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Abstract

In the era of Industry 4.0, digital agriculture is developing very rapidly
and has achieved considerable results. Nowadays, digital agriculture-based
research is more focused on the use of robotic fruit picking technology, and
the main research direction of such topics is algorithms for computer vision.
However, when computer vision algorithms successfully locate the target
object, it is still necessary to use robotic arm movement to reach the object
at the physical level, but such path planning has received minimal attention.
Based on this research deficiency, we propose to use Unity software as a
digital twin platform to plan the robotic arm path and use ML-Agent plug-in
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as a reinforcement learning means to train the robotic arm path, to improve
the accuracy of the robotic arm to reach the fruit, and happily the effect of
this method is much improved than the traditional method.

Keywords: Robot arm, digital twin, reinforcement learning, unity,
ML-agent.

1 Introduction

Agriculture in the process of Industry 4.0 is also known as Agriculture 4.0 [1].
The first signals of transition are already apparent, and digitization has the
potential to fundamentally alter daily life, networks and systems for the
provision of food, fibre, and bioenergy, as well as agricultural production
techniques [2]. Several ideas have developed in the agricultural sector to
express various forms of digitalization in agricultural production systems,
value chains, and the larger food system [3]. In the context of such times, fruit
picking, an industry that relies heavily on human labour has been iterating.
Both companies and scholars want to rely on mechanical methods of fruit
picking so as to control labour costs, knowing that labour costs are very
expensive today, especially for developed countries [4]. A great deal of
research has been put into using Computer Vision (CV) to identify ripe fruit
and to pick fruit, and this has largely changed the industry. But to achieve
intelligent picking of fruits using fully automated equipment, it is not enough
to rely on CV or ripe fruit recognition. After a fruit is identified, how to
use the robot arm to pick it accurately is still a problem to be solved. This
leads to another area of research which we have focused on, that is, how to
dynamically plan the movement path of the robot arm to reach the fruit more
precisely.

The automatic planning of paths is never just limited to agricultural
scenarios, but can be expanded from there to increasingly complex scenarios.
The need for quick and self-correcting machine learning-based navigational
capabilities will increase. So, we suggested using reinforcement learning
to plan the trajectories of space robots. In contrast to earlier algorithms,
reinforcement learning does not give the agent a precise answer to the job.
Through interaction with the environment, the reward function, and the task
goal, the agent learns the best strategy for maximizing the cumulative reward.
Robot users without the necessary specialized knowledge can nonetheless use
this strategy. The robot only needs to be given a task to perform; after that,



Fruit Picking Robot Arm Training Solution Based on Reinforcement Learning 263

it will automatically learn how to do it. Robots can learn from their own
experiences with little human intervention thanks to reinforcement learning.
And it has become a new trend to build digital twins through game engines,
such as Unity to model robotic arms and targets in virtual 3D world for path
planning and training of generated paths through deep learning methods.

The second chapter of this paper introduces the related work of the robotic
arms, digital twins and smart agriculture scenario applications, and summa-
rizes the ideas that inspired our article. The third chapter is the methodology,
which is divided into sections to tell the theoretical basis related to the
methods and tools we used in turn. Chapter 4 describes the prior information
for our specific experiments. It mainly includes specific information about the
experimental platform and the building process, as well as the demonstration
of the results obtained from the experiments. Chapter 5 is the concluding
section, which summarizes our work and gives a theoretical outlook on
possible future research directions.

The following are the contributions of this work:

1. Proposed a solution based on digital twin to realize smart agriculture.
2. Use Unity and ML-Agent plug-in to train and optimize the motion path

of robotic arm when picking fruits in a smart agriculture scenario.

The feasibility of combining the digital twin with specific industrial
scenarios for path planning is verified.

2 Related Work

Robotic and automated systems are being developed to perform jobs cur-
rently handled by operators in the fields of industry, medicine, and the
military [5]. Crop harvesting is one of the many uses of robots in agriculture
that have grown as a result of recent technological advancements in visual
identification, 3D reconstruction, placement, and fault tolerance. Zhang et
al. proposed that artificial intelligence is used by agricultural robots, like
other robotic systems in the field, to carry out a variety of labour-intensive
agricultural operations like planting, spraying, trimming, and harvesting [6].
Based on improvements in image perception and orientation detection, the
spatial dimensions of fruit targets were determined by segmenting fruits and
their provides a basis, then reconstructing 3D fruits using stereo matching. In
Wang’s research, obstacles for robotic components include fruit localization
and hands-free navigation [7].
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Finding a route from the current start position to the recognized goal
position in the given or partially known environment is the major goal of
collision-free pathfinding for the picking manipulator. This path allows the
fruit-picking manipulator to proceed securely and without hitting any barriers
from the starting point to the target position. Numerous planning strategies,
such as the simulated annealing methodology, the A∗ algorithm [8], the ant
colony optimization algorithm [9], and the artificial potential field approach,
have been presented by researchers to address this issue. These classic path
planning techniques work well for 2–3 dofs robots. The model must, however,
adequately characterize barriers in a consistent space for these techniques to
work. Like a consequence, the computation cost increases exponentially with
the growth of the degrees of freedom of the robot. Multi dofs robot path
planning is not acceptable for these conventional techniques. Then, using the
hybrid manipulator’s high degrees of freedom and intricate structure, Yang
et al. [10]. devised a rapidly exploring random tree (RRT) algorithm that has
realized the efficient path planning of the hybrid manipulator. Path planning
for selecting fruit in the field, which in itself is dynamic and uncontrolled, is
a very difficult challenge. In this paper, a better RRT algorithm is suggested
as a solution to this issue. Self-made binocular vision system is used to
recognize and find the target, while binocular vision is utilized to observe
the environment [11]. As the picking robot, a 6-DOF robot arm is used.
The manipulator and the barriers are appropriately simplified to produce a
collision-free path. The RRT method is then used to plan the manipulator’s
picking path, and the concept of target gravity is incorporated to the RRT
algorithm to speed up the path-finding process. The RRT algorithm’s gen-
erated path is optimized using the GA algorithm and flattening approach to
provide an optimal or nearly optimal path. Finally, real-world fruit-picking
trials are used to validate the revised RRT algorithm before being applied to
collaborative virtual simulation [12].

Identification and positioning alone cannot achieve fully automated fruit
picking, so it is very critical to get the robotic arm to the location of the fruit
that has been detected. And in recent years, some scholars have proposed to
use the digital twin approach to plan the robot arm motion trajectory in the
virtual world [13]. In [14], the authors used the Unity 3D engine for robotic
arm path planning to ensure smooth trajectories of real-world industrial
robots along specified paths. More work [15] subsequently confirmed that
the Unity 3D engine provides a powerful ability to interact with virtual
and real data, that is, the ability to pass data in both directions. Moreover,
in [16], the authors propose that using ML-agents, an open-source package
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in the Unity engine, it is possible to achieve simulation experiments in a
virtual world using integrated deep learning algorithms and produce desired
results. In [17], the authors used ML-agents as a tool and invoked the deep
reinforcement learning tool in it to train the robotic arm and succeeded in
precisely finding the motion points in the environment. And in [18], the
authors have also successfully implemented the planning and optimization
of paths in digital twins by means of genetic algorithms in the ML-agent
tool. What we can determine through the literature [17] and [18] is that using
deep learning algorithms, it is indeed possible to train and optimize the path
of the robotic arm to reach the object in the digital twin. However, no scholars
today have proposed how to train a robotic arm to perform specific actions
such as picking fruits in a specific scenario, which is what we consider as a
research gap.

3 Methodology

This chapter will be divided into different sections to describe the entire
process of using the digital twin as a platform and using reinforcement
learning as a framework to train the robotic arm, as well as the specific
hands-on situation, in Figure 1, the general framework is presented.

We apply the Unity game engine, which enables the use of a machine
learning (ML) toolkit to train agent (or agents) to connect with the dig-
ital world known as ml-agents [19]. By simultaneously training several

Figure 1 Overall framework schema.
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agents with the same taught data at fast rates, training time can be reduced.
This encourages simulation learning among the ML community. The Unity
ML-Agents Toolkit is an open source project under the Apache 2.0 license.
Therefore, you can modify and implement ML-Agents as needed. Using
Unity and the ML-Agents toolkit, we can create physical, visual, and
cognitively rich AI environments and use them for benchmarking and
researching new algorithms and methods.

3.1 Virtual Twin for Robot Arm

In the process of building our digital twin simulation platform, we used an
open source six-axis robotic arm model for importing into the Unity engine.
The arm was placed on an automated guided vehicle (AGV) in order to
simulate the working conditions of a fully automated fruit picking robot as
closely as possible and to focus our attention on the “last mile” problem once
the vehicle reaches the target place.

In Unity, the robot arm is able to rotate as in the real world, but also as
in the real situation, it must have certain angle restrictions, i.e., it does not
allow some movements that defy the rules of physics. So, when we want to
command a robotic arm to complete a movement in the digital twin, instead of
having it rotate or move at an unreasonable angle, we should let the machine
learning tool learn how to achieve optimal path planning by controlling the
logic of the secondary arm rotation. For the robotic arm in the digital twin,
we can still regard it through the same viewpoint as the physical robot, the
cosine rule [20] can still be utilized to calculate the number of degrees each
sub-arm must spin to reach a particular target location (X, Y) in the virtual
robot system. The layout of the virtual arm is shown in Figure 2, name of each
joint of the robot arm is also shown in Figure 2, and the following derivation
is given:

θ1 = arccos
L2
1 +X2 + Y 2 − L2

2

2L1

√
X2 + Y 2

+ θt

θ2 = arccos
X2 + Y 2 − L2

1 − L2
2

2L1L2

3.2 Unity ML-Agent Implementation

The Unity Editor is a graphical user interface that is part of the game
engine that makes up the Unity game development platform. Unity was first
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Figure 2 Angles to be solved for each arm constituent for a goal location are depicted over
a virtual robot arm (x, y).

developed in 2005 and has since expanded. Currently, it is used by devel-
opers for a wide range of interactive simulations, such as high-end console
games and AR/VR experiences [21], and mobile and browser-based games.
Previously, agents had to be artificially programmed to exhibit the desired
behaviours, but today, in a training setting, they are able to continuously learn.
Techniques for instructing agents to improve the efficiency of development.
An open source plugin called Unity ML-Agents enables the use of games and
simulations as training grounds for intelligent agents. Agents can be trained
using reinforcement learning, genetic algorithm, neuron evolution, or other
machine learning techniques using the simple-to-use Python API.

3.3 Training Environment for Reinforcement Learning

The robotic arm’s reinforcement learning training is put into practice using
Unity ML-Agents. In the Unity reinforcement learning tool, the action per-
former is referred to as an agent, who is merged into the environment; the
strategy is the objective of the action execution; the brain is in control of
providing associated agents decision-making strategies to guide the execution
of the action [22]; Before and after the action is taken, there will be two states,
and the difference between the 2 states will produce a reward value that meets
the conditions of the strategy, information exchange and general instruction.
Figure 3 depicts the link between “Agent,” “Brain,” and “Academy”:
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Figure 3 Relationship schema.

Figure 4 Connections and workflow between agent and environment.

Our digital twin training environment is built based on Anaconda Naviga-
tor, the officially recommended plugin for deep learning training on objects.
And in the training process, TensorFlow was used as the tool for reinforce-
ment learning. All the training process in based on the macOS Catalina
10.15.7, and in the Terminal, we installed “ml-agents-env” and “ml-agents”.

3.4 Reinforcement Learning

In this section, we talk about the reinforcement learning content that is based
on the ML-agent tool, which corresponds to the robotic arm in this paper.
Reinforcement learning is a branch of machine learning that emphasizes how
to act based on the environment to maximize the expected benefit, inspired
by the behaviourist theory in psychology of how organisms gradually develop
expectations of stimuli in response to rewarding or punishing stimuli from the
environment, producing habitual behaviours that maximize the benefit [23].
As shown in Figure 4, Agent represents the robot arm and Environment repre-
sents the environment [24]. Reinforcement learning is actually an interaction
between the environment and the robot, where the environment stimulates the
robot to produce the next action by generating a reward for the robot, and so
on and so forth. This is very similar to conditioned reflexes.
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By using the logic of mathematics to explain this process, we describe the
process by establishing the following variables:

Reward Rt: The solution to all issues revolves around maximizing the accu-
mulated rewards. It should be a scalar function that can be viewed as an
accumulation of points corresponding to the degree of completion in the
training robotic arm motion path.

History Ht: It should be possible to record all actions and rewards of past
behaviours, i.e., a sequence containing information on observation, reward,
and behaviour that satisfies HT = O1, R1, a1, . . . , Ot, Rt, at.

Observation Ot: observation value at the time step.

State St: Is a function of determining the future, the information already
available, about the history St = f(Ht).

Action at: Record what the action is at the current moment.

In our experiment, Objective is the score obtained from the simulation;
State is the angle of the sub-arm at each moment in the movement of the
robot arm; Action is the decision to control the movement of the robot arm
up and down, left and right; Reward is the scoring of whether the object is
accurately touched in real time.

The Markov Decision Process (MDP), which is important in reinforce-
ment learning, is then introduced [25]. At the moment t = 0, the random
initialization state s0 ∼ P (s0), when the robot chooses the action plan at
according to st, based on which the environment gives the reward rt ∼
R(·|st, at). The environment gives the state of the next moment st+1 =
P (·|st, at), then the robot receives rt, st+1 and so on again. On this basis will
produce new Rt+1, we can denote this variation by (st, at, st+1). As a result,
a Markov reward process tuple is produced, with S being a finite set of states
<S, A, P, γ>. A is a limited number of possible actions, and [0, 1] is a
discount factor γ that gives priority to immediate benefits.

Technically, P is the state transition probability matrix, which offers a
means of representing the chances of a transition for an agent a from any
state s to a future state s′:

P a
ss′ = P[st+1 = s′|St = s,At = a]

The reward function, r, encodes the anticipated reward following a
change from P :

ras = E[rt+1|St = s,At = a]
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The assessed reward is defined as the total of all potential discounted
rewards for a particular time step:

Rt =
∞∑
k=0

γkrt+k+1

Then, π(a|s) = P[At = a|St = s] is the expected reward evaluation for
a specific state, s, and exploration policy, is the state value function of the
reward:

Vπ(S) = E[Rt|St = s, π]

This valuation function V informs the agent of the anticipated total of
potential rewards for a specific policy for a state S as well as the time step t.
As a result, the agent is able to select the course of action that will maximize
the total rewards [26]. The agent has liberty over how to proceed from the
most recent state visited. The agent’s prime goal in this process is to obtain
the greatest reward in the fewest number of time steps. In order to choose
an action in simulation space, we generally need to describe an exploration
policy. To choose the kind of response an agent will get for each action, we
need a reward function. A learning rule enables the policy for path planning
to change in response to feedback and reward. Last but not least, a discount
factor permits the value of short-term benefit over long-term reward in accor-
dance with achieving the maximum reward in the shortest amount of time.

3.5 Path Smoothing

In our training process, there are inevitable obstacles such as tree branches
encountered during the movement from the starting point of the robot arm
to the target point. Although reinforcement learning can help us optimize the
path for robot arm so as to reach the target point, path smoothing is still one
of the problems we need to solve. For example: Two obstacles need to be
avoided in order to go from 1→8, as indicated in Figure 5. The un-smoothed
path is shown in black and goes as follows: 1→2→3→4→5→6→7→8.
But according to normal human logic, to move from 1 to 4 while avoiding
obstacle 1, the shortest path is directly from 1 to 4, and passing through 2
and 3 on the way is unnecessary. All superfluous locations on the pathway
are eliminated using the smooth approach. So according to this method, the
result is obtained as shown in the red line, it saves two unnecessary paths,
2→3 and 5→6→7. Path smoothing is used to eliminate superfluous points
and make the path more streamlined.
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Figure 5 Path smoothing.

The path smoothing procedure starts with path point a and its initial value
is 1, as illustrated in Figure 6. A local path that needs to be found consists of
path points a, a + 1, and a + 2. First, the distances between the path’s points
are calculated. The expression da,a+1 denotes the separation between route
site a and route site a + 1. Point a and point a + 2 are directly connected if
the length between path points a and a + 2 (abbreviated as da,a+2) is smaller
than the total of da,a+1 and da+1,a+2. The next step is to insert detection
points between point a and point a + 2 to see if a and a + 2 collide, the length
between point a and point a + 2 determines the total number of detection
points. The space between detection locations needs to be closer than the
path’s step size, the local route between route site a and site a + 2 is pedestrian
if none of the detection points run into any barriers, then the route site a + 1
is deleted. In the new path, route sites a and a + 2 are saved, and site a + 3
is added to make up the local route to be identified (route sites a, a + 2, and
a + 3 are set as locations to be recognized). The next headers (i.e., a + 3
and a + 4) are added to make up the local path to be identified (i.e., a + 2,
a + 3, and a + 4 are set as recognition points) if there is a conflict between
recognition marks and obstacles. Route site a, a + 1, and a + 2 are stored in
the positive trajectory. Up until the last route site is found, the aforementioned
procedure is repeated.

4 Experiment and Result

In this section, we will talk in detail about how to use the Unity engine to put
the robot arm 3D model into the digital twin for training to get a better path
planning.
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Figure 6 Path smoothing flow chart.
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4.1 Scenario and Case Description

The Unity we use is version 2022.1.16f1c1 for macOS-based systems.
The use of robotic arms for picking ripe fruit is a very large application
scenario, as there may be hundreds of fruit trees in the orchard, or more than
one cart can be used for picking. However, we cannot expect to achieve such
a daunting goal at once, so we have selected only one of the work areas for
primary testing. We assume that the fruit to be picked is the apple, which is
the most prevalent and common hard fruit, and is of moderate size, making
it a perfect candidate for studying the control of an automatic picking robot
arm. And as for the robotic arm, that is, the AGV with mechanical gripper we
mentioned before.

4.2 Unity Scene Modelling

Throughout the work area, we placed an apple tree, corresponding to the tree
with several ripe apples, which is our target. In addition to this, there is the
robotic arm that we use for picking. According to reality, the tree and the cart
should be placed in the same plane, so in the digital twin we did the same.
The schematic diagram of the working scenario is shown in Figure 7.

The robotic arm was accused in our experiment that after the AGV moved
to the specified position (roughly, thus enabling the robotic arm to reach the
apple), the robotic arm was considered to be able to pick the apple when it
successfully touched it within the kinetic range. The picked apples will be
put back into the basket nested on the AGV according to the set route (not

 
Figure 7 The schematic diagram of the working scenario.
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Table 1 Reinforcement learning main parameters configuration
Parameter Name Parameter Value
batch_size 1024
buffer_size 20480
learning_rate 0.0003
beta 0.001
epsilon 0.2

shown in the figure). A successful picking task is considered to have been
accomplished by completing the above.

4.3 Task and Parameter Setting

The grabbing target is an single apple, and the constraints are as follows:

1. The initial position of the target to be grasped is 15 cm (distance data of
the virtual environment in the twin system) from the origin of the robot
arm, and the position is changed randomly when the target to be grasped
is touched by the end of the robot arm, and the range of the changed
position is limited to a rectangle of 10 × 5 cm2 cantered on the initial
position.

2. Set the joints of the robot arm to be connected by configurable hinges,
and limit the rotation range of each joint with reference to the motion
law of the physical model.

3. Based on the above steps, and then based on continuous tuning, we
finally determined the main initial parameters, and finally based on this
for reinforcement learning training, as shown in Table 1.

4.4 Training Process

The computer used for the training process was a MacBook Pro (13-inch,
2018) with an 8th generation 2.3 GHz quad-core Intel Core i5 processor with
8 GB of RAM and an Intel Iris Plus Graphics 655 1536 MB graphics card.
The digital twin system is built on Unity software version 2022.1.16f1c1, and
the reinforcement learning training platform is Anaconda. During the training
process, the robot arm moves randomly in space until it touches the apple, and
once the apple is touched, the target apple will change its position after being
touched. The total training duration was about 2.5 hours, and the training
process is shown schematically in Figures 8(a) and 8(b).
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(a) 

 
(b) 

Figure 8 (a) The robot arm moves randomly in the air until it touches the apple, (b) Robotic
arm successfully picks up an apple.

4.5 Result

TensorBoard may be used to monitor the training process, and it is discovered
that as the training goes on, the estimated value and cumulative reward
both increase steadily, while the speed losses and various vectors decrease.
The visualization images of training results is shown in Figure 9. Limited
by the performance of the computer, in our training, only one agent was
used. The plug-in supports the use of multiple agents for training at the same
time, which will multiply the efficiency of the training and will achieve better
performance to some extent.
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Figure 9 The visualization images of training results.

The data in the image shows that training the robot arm with reinforce-
ment learning algorithms can be very effective, and the results are binary files
that can be loaded in the Unity engine. The training enabled the virtual arm in
the digital twin to precisely reach the apple and to find the next target when
the apple was touched (considered picked and randomly moved to indicate
the next apple).

5 Discussion

We consider it is very feasible to use Unity 3D as the basis for this type
of digital twin research, and it can meet the current industrial needs. At the
same time, we are looking forward to exploring more intelligent situational
awareness and interaction platforms. This section consists of a summary of
our work and an outlook for future work, which will be presented in two
separate sections.

5.1 Conclusion

Our theoretical analysis as well as our experiments show that the creation of
a virtual lab through the digital twin is indeed able to train robotic arms in a



Fruit Picking Robot Arm Training Solution Based on Reinforcement Learning 277

virtual engine to work on the precise picking of produce. Thanks to the pow-
erful support of Unity 3D software and the diverse deep learning algorithms
provided by the ML-Agent plugin, we succeeded in using reinforcement
learning to achieve the desired goal. Base on the low-cost operation of digital
scenes, the application of training robotic arms and even robots for complex
scenes will become more common as we can make the physical training
digitally through simulation by the established digital twin. In addition, the
time cost of training will be greatly compressed and more budget will be cut.
The use of smart agriculture can still be expanded to other industries, and
more digital twins will be available in the future to face a more intelligent
and digital future.

5.2 Improvements

Our work is not perfect, and there are more comprehensive issues to be stud-
ied. And for future research directions, we have the following suggestions.
First, we continue to go deeper into the digital twin of the digital agriculture
scene, upgrading from an apple tree to an orchard with more robotic arm
AGV carts. This can be more in line with the industrial reality, while forming
a more complete digital twin scene. Second, more comprehensive digital
twin training for individual robotic arms, such as getting the AGV to move,
rather than setting it right at a given location and just moving the arm.
This will provide a more comprehensive training and solution, and is also
more capable of meeting realistic scenarios. Third, we continue to delve
into how the movements and effects generated in the digital twin can be
transferred to the real scene and have the robotic arm make the corresponding
movements. This is a problem of interaction between the real and virtual
worlds, but once the research is successful, the models in the digital twin can
be transferred in real time through industrial cameras and simulated through
the digital twin to derive the best path optimization, thus forming a more
complete solution for automatic picking path optimization based on digital
agriculture.
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