
Research on Task Scheduling for Internet
of Things Cloud Computing Based

on Improved Chicken Swarm
Optimization Algorithm

Shizheng Liu1, Xuan Chen1 and Feng Cheng2,∗

1Zhejiang Industry Polytechnic College, Shaoxing, Zhejiang, 312000, China
2Southwest Jiaotong University, Chengdu, Sichuan, 611756, China
E-mail: chengfeng2013 @swjtu.edu.cn
∗Corresponding Author

Received 15 September 2023; Accepted 02 November 2023

Abstract

Aiming at the shortcomings of long completion time and high consumption
cost of cloud computing batch task scheduling in IoT, an Improved Chicken
Swarm Optimization Algorithm (ICSO) for task scheduling in cloud com-
puting scenarios is proposed. Specifically, in order to solve the problems
of slow convergence and falling into local optimum of the chicken swarm
optimization algorithm, we adopt the nonlinear decreasing technique of the
rooster and the weighting technique of the hen, optimize the following coef-
ficients of the chicks, and apply ICSO to cloud computing task scheduling.
In simulation experiments, we conducted a large number of experiments
using four standard benchmark functions with different number of tasks and
the results show that ICSO algorithm reduces 25.8%, 9.3%, 8.8%, 7.5% in
small task time compared to CSO, DCSO, GCSO, ABCSO in large task
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time by 30.8%, 8.3%, 7.8%, 6.3%, 11.8%, 10.3%, 8.8%, 7.5% savings in
small task cost and 25.8%, 11.2%, 10.8%, 9.3% savings in large task cost.
This method effectively reduces task scheduling time and cost consumption.
Meanwhile, we tested it in combination with an IoT-based cloud platform and
achieved very satisfying Results.

Keywords: Cloud computing, task scheduling, chicken swarm optimization,
Internet of Things.

1 Introduction

In recent years, major technological innovations have occurred in sensing,
computing, and communication technologies. In particular, the rapid devel-
opment of wireless communication technology has made it possible to access
devices, software, or control systems that are deployed anywhere, anytime.
And the Internet of Things is a combination of these important technolo-
gies. However, due to the capacity constraints of IoT devices themselves,
such as limited memory, CPU, battery capacity, etc., this will make them
unsuitable for tasks that require large computational resources and are energy
consuming on the device side. Cloud computing [1] provides resources such
as computing, storage or operating environment, and the correspond-ing tasks
are run in the cloud and the results are sent to the IoT devices, which not
only reduces the energy consumption of the IoT devices, but also expands the
functions of the IoT devices by utilizing the powerful computing and storage
capabilities of the cloud computing, which is no longer limited to its own
hardware configuration [2].

Task scheduling is an important aspect of cloud computing, which
involves the rational allocation of resources and efficient execution of tasks.
More and more organizations and individuals are migrating their computing
tasks to the cloud, making the research and practice of cloud computing task
scheduling especially critical. The goal of cloud computing task schedul-
ing [3] is to reasonably allocate tasks to the resources of cloud service
providers and optimize the resource utilization and task completion time,
while the task scheduling algorithms need to consider several factors, such
as the priority of the tasks, the availability of the resources, the dependencies
of the tasks, and so on. Therefore, how to efficiently perform cloud computing
task scheduling is a key bottleneck that needs to be solved by implementing
an adaptive scheduling strategy that balances the load of the entire platform
and minimizes resource consumption while ensuring service quality.
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It is well known that cloud computing task scheduling task is a typical NP
problem [4]. In order to solve this problem, there are two methods studied by
scholars, one is used to study the real-time processing tasks, and the other is
used to study the batch processing tasks. The more representative algorithm
of the former is the deep reinforcement learning algorithm [5], and the latter
is the metaheuristic algorithm [6]. The chicken swarm optimization (CSO)
algorithm [7] is one such novel intelligent metaheuristic algorithm, which is
inspired by the behavioral characteristics and foraging behavior of chickens.
This algorithm obtains the optimal solution by simulating the collaborative
and competitive behavior of multiple chickens while foraging. It also has
the advantages of fewer control parameters and greater stability than other
algorithms.

We use the chicken swarm optimization algorithm for cloud computing
task scheduling under IoT in this paper. However, in order to solve the
problem that the chicken swarm optimization algorithm has the problem of
fast convergence and easy to fall into the local optimum, we propose an
improved chicken swarm optimization algorithm (ICSO), which is improved
in three aspects: the non-linear decreasing based idea is used in the update of
the rooster’s position, the weighting idea is used in the update of the hen’s
position, and the adaptive idea is used in the following coefficients of the
chick’s position. ICSO is used for cloud computing task scheduling in IoT,
and simulation experiments verify the performance of this paper’s algorithm
in cloud computing task scheduling.

Therefore, the main contributions of the work in this paper are as follows:
(1) We propose a cloud computing task scheduling model based on optimiza-
tion time and cost; (2) We propose an improved Chicken swarm Optimization
Algorithm (ICSO), which improves the efficiency of task scheduling by
employing advanced optimiza-tion techniques, and by improving the con-
vergence speed and accuracy as compared to the traditional CSO-based
approach. (3) We evaluated the ICSO algorithm. The experimental results
show that the algorithm can achieve superior performance in terms of
completion time and cost consumption.

This paper is organized as follows: we present the current state of the art
in cloud computing task scheduling research in Section 2, and in Section 3,
we introduce the time and cost based task scheduling model. In Section 4, we
describe the process of improving the chicken swarm Optimization Algo-
rithm in detail. In Section 5, we test the performance of the algorithm,
and analyze the algorithm for task scheduling under IoT cloud computing.
In Section 6, we summarize the full paper.
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2 Related Research

Currently, the main research on cloud computing scheduling problem is cat-
egorized into task scheduling and VM-host mapping [8]. In task scheduling,
the bandwidth, storage, cost and time are different for each task. Therefore,
the goal of scheduling is the need to obtain the appropriate VM resources,
which has a direct relationship to the impact of both time and cost efficiency
of task scheduling [9].

The current research on cloud computing task scheduling mainly focuses
on two aspects: schedule of real-time tasks and schedule of batch tasks. The
former case is mainly addressed by deep reinforcement learning, in which the
intelligent agent can interact with the cloud environment and learn an optimal
scheduling policy based on the optimization objectives [10]. Although all
the approaches are shown to be efficient and can output other real-time
scheduling algorithms such as round-robin, they are not suitable for handling
tasks in a batch way.

In comparison the DL based algorithms, the most commonly used algo-
rithms for scheduling batch tasks is metaheuristics [11]. For instance, Bezdan
et al. [12] pro-posed an improved bat algorithm for cloud computing task
scheduling and presented a new cloud computing task scheduling model. The
simulation results showed that the algorithm has better performance in terms
of virtual machine load and task completion time, but further optimization
of cost is needed. Chen et al. [13] proposed the use of a whale algorithm for
cloud computing task scheduling and constructed a task scheduling model
based on virtual machines, cost, and time. The simulation results showed that
the algorithm has good results in terms of virtual machines, completion time,
and task scheduling. Mangalampalli et al. [14] used a cat swarm algorithm for
cloud computing task scheduling, and the simulation results showed that the
algorithm has good performance in terms of scheduling efficiency. Velliangiri
et al. [15] proposed a genetic algorithm based on electronic search strategy,
and the simulation results showed that this algorithm outperforms traditional
metaheuristic algorithms such as GA, PSO, etc. in terms of completion time
and cost consumption in cloud computing. Abualigah et al [16] proposed a
hybrid ant lion optimization algorithm based on elite differential evolution for
cloud computing task scheduling, and the simulation results showed better
results in resource utilization maximization and time minimization. Muthu-
lakshmi et al. [17] proposed a cloud computing task scheduling strategy using
an artificial swarm algorithm and optimized the task scheduling effect by
using an improved swarm algorithm.
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The other approach to improve scheduling is the combination of multiple
metaheuristic algorithms, as seen in studies such as Manikandan et al.’s
hybrid method using artificial bee colony and whale optimization algo-
rithm [18], Chen et al. proposed ACO and PSO algorithms for cloud com-
puting task scheduling [19]. Additionally, there are also many customized
heuristics which can scheduling cloud tasks in an efficient way, such as
on workflows [20], and deep learning applications [21]. Although using a
hybrid algorithm with two or more metaheuristics or customized heuristics
can also achieve good performance in cloud computing task scheduling,
but it may come at the cost of increased algorithm complexity. Moreover,
some customized algorithms have also been proposed to address scheduling
problems in cloud [22, 23], but their performance could be not robust as
metaheuristics. In comparison, in this work, we focus on utilizing a single
metaheuristic algorithm, the CSO algorithm, which can effectively enhance
task scheduling in cloud computing. More specifically, we are aiming to
further improve its performance through effective algorithm optimization.

3 Task Scheduling Model

Performing cloud computing task scheduling in IoT is mainly to optimize
the scheduling of tasks distributed on various IoT devices to maximize
system efficiency, reduce energy consumption, and meet real-time require-
ments. In IoT, various tasks that require cloud computing task processing
are collected, and these tasks are categorized according to priority, real-time
requirements, etc., and cloud service resources are reasonably configured
according to the requirements of these tasks. Therefore, the essence of design-
ing a well-performing cloud computing task scheduling model is how to
maximize the benefit of the relationship between the VMs required for a task,
the cost of the task, and the time consumption. In order to better represent our
proposed algorithm and achieve better results in task scheduling, we choose
the task scheduling model proposed in the literature [24] as a model reference,
and we use time and cost as the main factors to study the optimization
objective of task scheduling under IoT.

We assume that the set of tasks is Task = {task1, task2, . . . taskm}, the
total number of tasks is m, task i represents the ith task, the set of virtual
machines is V m = {vm1, vm2, . . . vmn}, the number of virtual machines
is n. Therefore, the correspondence between tasks and virtual machines is
represented by matrix R, as shown in Equation (1), rij is 1 means task i is
assigned to virtual machine j, rij is 0 means task i is not assigned to the
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corresponding virtual machine

R =


r11 r12 · · · r1n
r21 r22 · · · r2n
· · · · · · · · · · · ·
rm1 rm2 · · · rmn

 (1)

(1) Task completion time and cost

Task completion time is the whole process of the task from the time it is
submitted until the task is executed on the virtual machine, i.e., the time
the task is transferred to the virtual machine, the time the task waits for the
virtual machine and the time the task is executed on that virtual machine.
Equation (2) represents the transfer time, Equation (3) represents the task
wait time, and Equation (4) represents the task execution time. Thus, the total
task completion time is the maximum completion time of the executed tasks
in each virtual machine, and the maximum completion time of each virtual
machine comes from the maximum time that each task finishes completing
individually.

TT =


tt11 tt12 · · · tt1n
tt21 tt22 · · · tt2n
· · · · · · · · · · · ·
ttm1 ttm2 · · · ttmn

 (2)

WT =


wt11 wt12 · · · wt1n
wt21 wt22 · · · wt2n
· · · · · · · · · · · ·

wtm1 wtm2 · · · wtmn

 (3)

ET =


et11 et12 · · · et1n
et21 et22 · · · et2n
· · · · · · · · · · · ·
etm1 etm2 · · · etmn

 (4)

TaskFinshTime = max{max{ttij + etij + wtij}} (5)

In Equation (2), ttij denotes the time it takes for task i to get to vir-
tual machine j, i.e., ttij = task i_input_size/vmj_bw, where task i_input_size

denotes the amount of data for task i and vmj_bw denotes the virtual machine
communication bandwidth. In Equation (3), wtij denotes the time that task
i waits for virtual machine j, i.e., wtij =

∑
u∈TaskQuenej

etuj , where u ∈
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TaskQuenej denotes the queue of unexecuted tasks on virtual machine j, u
is the task number, and etuj denotes the execution time of task u on virtual
machine j. In Equation (4) etij denotes the execution time of task i on virtual
machine j, etij = task i_length/vmj_compute , task i_length denotes the size of
the instruction, and vmj_compute denotes the computing power of the virtual
machine whose value is composed of the computing power of multiple virtual
machines.

The cost in task scheduling under cloud computing mainly considers the
cost required for task execution in the virtual machine shown in Equation (6)
and the cost required during task transfer shown in Equation (7). The total
cost of task completion is the sum of the above two costs, as shown in
Equation (8)

CostExecuteij = etij × vmj_execute_cost (6)

CostBW ij = ttij × vmj_bw × vmj_bw_unit_cost (7)

TotalCost =

n∑
j=1

m∑
i=1

(CostExecuteij + CostBW ij) (8)

In Equation (6), vmj_execute_cost denotes the cost per unit time of
the virtual machine i.e. vmj_execute_cost = vmj_mips × vmj_core_num ×
vmj_mips_unit_cost , vmj_mips denotes the individual CPU computing
power, vmj_core_num denotes the number of CPUs of the virtual machine,
and vmj_mips_unit_cost denotes the mips cost of the virtual machine.
In Equation (7), vmj_bw denotes the communication bandwidth of a VM and
vmj_bw_unit_cost denotes the unit bandwidth of a VM.

(2) Time and cost functions

The time and cost functions in this paper are the time affiliation function
and the cost affiliation function, respectively. The time affiliation function
is shown in Equation (9), and the cost affiliation function is shown in
Equation (10).

Time(I) =


(TaskFinisTime − Timedeadline)/ TotalCost

TotalCost > Timedeadline

(Timedeadline − TaskFinisTime)/ TotalCost

Timedeadline ≤ Timedeadline
(9)
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Cost(I) =


(TotalCost − Costexpert)/ TotalCost

TotalCost > Costexpect
(Costexpert − TotalCost)/ TotalCost

Costexpert ≤ Costexpect

(10)

In Equations (9)–(10), Timedeadline denotes the as of time for all tasks
and Costexpect denotes the expected cost for all tasks.

4 Intelligent Task Scheduling Based on ICSO Algorithm

4.1 Chicken Swarm Optimization Algorithm

The core idea of the swarm optimization optimization algorithm is to simulate
the process of finding food by the swarm optimization behavior. It divides
the whole swarm optimization into several sub-groups according to different
hierarchies and foraging in the swarm optimization, and each sub-group
mainly consists of one rooster, several hens and chicks. Since there are
different hierarchies, there is some competition between different swarm
optimizations. To better describe the algorithm, we describe the individuals
and behaviors in the algorithm. The individual with the best fitness value is
called a rooster, the individual with the worst fitness value is a chick, and the
individual with moderate fitness value is a hen in the swarm optimization
algorithm. The hen can randomly select any subgroup. The relationship
between the hen and the chicks is not fixed and remains unchanged once
established and changes only after renewal. In each subgroup, all individuals
within the group are searching for food around the rooster.

Set the population size of the swarm optimization as N , the spatial
dimension as D, and the location of individual i in the tth iteration in the
jth dimension as xji (t). The positions of the roosters, hens and chicks are
indicated as follows.

(1) Position of rooster

The rooster is the best adaptation value in each subgroup and is in the leading
position in the subgroup, with the following position updates.

xji (t+ 1) = xji (t)× (1 + Randn(0, σ2)) (11)

σ2 =


1 if fi ≤ fk

exp

(
fk − fi
|fi|+ ε

)
otherwise

(12)
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In Equations (11)–(12), Randn(0, σ2) denotes a normal distribution with
mean 0 and standard deviation σ, ε is a constant that ensures that the
denominator is not zero, and fi and fk denote the objective function values
of the current i, k roosters, respectively.

(2) Position of hens

The hen is the most numerous individual in the subgroup. During foraging,
the hen mainly searches for food near the rooster, and the position of the hen
is updated with the following formula.

xji (t+ 1) = xji (t) + c1 × rand × (xjr1(t)− xji (t))

+ c2 × rand × (xjr2(t)− xi,j(t)) (13)

c1 = exp((fi − fr1)/abs(fi) + ε) (14)

c2 = exp(fr2 − fi) (15)

In Equations (13)–(15), rand is a random number with a value of 0.5, r1 is
the rooster corresponding to the ith hen itself, r2 is any randomly selected
individual among the roosters and hens in the whole swarm optimization,
and r1 ̸= r2.

(3) Position of chicks

In each subgroup, the chicks will forage with the hen’s side, and the position
is updated as follows

xji (t+ 1) = xji (t) + F × (xjm(t)− xji (t)) (16)

In Equation (16), m means the i chicks corresponding to the hen, F is the
following factor, that the chicks follow the hen in search of food.

4.2 Improved Chicken Swarm Optimization Algorithm

Like most of the meta-heuristic algorithms characteristics, we optimize the
swarm-ing optimization algorithm for the drawbacks such as its tendency to
fall into local optimums, which leads to slow convergence, and so on, we
optimize it in the follow-ing three directions:

(1) Rooster position update based on nonlinear decreasing

In the swarm optimization algorithm, the position of the individual rooster is
very important, which determines the effect of the optimal value of the algo-
rithm’s solution, but it is found from the update of the individual position that
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the position of the rooster lacks timely comparison with the global individual
solution, which makes the local and global solutions of the algorithm cannot
be balanced in a timely and effective manner, and in order to improve this
situation, we introduce a nonlinear learning factor formula in the update of
the rooster’s position.

a(t) = t× lnwmax − lnwmin

tmax
(17)

w(t) = e−a(t) (18)

In Equations (17)–(18), t denotes the current number of iterations, tmax

denotes the maximum number of iterations, wmax and wmin are the maximum
and minimum values of the learning factors, respectively. w(t) is the learning
factor, so the position of the individual rooster is updated as follows.

xji (t+ 1) = xji (t)× (1 + Randn(0, σ2))

+ w(t)× (xbest(t)− xji (t)) (19)

(2) Individual hens based on weighting

In the chicken swarm optimization algorithm, all chicken individuals are
aggregated at the location with the best fitness value in the search space of
choice, which can easily lead to the loss of diversity in the later population, so
to avoid this situation, we introduce a hen individual with a weighted center,
which can participate in the competition with the whole swarm optimization
individuals for the location of the global best individual and help the algo-
rithm to jump out of the local best point. The update formula for this weighted
central individual is as follows.

xtcenter =
H∑
i=1

ctix
t
i (20)

cti =
f t
i∑H

i=1 f
t
i

(21)

In Equations (20)–(21), xti denotes the position of individual hen i at
the tth iteration, f t

i denotes the fitness value of individual hen i, cti is the
normalized fitness value as a weighting factor after the tth iteration, xtcenter
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denotes the position of the weighting center in the hen population at the tth
iteration, and H is the number of hens. Therefore, the updated expression for
the hen position is as follows:

xji (t+ 1) = xtcenter + c1 × rand × (xjr1(t)− xji (t))

+ c2 × rand × (xjr2(t)− xi,j(t)) (22)

(3) Adaptive based following coefficient optimization

From the formula of chick’s position update, it is found that the following
coefficient is set by human, and its role is to ensure that the chicks follow the
hen in the subgroup range. Since the individual chick’s fitness value is the
worst, it is very important to improve the individual chick’s position update.
In the process of chick position update, when the value of the following
coefficient is set larger, it will cause the algorithm oscillation phenomenon in
the later stage of the algorithm, and the operation speed of the algorithm will
be affected, and the solution accuracy will also be reduced; on the contrary,
it will affect the search speed of the algorithm and the solution accuracy will
increase, so the artificial setting of the following coefficient obviously has
a greater impact on the whole swarm optimization algorithm. Therefore, an
adaptive step size is proposed. At the beginning of the algorithm, due to the
change of individual chick positions, a larger step size is used to promote
individual chicks to approach the optimal value in the local area, thus making
the convergence speed improved. As the iteration progresses, the step length
gradually decreases, which ensures that the individual chicks keep searching
for the optimal value in depth around themselves, thus gradually approaching
the optimal solution of the algorithm. This is not only beneficial to expand
the search range, but also to improve the search accuracy of the algorithm
and enhance the quality of the solution. The formula for the variation of the
following coefficient is as follows.

F = t× f(xti)

fmax
obj (xti)− fmin

obj (x
t
i)

)
(23)

In Equation (23), t is the current iteration number, tmax is the maximum
iteration number, fmin

obj (x
t
i) and fmax

obj (xti) denote the maximum and minimum
fitness values of individual i in the current iteration number, respectively, and
f(xti) denotes the fitness value of individual i.



32 S. Liu et al.

4.3 Optimization Objective Function Design

In this paper, we mainly optimize two indicators, namely, the execution time
and the consumption cost of the task. During the execution of the swarm
optimization algorithm, the comparison of the fitness value is used as the
selection condition of the best individual, and the execution of the algorithm
is completed through continuous iterations. Let xti be the position of the
first swarm individual after t iterations, Time(xti) denotes the execution
time function corresponding to the swarm individual, and Cost(xti) denotes
the execution time function corresponding to the swarm individual. We use
the individual fitness setting to represent the fitness function of individual
chickens, i.e., the fitness function of execution time and consumption cost
corresponding to each individual is expressed as follows.

F1(x
t
i) =

1

Time(xti)
(24)

F2(x
t
i) =

1

Cost(xti)
(25)

Equation (24) represents the fitness function of the completion time of a
chicken individual, Equation (25) represents the fitness function of the con-
sumption cost of a chicken individual, Equation (26) will take the derivative
of the first 2 fitness functions and then take the logarithm to sum up the
objective function as follows.

Fitness(xti) = F1(x
t
i) + F2(x

t
i) (26)

Therefore, solving the optimal scheduling scheme in cloud computing is
solving the optimal swarm of individuals.

4.4 Algorithm Steps

Step 1: According to the requirements of cloud computing task scheduling
in the Internet of Things, treat each cloud computing task scheduling
scheme as a chicken swarm individual, and use the task schedul-
ing function of Equation (4.26) as the fitness function of the chicken
swarm individual

Step 2: Initialize the chicken swarm related parameters and set the maximum
number of iterations

Step 3: Record the current best individual (optimal solution for each indi-
vidual swarm) and the global best solution (optimal solution for the
whole swarm)
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Step 4: Update the cockerel position according to Equation (19);
Step 5: Update the hen position according to Equation (22);
Step 6: Update the chick position according to f Equation (23);
Step 7: Determining the current individual’s fitness value compared with the

global optimal fitness value, if the former is better than the latter, it
is directly replaced, otherwise the iterative execution continues;

Step 8: If the number of iterations reaches the maximum number of itera-
tions, go to step 9, otherwise go to step 3;

Step 9: Output the current optimal chicken individual, i.e., the optimal cloud
computing task scheduling scheme.

5 Simulation Experiments

In order to further validate the performance of ICSO and its effectiveness
in terms of time and cost of cloud computing task scheduling applied to
IoT, we chose a hard-ware platform CPU of Core I5, memory of 8GDDR4,
hard disk capacity of 1T, software system of Win10, simulation software of
Matlab2012a. We chose CSO, DCSO [25], GCSO [26], ABCSO [27] as the
comparison algorithms in this paper. The maximum number of iterations of
the algorithm is set to 1000 and the population size is 100.

5.1 Algorithm Performance

We choose four benchmark test functions (as shown in Table 1) as the
comparison objects in different dimensions. The number of iterations is also
set to 1000 and the population size is 200, and the comparison data are shown
in Table 2.

Table 1 The used benchmarking functions
No Function Test Function

F1 Rastrigin f(x) =

n∑
i=1

(x2
i − 10 cos(2πxi) + 10)

F2 Schwefel1.2 f(x) =

n∑
i=1

(
i∑

j=1

xj

)

F3 Schwefel2.22 f(x) =

n∑
i=1

|xi|+
n∏

i=1

|xi|

F4 Rosenbrock f(x) =

n−1∑
i=1

[100(xi+1 − x2
i )

2 + (xi − 1)2]
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Table 2 Comparison results of the four algorithms
Function Dimension Algorithm Minimum Maximum Variance
F1 2 CSO 1.214E-03 2.143E-02 1.256E-02

DCSO 1.112E-03 1.981E-02 1.243E-02
GCSO 2.235E-04 1.874E-03 2.825E-03

ABCSO 1.745E-05 1.963E-04 2.145E-03
ICSO5 0 0.149E-06 1.745E-05

10 CSO 1.785E-09 0.245E-08 1.176E-07
DCSO 0.638E-12 1.874E-10 8.475E-11
GCSO 1.741E-11 2.746E-10 7.149E-10

ABCSO 2.874E-12 6.852E-11 6.234E-11
ICSO 3.547E-15 8.145E-15 4.152E-14

30 CSO 2.487E-20 3.258E-17 6.254E-18
DCSO 9.574E-24 6.471E-23 8.741E-23
GCSO 7.149E-25 4.178E-24 7.724E-23

ABCSO 9.587E-27 6.174E-26 9.035E-25
ICSO 8.347E-32 2.145E-30 4.719E-30

F2 2 CSO 0.197 0.189 0.182
DCSO 0.153 0.161 0.144
GCSO 0.158 0.174 0.158

ABCSO 0.136 0.152 0.147
ICSO 0.129 0.131 0.128

10 CSO 1.424E+09 2.475E+09 4.145E+02
DCSO 6.314E+08 5.124E+09 6.285E+08
GCSO 8.143E+08 5.178E+09 3.187E+08

ABCSO 9.595E+08 8.593E+09 5.743E+10
ICSO 9.587E+07 8.386E+08 5.707E+10

30 CSO 5.784E+12 6.287E+13 6.974E+12
DCSO 6.748E+10 9.587E+11 6.145E+10
GCSO 6.742E+10 9.415E+10 6.217E+09

ABCSO 9.012E+09 5.287E+10 6.187E+08
ICSO 2.854E+08 4.874E+09 0.478E+07

F3 2 CSO 1.587E+02 1.872E+02 1.457E+02
DCSO 1.958E+01 2.749E+01 1.749E+01
GCSO 3.147E+01 6.214E+01 1.254E+01

ABCSO 6.214E+01 6.782E+01 2.178E+01
ICSO 2.142E+01 6.352E+01 1.522E+01

10 CSO 8.475E+03 8.974E+03 5.745E+03
DCSO 4.741E+03 5.479E+03 6.742E+03
GCSO 5.412E+03 6.178E+03 6.872E+04

(Continued)
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Table 2 Continued
Function Dimension Algorithm Minimum Maximum Variance

ABCSO 6.125E+03 8.475E+03 6.784E+02
ICSO 6.017E+03 6.197E+03 6.178E+03

30 CSO 9.148E+06 8.174E+06 6.287E+05
DCSO 6.196E+06 8.746E+05 7.149E+05
GCSO 5.719E+06 5.749E+06 6.217E+05

ABCSO 4.196E+06 6.749E+06 6.147E+05
ICSO 3.195E+05 4.196E+05 6.178E+05

F4 2 CSO 1.258E-02 1.965E-02 1.847E-02
DCSO 1.854E-03 1.856E-03 1.578E-03
GCSO 1.715E-04 1.729E-04 1.679E-04

ABCSO 5.178E-05 7.015E-05 6.178E-05
ICSO 0 2.748E-07 3.471E-08

10 CSO 6.785E-09 6.479E-09 9.125E-08
DCSO 6.121E-09 8.159E-09 6.171E-09
GCSO 8.179E-10 9.128E-10 8.138E-10

ABCSO 8.128E-10 7.158E-10 3.745E-10
ICSO 8.147E-12 2.485E-11 9.025E-11

30 CSO 8.128E-18 8.017E-17 9.012E-17
DCSO 9.176E-19 6.285E-18 6.258E-17
GCSO 5.148E-21 6.918E-20 5.417E-20

ABCSO 6.258E-22 6.181E-21 9.158E-21
ICSO 6.148E-25 6.147E-24 7.182E-22

Table 2 shows the performance comparison results of different algo-
rithms’ perfor-mance in different dimensions. We find from the data in the
table that the ICSO algorithm proposed in this paper obtains better results
in the Minimum, Maximum, and Variance metrics data in four different
benchmark functions. Especially in Minimum, this paper’s algorithm actually
reaches 0 in the two benchmark functions of F1 and F4 with dimension
2, which shows that the performance effect of the improved algorithm is
obvious. In the benchmark function of F2, when the dimension is 10, the
difference between the ICSO algorithm and the ABCCSO is almost very
small in the three indexes, but it still has a more obvious advantage in
other dimensions. In the benchmark function of F3, the ICSO algorithm
has a more obvious advantage over other algorithms in terms of the three
indicators. Through the comparison of the above data, we found that the
ICSO algorithm obtained through the optimization of the three dimensions
has superior performance.
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5.2 Comparison of Cloud Computing Scheduling Indexes

This subsection focuses on verifying the results of the comparison between
the ICSO algorithm and the comparison algorithm in terms of time and cost
in scheduling cloud computing tasks in IoT. The number of novel tasks is set
to [10000,30000] and the number of small tasks is set to [100,1000].

(1) Completion time comparison

Figures 1–2 show the results of the completion time comparison of the five
algo-rithms under different numbers of tasks. Figure 1 shows the results of the
five algo-rithms in the conditions of the completion time under the conditions
of a smaller number of tasks, from the time curve in the figure found that
with the increase in the number of tasks, the five algorithms curve shows
an upward trend, but the CSO algo-rithm has a more obvious upward trend,
while the other four algorithms curve upward trend is more gentle, due to
the fact that these four algorithms are all in the CSO algo-rithm on a different
degree of improvement, so with the CSO algorithm There is a clear difference
between the curves, but among the four algorithms, the advantage of ICSO is
more obvious compared to the other three algorithms, which shows that ICSO
has a better advantage in task completion, saving 25.8%, 9.3%, 8.8% and
7.5% compared to CSO, DCSO, GCSO and ABCSO, respectively. Figure 2
shows the results of the five algorithms in terms of completion time for
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Figure 1 Comparison of the four algorithms on completion times under small tasks.
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Figure 2 Comparison of the four algorithms on completion times under large tasks.

conditions with a large number of tasks. From the curve results in the figure,
it is found that the four algorithms DCSO, GCSO, ABCSO and ICSO have
a significant advantage over CSO and the difference in task completion time
between these four algorithms is not significant. However, ICSO saves 30.8%,
8.3%, 7.8% and 6.3% compared to CSO, DCSO, GCSO and ABCSO respec-
tively. By analyzing the above task scheduling time results, we found that
the effect of updating the rooster position, hen position update and following
coefficient update is obvious, which improves the algorithm performance and
thus reduces the task completion time.

(2) Comparison of consumption cost

Figures 3–4 show the results of the cost of completion comparison of the
five algorithms under different number of tasks. Figure 3 shows the results
of the five algorithms in the conditions of task energy consumption under the
condition of a small number of tasks, from the energy consumption curve
in the figure, it is found that, with the increase of the number of tasks,
the five algorithms’ energy consumption curve shows an upward trend, and
the upward trend of the CSO algorithm is almost a straight line, while the
other four algorithms’ energy consumption curves have different degrees
of twists and turns during the upward process, but among these four algo-
rithms, the ICSO has more obvious advantages compared with the other three
algorithms. The advantage is more obvious, which shows that ICSO has a
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Figure 3 Comparison of consumption costs of four algorithms for Small tasks.
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Figure 4 Comparison of the consumption costs of the four algorithms under large tasks.

better advantage in task energy consumption, saving 11.8%, 10.3%, 8.8% and
7.5% compared with CSO, DCSO, GCSO and ABCSO respectively. Figure 4
shows the results of the five algorithms in terms of energy consumption for a
large number of tasks. From the curves in the figure, it is found that the four
algorithms DCSO, GCSO, ABCSO and ICSO have obvious advantages over
CSO, while the difference in task completion energy consumption between
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Figure 5 IoT based health monitoring service platform.

these four algorithms is obvious, and ICSO has a certain advantage over
DCSO, GCSO and ABCSO in general, but ICSO saves 25.8% compared to
CSO, DCSO, GCSO and ABCSO In general, however, ICSO saves 25.8%,
11.2%, 10.8% and 9.3% compared to CSO, DCSO, GCSO and ABCSO,
respectively. This indicates that ICSO algorithm adapts to task scheduling
under large tasks and can effectively reduce energy consumption.

5.3 IoT Cloud Platform Application

We had been involved in the development of an IoT based health moni-
toring service platform, the structure of this monitoring platform is shown
in Figure 5, we use this platform to manage 2000 elderly people in the
community, through which we monitor and receive different requests from
these elderly people and respond to them. We randomly selected 1000 elderly
people and divided 1000 elderly people into a group of 10 groups, i.e.,
numbered 1–10, Figure 6 shows the average response time of the platform
simulating the same moment of dealing with the emergency help issued
by 1000 elderly people, and the results from the figure show that the five
algorithms responded to the help issued by the elderly people in a relatively
rapid time, and the ICSO algorithm in the 1000 elderly people’s Response
time for the help request task is the shortest, which indicates that the use
of this algorithm has good results in terms of task processing time. Figure 7
shows the energy consumption of the cloud server for processing 1000 elderly
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Figure 6 Requesting time of 1000 elderly requests in the cloud computing platform.
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Figure 7 Energy consumption of 1000 elderly requests in the cloud computing platform.

people, from the figure, it is found that the CSO algorithm produces very
large fluctuations in energy consumption and the highest value of energy
consumption in the completion of the response, while the other four algo-
rithms are significantly lower than the CSO, while in the energy consumption
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of group number 1, the four algorithms have the same result, and the ICSO
algorithm has no advantage, and in the energy consumption of group number
5, the ICSO algorithm is lower than the GCSO algorithm, The reason for this
may be that the complexity of the ICSO algorithm leads to an increase in the
running time of the algorithm and thus improves the energy consumption, but
from the overall numerical results, the ICSO algorithm has a lower energy
consumption.

6 Conclusions

In this paper, we propose a cloud computing task scheduling scheme under
the Internet of Things, which employs an improved chicken swarming
algorithm to solve the problems of long completion time and high cost con-
sumption in cloud computing task scheduling. Specifically, we first outline
the time- and cost-based functions, and then improve the CSO algorithm
by updating three aspects: rooster, hen, and following coefficients. Through
simulation experiments, we demonstrate that our proposed ICSO algorithm
achieves superior performance in benchmark functional tests and improves
the scheduling results of cloud computing tasks with various con-figurations
in terms of time and cost, and illustrates the superior scheduling performance
of the algorithm by applying it through an IoT cloud platform. The future
of cloud computing task scheduling under IoT moves towards edge com-
puting, automation and intelligence, multimodal and multimedia data, and
edge smart devices to accommodate the growing and diverse IoT application
requirements.
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