimation error of the super-
resolution MUSIC algorithm and the path matching selection algorithm
used in the trajectory tracking system is tested in this paper. In addition,
the trajectory estimation error is calculated with the above AoA estimation
results.
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Figure 7 Error cumulative distribution function of AoA estimation.

In the test of the AoA estimation module based on the MUSIC algorithm,
the simulation data is used as the test data, and the No. 12 channel of the
2.4 GHz frequency band is used.

Error cumulative distribution function of the simulation test estimated by
AoA is shown in Figure 7. The average error is 14.4◦, and the median error
is 12.2◦. AoA still has a larger error in an ideal simulation environment. This
indicates that the AoA-ToF joint estimation based on the MUSIC algorithm
could not stably distinguish and estimate the dynamic path AoA, due to the
limitations of small aperture of the antenna array, low signal-to-noise ratio,
and the fact that the direct transmission signal and the reflected signal could
not fully meet the unrelated requirements.

The cumulative distribution function of trajectory estimation simulation
test error based on AoA estimation is shown in Figure 8. The average error is
1.53 m, and the median error is 1.20 m. The effective sensing area with 5 m *
5 m is considered. The average error and the median error in such an area are
more than 1 m. This indicates that the trajectory estimation method based on
the AoA-ToF super-resolution MUSIC algorithm AoA estimation has little
practical significance in the indoor passive tracking scene.

Figure 9-left is the AoA estimation result of a piece of simulation data.
Figure 9-right is the trajectory estimation based on AoA estimation. It could
be seen that in the process of AoA estimation to calculate the trajectory, the
error of AoA estimation is significantly enlarged. It is not feasible for the
above AoA estimation algorithm to be directly used for trajectory calculation,
but in the most time periods, the results of AoA estimation are distributed on
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Figure 8 Error cumulative distribution function of positioning method based on AoA.

Figure 9 Example of estimates of AoA.

the both sides of the reference value. Therefore, an estimation of the initial
position could be provided in the system.

6.3 Overall System Performance Analysis

The simulation data are used to test the indoor passive human trajectory
tracking system designed in this paper.

Figure 10 is shown that the mean and median values of the system
simulation test errors are 30.3 cm and 23.8 cm respectively. The both reach
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Figure 10 Error cumulative distribution function of the indoor passive trajectory tracking
system.

Table 1 Based on AoA, the estimation error statistics based on the path length and the overall
trajectory of the system

Estimation
Method

Trajectory
Estimation
Based on

AOA

Based on the Path Length, the
Initial Position is Estimated with
the Trajectory of the Reference

Data

Indoor Passive
Track

Tracking
System

Average error /cm 153.0 9.4 30.3
Median error /cm 119.9 5.8 23.8

the level on decimeter, which has high application value in indoor passive
human trajectory tracking scenarios.

AoA-based trajectory estimation, trajectory estimation based on path
length and initial position with reference data, and the comparison of the
mean and median errors of indoor passive trajectory tracking systems are
shown in the Table 1.

According to the statistical results shown in Figure 10 and Table 1,
the simulation test error of the system is much better than the trajectory
calculation method based only on AoA and slightly worse than the trajectory
estimation based on the path length and the initial position with the reference
data. This proves that the complex plane trajectory analysis algorithm based
on CSI quotient is used in the system design to achieve higher accuracy. The
design of the AoA estimation based on the MUSIC algorithm to determine
the absolute position has achieved the expected purpose. At the same time,
the larger error of the AoA estimation part causes a more limitation on the
accuracy of the final trajectory estimation.
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Figure 11 Example of passive indoor track tracking system module results.

Figure 12 Example of trajectory estimation for passive indoor trajectory tracking system.

Respectively. Figures 11 and 12 are the example of system module result
and the example of system final trajectory estimation result. It could be seen
that the final trajectory estimation result of the system achieves high accuracy,
and the trend and direction of motion trajectory are well preserved to fully
prove the practical value of the system.
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7 Conclusions

Based on the CSI quotient-based trajectory estimation algorithm and the
AoA-ToF estimation algorithm, a framework of the passive indoor trajectory
tracking system based on Wi-Fi is designed and implemented. The system
uses the CSI quotient complex plane trajectory analysis algorithm to obtain
the relative displacement information, and combines the super-resolution
MUSIC algorithm to obtain the absolute position estimation to calculate the
human motion trajectory. In the verification experiment, the trajectory estima-
tion module based on the CSI quotient achieves centimeter-level accuracy in
the arm trajectory tracking scene. In the simulation performance analysis, the
indoor motion trajectory estimation of the human trunk of the whole system
has reached the decimeter level positioning accuracy. Therefore, the effect
has reached the expectation.
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