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Abstract

Since UAV aerial images are usually captured by UAVs at high altitudes with
oblique viewing angles, the amount of data is large, and the spatial resolution
changes greatly, so the information on small targets is easily lost during
segmentation. Aiming at the above problems, this paper presents a semantic
segmentation method for UAV images, which introduces a multi-scale feature
extraction and fusion module based on the encoding-decoding framework.
By combining multi-scale channel feature extraction and multi-scale spatial
feature extraction, the network can focus more on certain feature layers and
spatial regions when extracting features. Some invalid redundant features are
eliminated and the segmentation results are optimized by introducing global
context information to capture global information and detailed information.
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Moreover, one compares the proposed method with FCN-8s, MSDNet, and
U-Net network models on the large-scale multi-class UAV dataset UAVid.
The experimental results indicate that the proposed method has higher per-
formance in both MIoU and MPA, with an overall improvement of 9.2% and
8.5%, respectively, and its prediction capability is more balanced for both
large-scale and small-scale targets.

Keywords: Semantic segmentation, drone image, deep learning, multi-scale
feature extraction, contextual information.

1 Introduction

Before UAVs perform various tasks, they need to perceive the task environ-
ment through sensors, obtain a map of the task area, and understand target
and threat information. Vision-based sensing methods are widely used due to
their strong anti-interference ability, low cost, and easy deployment. Among
them, the use of pixel-level semantic segmentation technology is the main
way of scene cognition.

These days, convolutional neural networks are often used in image
semantic segmentation tasks. After long-term research and analysis, Long [1]
established a Fully Convolutional Neural (FCN) Network which can adapt
to input images of arbitrary size and also improves the feature roughness
problem caused by upsampling. The FCN network effectively improves the
accuracy of region-based segmentation, but it also has certain limitations.
After the convolution and pooling operations in the network, the size of the
original image will be significantly reduced, and the low-resolution feature
representation will cause the loss of image detail information, thereby reduc-
ing the segmentation accuracy [2]. Badrinarayanan [3] proposed a SegNet
network model based on an encoder-decoder framework in 2015. Although
the multi-layer max-pooling and downsampling operations in the SegNet net-
work can be robust to segmentation tasks due to their translation invariance,
they result in the loss of feature map size and spatial information. To improve
the above problems, the FCN algorithm-based PSPNet proposed by Zhao [4]
uses global average pooling operation (GAP) and feature fusion operation
to integrate the contextual information from different regions and model the
global contextual information.

The Deeplab series proposed by the Google team continuously improves
segmentation accuracy. The Deeplabv1 network [5] designs an atrous
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convolution to exponentially expand the receptive field of the network
without losing resolution and raising the computational burden. The
Deeplabv2 [6] network proposes atrous spatial pyramid pooling (ASPP) in
the spatial dimension. ASPP consists of atrous convolutions with different
dilation rates to form a multi-scale processing module, resulting in more
accurate segmentation results. The Deeplabv3 [7] network improves the
ASPP module to combine four atrous convolutions with different sampling
rates in a cascaded and parallel manner to encode contextual information
at different scales. Subsequently, based on Deeplabv3, the Deeplabv3+ [8]
network proposed in 2018 added a simple and effective decoding module
to fine-tune the segmentation results, especially in the boundary part of
the segmented object, the segmentation effect was significantly improved.
In addition, Deeplabv3+ further uses the Xception model and Depthwise
Separable Convolution and combines ASPP and a simple decoding module
to obtain a faster and stronger encoding-decoding network framework, but
the amount of computation also increases. big. Other studies [9–12] use an
encoding-decoding structure, perform downsampling during the encoding
process, gradually reduce the resolution of the feature map, continuously
upsample during the decoding process, gradually restore the image size, and
finally achieve high-resolution Semantic segmentation.

However, after an in-depth study of the currently used semantic seg-
mentation methods, it was found that there are still many difficulties in
the field of segmentation. Since segmentation scenes are usually complex
and diverse, commonly used semantic segmentation methods cannot achieve
high accuracy in every scene [13]. For example, the existing segmentation
methods are prone to losing small-scale information for UAV aerial images
thus making it difficult to earn accurate segmentation results. Meanwhile, the
difference in target scale in the images captured by the UAV is hundreds of
times different, and it is often difficult for small and weak targets to retain
effective features.

In this article, one presents a semantic segmentation method of UAV
images based on multi-scale feature extraction and fusion (MFEF), which
combines multi-scale channel feature extraction and multi-scale spatial fea-
ture extraction to effectively fuse detailed information and semantic infor-
mation. The problem of poor segmentation performance of the shallow-level
algorithm model can better restore the segmentation details of more targets,
and effectively solve the problem of large changes in the scale and resolution
of UAV aerial images.
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2 Multi-scale Feature Extraction and Fusion Net Algorithm
Design

2.1 The Overall Structure of the Network Model

There are still many deficiencies in the existing image segmentation methods
for the segmentation of UAV aerial image data. First, for high-resolution
images of oblique viewing angles captured by drones, the size of objects at
different distances may vary significantly. Large-scale variations of objects
in UAV aerial images have an impact on the precision of predictions. In the
network, each output pixel in the final prediction layer has a fixed receptive
field, formed by pixels in the original image that may have an impact on the
final prediction of that output pixel. When the objects are too small, the neural
network may learn noise from the background. When the objects are too
large, the model may not get enough information to correctly infer the labels.

Motivated by these problems, this section presents a semantic segmen-
tation algorithm for UAV images based on MFEF. The overall structure
of the network model is demonstrated in Figure 1, which is an encoder-
decoder framework, and skip connections are used to transfer the information
between the encoding layer and the decoding layer. Among them, the encoder
continuously downsamples the features to obtain the semantic features of
the appropriate scale target. In addition, the decoder can also continuously
upsample the features through a multi-scale feature extraction fusion module,
thus gradually recovering the image resolution.

Inputs Outputs

MFEF

Encoder
0-4

Decoder
0-4

Conv FCConv MaxPool

The above network model introduces a MFEF module, which uses multi-
scale channel feature extraction and multi-scale spatial feature extraction to
synergistically optimize the extracted complementary information, thereby
learning more detailed feature representations. Specifically, the input image
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Figure 1 MFEF Net and MSDNet structure.

is handled through the convolution layer and the max pooling layer and
then enters the encoder, which performs feature extraction through a down-
sampling operation. Then, a MFEF module is added before the decoder of
each upsampling layer, and the processed image features are sent to the
decoding layer, and the decoder gradually restores the image resolution
through successive upsampling layers. During this process, the image data
is processed by batch normalization and ReLU activation function each time
it passes through the convolutional layer. Each upsampling layer doubles the
feature size and reduces the number of channels by half. In addition, through
the fusion feature output by the MFEF module, the encoding results with the
same feature size are fused in the form of a skip connection. This paper uses
the sum operation of the corresponding position elements to realize the skip
connection.

2.2 The Specific Module Network Structure

In the following, we present a MFEF module by combining multi-scale chan-
nel feature extraction and multi-scale spatial features, which effectively fuses
low-level features with more detailed information and high-level features
with semantic information. The context information is introduced to enhance
the poor segmentation performance of the shallow algorithm model, and to
better restore more target segmentation details. The specific module network
structure is given in Figure 2.
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Figure 2 MFEF module.

The MFEF module is mainly divided into a multi-scale channel feature
extraction module and a multi-scale spatial feature extraction module. Where
Xi ∈ RC×H×W represents the feature from the i encoder stage, and the
channel number and size of the feature are C and H ×W , respectively; the
symbol ⊗ and ⊕ represent the multiplication and addition operations of the
corresponding position element, respectively; Xi will be used as the input
of the MFEF module. Among them, the first part is the multi-scale channel
feature extraction module. Firstly, the major channel information of the input
feature is extracted using the global average pooling method, and then it is
input into a 1 × 1 × 1 convolution to compress the convolution parameters,
and then use the sigmoid activation function to normalize the input value to
obtain a multi-scale channel feature mask Mic. Then, the processed result
is multiplied by the original eigenvalue to obtain an information-calibrated
feature map Uic1. The second part is the multi-scale spatial feature extraction
module, which mainly obtains the spatial feature map by using the spatial
correlation between the features on the input feature map. Compared with
multi-scale channel feature extraction, multi-scale spatial feature extraction
is more concerned with the spatial information of feature images. The input
feature image is sequentially input into the convolutional layer and the activa-
tion layer, and output from the sigmoid layer to obtain the multi-scale spatial
feature mask Mis after activation. Combining it with the original eigenvalues,
a feature map Uis1 can be obtained, which completes the calibration process
of spatial information.
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Here, to reduce the effect of background information, overcome the prob-
lem of lack of global information in the algorithm due to the characteristics of
shallow layers, and improve the segmentation function of the model, context
information can be added to the decoding process, and the features of each
stage in the model processing process can be further processed. In the above
two feature extraction, the input information Xi is the original feature block,
the weighted feature maps Uic1 and Uis1 are balanced, and the feature weights
are re-adjusted to obtain the matching weight map Uic and Uis.

Uic = Xi ⊕ Uic1 = Xi +Mic ⊗Xi (1)

Uis = Xi ⊕ Uis1 = Xi +Mis ⊗Xi (2)

The higher the weight ratio is, the more important it is. Therefore, this
paper sets the weight value range of the elements in Mic and Mis from 0 to 1.
When the value of a certain position is close to 1, the value of the output
feature Ui increases at that position is large, and when the value of a certain
position is close to 0, the output features Ui are nearly the same as the initial
features Xi. In this way, after the multi-scale spatial features are processed
by the fusion module, they are adapted to the multi-scale channel features,
and the information of the original features is also retained, which is more
conducive to network learning and presents better feature effects.

Further, the output features Fi ∈ RC×H×W of the fusion module
extracted from multi-scale features can be obtained by the following algo-
rithm:

Fi = f1×1(concat(Uic, Uis)) (3)

Among them, concat represents the splicing action performed in the
channel, f1×1 represents the nonlinear transformation effect, including the
ReLU activation layer, the convolutional network with stride set to 1, and the
batch normalization operation. After this processing, the feature size remains
unchanged, but the total number of channels changes for the initial half.

The global features and detailed features are reflected in the whole pro-
cess, which greatly reduces the calculation amount of the proposed model
and enhances the segmentation capacity of the model with less computation
through the connection of the upper and lower layers of information. At the
same time, adding the initial feature maps of each stage is more conducive to
enhancing the global feature extraction ability, and the MFEF module further
refines the output fusion features, thereby enhancing the interaction between
data. It guides the analysis and prediction of features, and ultimately improves
the segmentation characteristics.
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3 Semantic Segmentation Experiment

3.1 Experiment Preparation

All semantic segmentation experiments performed in this paper are trained,
tested, and evaluated on the lab’s server for deep learning. As shown in
Table 1, the environmental configuration required to conduct this experiment
is listed in the table.

This paper evaluates the proposed method using the UAV semantic seg-
mentation dataset UAVid [14]. The UAVid dataset is established for UAV
semantic segmentation in complex urban scenes, focusing on 8 object cat-
egories. The datasets are captured by drones with oblique views, providing
multiple representations of objects with rich scene backgrounds, with large
variations in spatial resolution. The dataset has 420 high-quaity 4K images
(4096× 2160 or 3840× 2160) divided into training set, validation set and test
set with 200, 70 and 150 images, respectively, containing the most common
and representative 8 object categories, namely buildings, roads, trees, low
vegetation, static vehicles, moving vehicles, people and sundries. Examples
of different classes are given in Figure 3. The definition description of each
class is given in Table 2.

All models in this experiment are performed on the PyTorch platform
with i7-13700@5.2GHz, four NVIDIA GTX 1080Ti GPUs. The network
model given in this chapter uses a small batch stochastic gradient descent
method with a batch of 8, a momentum of 0.9, and a weight decay of 0.0001 to
optimize the model. The data preprocessing process uses data augmentation
strategies, such as random flipping, random cropping, etc. The initial size of
the UAVid dataset is usually 4096 × 2160 or 3840 × 2160. During training,
in order to facilitate batch processing, the images of the dataset are randomly
cropped and then scaled to a resolution of 1024 × 1024. As the input of the

Table 1 Lab environment

Name Configuration

Operating system Ubuntu18.04

GPU model NVIDIA GTX1080Ti

Video memory size 11G

Python version Python3.6

CUDA version CUDA10.0

cuDNN version cuDNN7.6

PyTorch version PyTorch1.10.1
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Figure 3 Experimental dataset.

Table 2 Experimental dataset class definitions
Category Description
Building Homes, garages, skyscrapers, security booths and buildings under

construction. Freestanding walls and fences are not included.
Road A road or bridge surface on which a car can legally travel. Parking

not included.
Tree Tall trees with crowns and trunks.
Low Vegetation Grasses, Shrubs and Shrubs.
Static Car Immobile vehicles, stationary buses, trucks, trains, cars and tractors

are included, but bicycles and motorcycles are excluded.
Moving Car Moving cars, including moving buses, trucks, cars and tractors.

Bicycles and motorcycles are not included.
Humans Pedestrians, cyclists and all other people engaged in different

activities.
Background Clutter All targets that fall into any of the categories above.

algorithm, overlapping pixels are 24× 24. Take the initial learning efficiency
to 0.001.

In order to test the semantic segmentation performance of the network
model, this paper takes Mean Pixel Accuracy (MPA) and Mean Intersection
Over Union (MIoU) as the evaluation criteria.

The IoU and PA represented using the confusion matrix are shown in
Figure 4. TP(True Positive) represents the true example, which means that
the target includes both the actual and the expected. TN stands for True
Negative, which means that the goal includes the actual situation but not the
expectation. FP (False Positive) means false positives, meaning that the target
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Confusion Matrix

Actual Value

Predictive Value

Positive

Negative

Negative

TP FP

FN TN

Positive

Figure 4 Confusion matrix.

contains expectations but not actuals. FN (False Negative) represents a false
negative, meaning that the target contains neither actual nor expected.

Intersection and Union Ratio (IoU): The intersection and sum operation
are performed on two sets containing the actual value and the expected value,
and then the ratio of the two is calculated. The calculation formula of the
intersection and union ratio is shown in formula (4):

IoU =
TP

TP + FP + FN
(4)

Mean intersection-over-union (MIoU): Calculate the IOU value on each
category, and then average the IOU for all categories. Its calculation formula
is as follows (5):

MIoU =
1

k

k∑
i=1

pii∑k
j=1 pij +

∑k
j=1 pji − pii

(5)

Pixel Accuracy (PA): Calculates the proportion of correctly predicted pixels
out of total pixels. Its calculation formula is as follows (6):

PA =
TP + TN

TP + TN + FT + FN
(6)
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Mean Pixel Precision (MPA): Calculate the PA value on each class, and then
average the PA across all classes. Its calculation formula is as follows (7):

MPA =
1

k

k∑
i=1

pii∑k
j=1 pij

(7)

In Equations (5) and (7), k represents the number of categories, j stands
for the number that belongs to category but is predicted to be category,
i represents the real number, and pij represents false positives and false
negatives.

3.2 Analysis of Experimental Results

The FCN-8s, MSDNet and U-Net algorithms are selected as the comparators
with the proposed algorithm for MIoU and MPA on the UAVid dataset.
The comparison algorithms used are all introduced in the previous chapter.
The results are given in Tables 3–4.

From Table 3, among all the compared models, our method has the best
performance in terms of MIoU, with an overall improvement of 9.2%. For
each category evaluation, our method ranks first in the categories of buildings,
static vehicles, vegetation, humans, and dynamic vehicles, with improve-
ments of 6.2%, 17.7%, 0.5%, 15%, and 20%, respectively. The most obvious
improvement is for dynamic vehicles, while significant improvements are
also achieved in the categories of humans, static vehicles, and buildings.
The average pixel accuracy of different algorithms is shown in Table 4.

Table 3 MIoU comparison result (unit: %)
Method Clutter Building Road Static Car Tree Vegetable Human Moving Car Mean

FCN-8s 47.4 45.0 30.0 10.0 59.1 48.3 11.0 9.0 32.5
MSDNet 37.1 47.2 20.0 30.0 47.6 44.9 20.0 10.0 32.1
U-Net 49.5 50.8 21.0 10.0 58.0 32.8 20.0 10.0 31.5
Ours 43.7 57.0 26.3 47.7 44.7 48.8 35.0 30.0 41.7

Table 4 MPA comparison result (unit: %)
Method Clutter Building Road Static Car Tree Vegetable Human Moving Car Mean

FCN-8s 52.2 47.1 50.0 20.0 63.9 56.4 29.0 11.0 41.2
MSDNet 44.2 41.6 24.0 26.0 57.4 53.2 30.0 30.0 38.3
U-Net 56.9 55.9 30.0 10.0 67.2 49.5 30.0 20.0 39.9
Ours 55.3 62.1 31.8 48.6 52.3 76.1 36.5 35.0 49.7
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From the results in Table 4, among all the compared models, the method
proposed performs the best in terms of MPA, with an overall improve-
ment of 8.5%. For each category evaluation, our method ranks first in the
categories of buildings, static vehicles, vegetation, humans, and dynamic
vehicles, with improvements of 6.2%, 22.6%, 19.7%, 6.5%, and 5.0%,
respectively. The best enhancement is achieved in static vehicles, while
significant improvements are also achieved in the categories of buildings,
vegetation, humans, and dynamic vehicles.

Overall, the method proposed in this article has a more balanced pre-
diction capability for large-scale and small-scale targets. By merging global
features and detail features, our method achieves good prediction results in
the classification of moving and static vehicles. For the human category,
the segmentation performance of our method is higher than the other three
networks, which reflects the superiority of the MFEF module in dealing
with small-scale objects. At the same time, good prediction results were also
obtained in buildings and vegetation.

One compares the segmentation results of the developed method with
those of FCN-8s, MSDNet and U-Net on the UAVid dataset, and the
visualization results are given in Figures 5–8.

Figure 5 shows the predicted segmentation performance of each network
model for buildings and roads. Compared with the method in this paper,
FCN8s, U-Net and MSDNet will misjudge the open space in the lower-left
corner of the picture as a building or a road, while the proposed method has
the smallest error and good prediction effect.

Figure 5 Prediction of buildings and roads using different networks.
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Figure 6 Prediction of trees and vegetation using different networks.

Figure 7 Prediction of moving cars and stationary cars using different networks.

Figure 6 shows the predicted segmentation performance of each network
model for trees and vegetation. Compared with the method in this paper,
FCN8s, U-Net and MSDNet will misjudge the vegetation in the upper right
corner of the picture as the background. The proposed method is effective
in the segmentation results of trees and vegetation and more accurate in
segmenting the boundaries between trees and vegetation.

Figure 7 illustrates the effectiveness of different models for predicting
segmentation of moving and stationary vehicles. Compared to our method,
FCN-8s, U-Net, and MSDNet are less accurate in separating the boundaries
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Figure 8 Prediction of humans using different networks.

of moving and stationary vehicles, erroneously identifying stationary vehicles
as moving vehicles. Our method can completely separate moving vehicles
from stationary vehicles and can accurately identify moving vehicles in the
distance.

Figure 8 shows the predicted segmentation results for people by each net-
work model. Due to the lack of deep extraction of original scale information
and the loss of effective information of small-scale objects, FCN-8s, U-Net
and MSDNet have poor segmentation results. Our method can effectively
detect and segment majority of people in the image when dealing with
small-scale targets, even if the targets are small, obtaining segmentation
accuracy better than that of other networks.

4 Conclusion

Based on deep learning, this work applies the scene semantic segmentation
technique to UAV images and achieves the following main contributions.

• One presents a new UAV image semantic segmentation algorithm. It
adds a MFEF module on the basis of the encoding-decoding mode and
uses the weighted allocation method to obtain different weight values
of the feature map, which well balances the segmentation results of
different scale targets.

• The simulation results indicate that the MFEF network achieves the best
results in MIoU and MPA, which are improved by 9.2% and 8.5%,
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respectively. At the same time, it also achieved the best segmentation
results in the five categories of buildings, static vehicles, vegetation,
humans and dynamic vehicles. The prediction results for small-scale
humans increased by 15% in IoU and 6.5% in PA. %.

• According to the experimental results, the MFEF Net algorithm has the
characteristics of high segmentation accuracy and precision, and can
effectively handle the difficulty of large changes in the scale and resolu-
tion of UAV aerial images, which proves the rationality and feasibility
of the algorithm.

Although some progress has been made, this research still has short-
comings and room for improvement, such as poor real-time performance.
Therefore, the next research direction is to seek more efficient and fast
segmentation in complex UAV application scenarios.
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