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Abstract

Electronic health records (EHRs) play a vital role in simplifying thorough
and effective patient treatment, promoting smooth exchange of information
between medical professionals, and enhancing the process of making clinical
decisions. With the increasing adoption of sensor-embedded smart wear-
ables and home automation devices, new opportunities arise for innovative
solutions in various sectors, such as eHealth. In the age of 5G and 6G,
the potential of utilizing user-collected health data becomes vast, promising
significant improvements in people’s health and well-being. Realizing con-
tinuous healthcare access takes a step closer to reality by equipping EHRs
to effectively store and interpret data collected by these sensors. This would
result in personalized medical services that adhere to standardized practices.
This paper presents a comprehensive review of contemporary advancements
in the realm of standardization methods aimed at managing personal health
data. The study delves into an extensive analysis of state-of-the-art solutions
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that have emerged to address the intricate challenges associated with the har-
monization and uniformity of personal health information. By systematically
examining these cutting-edge approaches, the review elucidates the diverse
strategies employed to establish a cohesive framework for organizing, storing,
and exchanging personal health data. Furthermore, the review critically eval-
uates the effectiveness and limitations of each solution in terms of promoting
interoperability, safeguarding data privacy, and facilitating seamless data
sharing among healthcare stakeholders. Furthermore, this paper then presents
an approach to standardize the data by establishing semantic constraints
for healthcare data types and proposing a validation procedure to ensure
compliance with relevant standards and regulations.

Keywords: Wearable sensors, eHealth, healthcare, Internet of Things,
Internet of Medical Things, electronic health record, EHR, 5G, 6G.

1 Introduction

Modern electronic health record (EHR) systems are, in major part, web-
oriented, utilizing both client- and server-side elements, employing relational
databases, enabling secure data accessing through authorized mechanisms,
and facilitating interoperability across a spectrum of healthcare entities such
as hospitals, doctors, and pharmacies. With the ongoing rapid growth of
the worldwide market for wearable fitness trackers, integrating their data
into EHRs in a standardized manner offers substantial potential for improv-
ing personalized healthcare provision, encouraging preventive medicine,
and propelling advancements in medical research and patient outcomes. In
accordance with the findings of a study [1], the wearable fitness tracker
industry is poised to experience noteworthy growth of around 80 million
euros between 2020 and 2027, displaying a CAGR of 22.49%. Furthermore,
as outlined in report [2], the global smartwatch market is anticipated to
witness a remarkable surge, with shipments reaching 43.89 million in 2018
and projected to escalate up to 110 million by 2024, manifesting a CAGR
of 14.55% during the projection period spanning between 2019 and 2024.
Furthermore, according to reports [3] and [4], there is a noteworthy expansion
projected in the market for the Internet of Medical Things (IoMT), with an
expected CAGR of 20% and a projected value surpassing 455 billion euros
by 2025. The upcoming Fifth Generation (5G) and anticipated Sixth Gener-
ation (6G) mobile networks are predicted to display enhanced performance
attributes, including swifter speeds, decreased latency, heightened reliability,
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and expanded accessibility. With these superior capabilities, the technologies
of 5G and 6G networks are positioned to substantially amplify communi-
cation between IoMT devices and cloud platforms, consequently resulting
in enhanced performance and heightened Quality of Service (QoS) in the
domain of telemedicine. The integration of these advanced network systems
with IoMT and Artificial Intelligence (AI) solutions holds the potential to
streamline patient monitoring procedures, rendering them more convenient
and effective. Importantly, it should be noted that data can originate from
diverse origins, encompassing varied sensor types and multiple manufactur-
ers that employ their distinct data processing algorithms. The initial phase
encompasses addressing discrepancies, aligning the data, merging diverse
datasets, and consolidating them into a coherent and unified entity. Once the
data aggregation is achieved, it becomes imperative to ensure its conformity
to a standardized structure, irrespective of its source. The most prevalent EHR
standards include Health Level 7 (HL7), with the latest incarnation being
HL7 Fast Health Interoperability Resources (FHIR). Section 2 provides a
concise overview of pertinent EHR architecture and sensors in healthcare,
presenting a snapshot of the latest advanced solutions. Section 3 covers
standardization and delineates the suggested definition of semantic data limi-
tations specific to chosen health-related data categories. Section 4 delves into
the executed validation procedure, while Section V delivers the final thoughts
and conclusions.

2 Related Research: EHR and Sensors in Healthcare

During 1970s, the first EHR was developed at The Regenstrief Institute in
Indianapolis after consulting with computer science experts from Purdue
University [5] and integrated prescriptions and medication orders, procedures
done, laboratory tests, etc. Development of EHRs between 1972 and 1992
included hierarchical or relational databases and where EHRs were deployed
on large mainframe computers with limited storage [6]. Web-based EHRs
started to appear between 1980 and 1990, as a consequence of hardware
becoming more affordable, powerful, compact and the appearance of Inter-
net [7]. As third-party applications were beginning to be used within EHRs,
standards were required. In early 2000s, Health Level Seven (HL7) and IEEE
P1157 MEDIX served as the primary interface standards. This was necessary
to disambiguate data element definitions and use standardized dictionary
codes. Eventually, the HL7 standard was updated and expanded to incorpo-
rate numerous systems. Between 1991 and 2005, large healthcare providers,
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Figure 1 EHR timeline.

Figure 2 EHR architecture.

academic researchers, and government organizations started to push for the
use of EHR, first in the USA and, to lesser extent, Canada, proceeded by the
United Kingdom, Switzerland, the Netherlands and Norway [8]. Since 2005,
EHR use has been steadily increasing in majority of European countries,
Australia, and Asia. Most modern EHRs are web-based with client and server
side, use relational databases, provide secure authorization-based data access,
and allow interoperation of multiple entities, such as hospitals, physicians,
or pharmacies. Figure 1 shows the timeline of EHR development, while
architecture of a modern EHR is given in Figure 2.

Sensors are ubiquitous in today’s world, and are used in lifestyle,
healthcare, fitness, manufacturing, and daily life [9]. Sensors are the most
commonly used monitoring technology, offering the collection of data from



Setting Standards for Personal Health Data in the Age of 5G and 6G Networks 51

Figure 3 Historical timeline of the development of various sensors with respect to materials
(blue), sensor technologies (orange) and biotechnology (green).
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the environment within short time period, and often connect to the cloud
through the use of various communications and transport modes, e.g., mobile
networks, satellite networks, Bluetooth, broad-based networks, low-energy
wide-band networks, etc. Historical timeline of the discovery of various
sensors and their development with respect to materials (blue), sensor tech-
nologies (orange), and biotechnology (green) is given in Figure 3. Discovery
and improvment of various (bio)materials and sensing technologies has
played an essential part in developing new sensors. The development of new
functional materials frequently needs to be paired with advances in other
fields to produce completely novel classes of sensors. Materials play a funda-
mental role in the development of advanced disposable sensing devices [10],
for cost reduction, environmental impact and improvment of performance and
usability. Today, modern wearable fitness trackers contain various sensors and
keep track of various health-related parameters. Table 1 lists sensors which
can be commonly found in modern wearable activity trackers.

The data collected via sensors is then processed using manufacturer’s
proprietary algorithms in order to generate more detailed information, e.g.,
the data collected by the 3-axis accelerometer is used to calculate how many
steps the user has taken, what was their speed, and at what pace, as well
as the calculation of how many calories were likely burned. Most common
measured metrics are given in Table 2.

However, medical devices and related services need to consistently ful-
fill the regulatory requirements specified in standard ISO 13485:2016 [11].
This encompasses design and development, manufacture, storage, as well as

Table 1 Most common sensors in wearable activity trackers
3-axis accelerometer Senses motion and movement on three axes, using measurements of

velocity and position. It senses inclination, tilt and orientation of the
body. Ubiquitous in fitness trackers.

Gyroscope Measures orientation and rotation, used for navigation and
measuring angular velocity. 3-axis gyroscope combined with 3-axis
accelerometer provides “6 degree of freedom” motion tracking
system that’s used in majority of fitness trackers as it is useful when
tracing workout motions.

Temperature sensor Senses temperature. Combined with motion readings, measures
physical activity.

Bioimpedance sensor Measures galvanic skin response (resistance to small electric
current). Used to interpret activity and collect heartrate data.

Optical sensor Preferred way to measuring heart rate using light.
Altimeter Measures altitude by using pressure sensing.
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Table 2 Most common metrics measured or calculated by wearable activity trackers
Steps taken 3-axis accelerometer
Distance covered 3-axis accelerometer and gyroscope
Floors climbed Altimeter. This metric is also used for calculating calories

expenditure and workout.
Heart rate Optical sensor uses light and reflection to check the speed of

blood flow on the wrist.
Body temperature Measures temperature, also used to calculate physical activity

and menstrual cycle as well as detect health issues (e.g., fever).
Oxygen saturation (SpO2) Deoxygenated blood in veins is of a darker red color than the

oxygen-filled blood in the arteries. Sensor measures relative
reflection of red and infrared light. SpO2 value is estimated
taking into account heartbeat rate as well.

Exercise time and calories
burned

Both are calculated taking into account steps taken, distance
covered, movement, velocity, and altitude, as well as heart rate,
and body temperature.

Sleep duration and sleep
quality

Estimated by monitoring body movements, changes in
heartbeat rate, body temperature, and oxygen saturation.

distribution, installation, and maintenance of the device. Standards regard-
ing diagnostic equipment, including medical monitoring equipment, medical
thermometers and related materials are under ICS code 11.040.55, such as
ISO 80601-2-56:2017 [12] for clinical thermometers for measurement of
body temperature. Testing, sampling, and calibration are generally covered
by the standard ISO 17025:2017 [13]. The data must be accurate, precise, and
error-free in order to be used in a formal medical practice. In this context, it
is necessary to revise how to guarantee the quality of data collected by fitness
trackers and ensure the data is in compliance to relevant medical standards
and regulations.

3 Standardization and Specification of Semantic Data
Constraints

The importance of standardization lies in its capacity to enable smooth
compatibility and interaction between EHR systems and other healthcare
platforms. Two notable standards applied in EHR systems are Integrating the
Healthcare Enterprise (IHE) and the previously mentioned HL7. IHE sets up
an all-encompassing structure of technical standards to integrate healthcare
systems, while HL7 defines a series of communication standards for sharing
healthcare data. The Croatian national Health Information Service (HIS),
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referred to as eKarton [14], is built upon the bedrock of HL7 standards.
These standards are also employed in various other nations including Fin-
land, Norway, Sweden, Iceland, and India. Within the HIS, the handling of
health information exchange between databases and electronic health records
(EHRs) is overseen by the Messages management system. These messages,
often referred to as transactions, are precisely delineated in the IHE Technical
Frameworks (IHE TF) [15]. IHE TF outlines the implementation of pre-
established standards to ensure reliable medical data exchange, facilitate
practical and efficient system integration, and enhance patient care quality.
The HL7 standard forms the basis for file sharing. A collection of documents
along with associated metadata are exchanged through the ITI-41 transaction,
known as Provide and Register Document Set-b. Incoming requests are trans-
formed through unmarshalling, which converts the incoming data stream into
an HL7 Resource object (for write operations) or message header parameters
(for search operations). In case of unmarshalling failure, an exception is
triggered. Depending on the actors and workflows involved in the transaction,
the documents and metadata can be managed, processed, and stored for
future retrieval. These documents and related metadata are dispatched from
a content sender to a content receiver. These occurrences can be initiated
through human decisions or automated actions performed by applications
aiming to submit documents to a Content Receiver, like an HIS repository.
For retrieving a document from an HIS repository, the ITI-43 transaction,
Retrieve Document Set, is employed. This process is illustrated in Figure 4.
The IHE Profile utilizes HTTP, Web Services, IT presentation formats, and
the HL7 Clinical Documentation Architecture (CDA). This facilitates the
handling of HL7 Resources within the EHR system. The xds-iti43 component
provides interfaces for entities sending and receiving ITI-43 messages. The
endpoint URI format for the ITI-43 component is defined as:

xds-iti-43://hostname:port/service-path[?params]

Here, hostname refers to the domain name or IP address, service repre-
sents the service path, and params are optional parameters. An instance of the
exposed FHIR REST Service endpoint would consequently be, for example:

http://ekarton-server.org:8888/IHE/xds/iti43

Existing EHR implementations already utilize ITI messages in con-
junction with HL7 standards, featuring predefined and implemented service
endpoints for various ITI messages.
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Figure 4 ITI-41 and ITI-42 messages.

Previous research [16] and [17] thoroughly investigate the essential pre-
requisites and potential remedies for seamlessly incorporating external data
into EHR systems, as they have evolved into a fundamental element of the
core health information infrastructure in a significant number of European
countries.

FHIR stands as a protocol for healthcare data exchange, with its publica-
tion by HL7 and application in the electronic transfer of medical information.
FHIR serves as a critical bridge in the modern healthcare landscape, enabling
the secure and efficient sharing of patient-related data between different
systems, applications, and healthcare providers. Its fundamental element is
a Resource, as illustrated in Figure 5, encompassing metadata, standard-
ized data, and a human-readable section. In the realm of wearable sensor
technology, the proliferation of devices has led to an explosion in data
generation. On a daily basis, a single device can produce an overwhelming
excess of 4 million data points through its sensors. This constant stream
of data translates into substantial data files that require careful process-
ing to extract meaningful insights. To achieve this, the raw health data
collected from wearable devices is first consolidated and harmonized. It
then undergoes a comprehensive processing phase where it is cleansed,
organized, and transformed into a format suitable for further analysis. This
processed data is then mapped into the HL7 FHIR standard, effectively
translating the wealth of sensor data into a structured framework that is
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Figure 5 HL7 FHIR Resource [18].

consistent with modern healthcare practices. By aligning the processed
data with the HL7 FHIR format, healthcare professionals gain the ability
to seamlessly integrate this information into a patient’s EHR. In essence,
FHIR provides the structure and standardization necessary to bridge the gap
between wearable device-generated data and the formal Electronic Health
Record.

A majority of commercially available wearable sensor trackers, such as
Fitbit [19], typically store the data they gather in the JSON (JavaScript Object
Notation) format. This format is widely recognized for its flexibility and
ease of use, making it a preferred choice for encapsulating various types
of information. However, when dealing with the significant amounts of data
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Figure 6 Process of data parsing.

generated by these devices, efficient handling becomes paramount. The parser
responsible for extracting and organizing this data must be robust and capable
of managing substantial data volumes without crashing or compromising
performance. Effective support for large volumes of data is crucial for the
parser’s functionality, ensuring both reliability and stability. To address this,
a JSON parser (depicted in Figure 6) was devised and implemented in
Python using the pysimdjson module, with acceleration through SIMD (sin-
gle instruction, multiple data) technology, enabling data processing speeds
of up to 2.2 GB/s. This high processing efficiency is crucial for wearable
sensor trackers, which can generate a substantial amount of data points over
time. The parser operates in two main stages, with a translator component
in between: the initial stage handles input data in 64-byte batches, while
the subsequent stage constructs a “tape representation” post-translation. This
two-stage parsing structure was tested using the OxyBeat dataset [20], con-
taining heart rate, body temperature, and oxygen saturation (SpO2) data
collected over two months from a Fitbit Versa 3 device, resulting in over
2 million datapoints. The development of this accelerated JSON parser
addresses the crucial need for efficient data processing in wearable sensor
trackers. By enabling rapid and reliable extraction of information from the
JSON format, this parser facilitates the seamless integration of data into
various applications, such as electronic health records, enabling improved
healthcare monitoring and analysis.
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Pseudocode for data parsing process, including the algorithm used to
extract and convert data within the Translator component is also given as
follows:

The algorithm’s input parameters consist of the indexed data lines
retrieved from the JSON parser (L), as well as an identifying name ID to
designate the specific Resource (R). The desired outcome is a data map
encompassing elements of a specific HL7 Resource. Each data line is frag-
mented into separate tokens. For every token, the corresponding element
within the Resource is located (K). These elements are then incorporated
into an output map, where the values (e) are associated with the specific
elements (K) of the designated Resource (R). Subsequently, this assembled
information is fed into an XML parser. Consequently, the accumulation of
readings spanning two months for each of the three scrutinized data types
results in JSON files exceeding 50MB, containing a dataset comprising more
than 2 million datapoints. This data was efficiently processed by a Ryzen 5
5600X six-core processor, operating at a clock speed of 3.7 GHz in 64-bit
mode, completing the analysis within a 58-second timeframe. This thorough
evaluation encompassed all data points, and it achieved a reliability rate of
100 percent.
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4 Validation Process

In its initial stages, the exclusive approach to validating XML documents
relied on schema validation. This validation process established the validity
of an XML document solely if it adhered strictly to the specified schema.
While schema validation ensured the structural accuracy of the document, it
fell short in verifying conditional and integrity-related criteria. To effectively
validate a personal healthcare record, the recommended method involves a
two-step process: initially validating the document’s structure, followed by
assessing the content and inherent characteristics. Additionally, any supple-
mentary limitations present must be subjected to validation. Schematron, an
advanced structural schema validation language, operates on a foundation
of rules expressed in Extensible Markup Language (XML). It stands out by
enabling assertions regarding the presence or absence of specific patterns
within XML trees. Unlike other XML schema languages like XML Schema
and Document Type Definition (DTD), Schematron is uniquely capable
of imposing restrictions in a manner that goes beyond what these other
languages can achieve (as depicted in Figure 7).

The foundational structure of ISO Schematron is constructed as a series
of four sequential stages within an Extensible Stylesheet Language Trans-
formations (XSLT) pipeline [21]. XSLT functions as a declarative language
specifically designed for the transformation of XML documents into various
other formats, such as plain text, HTML, or another XML format. Forming
an integral part of the Extensible Stylesheet Language (XSL) family, XSLT
is frequently employed alongside Extensible Stylesheet Language Formatting

Figure 7 Classification of schema languages.
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Figure 8 Process of Schematron validation.

Objects (XSL-FO) to generate printable documents. Employing XML-based
templates and rules, XSLT delineates how to convert an input XML docu-
ment into the desired output format. The mechanism of XSLT involves the
application of templates to nodes within the input XML document, aligning
with specified patterns within the XSLT stylesheet. Each template incorpo-
rates instructions on how to convert the matched node and its associated
children into the targeted output format. The initial two stages serve as
macro-processors, offering value primarily when intricate features are in use.
In summary, the process of Schematron validation involves the creation of
a Schematron schema, subsequent compilation of this schema into an XSLT
stylesheet, application of the stylesheet to the XML document utilizing an
XSLT processor, processing the intermediate result with an XSLT checker,
and eventually producing a comprehensive validation report that highlights
any encountered errors or warnings. This multifaceted process is illustrated
in Figure 8. To ensure the smooth transfer and integration of personal health
data, it’s crucial to recognize that distinct XML syntaxes are employed by
different devices to express similar health-related information, such as heart
rate measurements. For effective data interchange, XML documents must
satisfy the criteria of constituting a comprehensive FHIR resource while
maintaining acceptable syntax. To streamline this process, the objective is
to create and maintain a single Schematron document capable of accom-
modating analogous health data originating from diverse personal tracking
devices.

Schematron proves instrumental in establishing relationships or con-
straints where the existence of one element depends on another, as well as
in enforcing the presence of attributes within specific elements. The power of
Schematron lies in its ability to incorporate intricate rules and restrictions
necessary for semantic validation. Schematron rules are articulated using
the rule element, which includes a context property that employs an XPath
Expression to specify one or more nodes within the document. This context
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Figure 9 Rule instance for FHIR resource observation.

Figure 10 Heartbeat rate data validation.

attribute delineates the scope where the assertion applies. In the illustrated
example, the context is set to the Observation element, signifying that
the Schematron rule pertains to the Observation element (as illustrated in
Figure 9). Within the Schematron schema, the assertion element comes into
play, defining data constraints to be assessed within the specified context of
the XML document. This schema encapsulates a dynamic toolset to facilitate
the standardization and validation of health data, ensuring interoperability
across a diverse range of personal tracking devices. The FHIR HeartRate
Structure Definition furnishes an outline of data pertaining to heart rate
measurements. The Schematron rules for validating heart rate data are illus-
trated in Figure 10. For effective validation of heart rate information, the
Schematron framework must be equipped with the designated rules to meet
all the previously mentioned criteria and to align with established standards.
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Line-by-line explanation of the schematron above is the following:

The dataset employed includes two additional health-related data types,
body temperature (Figure 11) and oxygen saturation (Figure 12), which
underwent identical processes of constraint specification, verification, and
validation.

Below is the data after the transformation process, adhering to all the rules
in the abovementioned schematron for its particular data type (heartbeat rate).

The procedure of validating XML data against a Schematron leads to
the generation of a report indicating any instances of rule violations, if
present. Numerous libraries exist for XML validation with Schematron across
different programming languages, Java included. Among the widely used
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Figure 11 Body tamperature Schematron for data validation.

Figure 12 Oxygen saturation Schematron for data validation.
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Figure 13 HL7 compliant heartbeat rate data.

Schematron validation libraries for Java, the “Saxon” library stands out, offer-
ing comprehensive support not only for Schematron validation but also for
XSLT and XQuery processing. Saxon is an open-source library suitable for
deployment in both commercial and non-commercial software applications.
For performing Schematron validation using Saxon in a Java context, the
following approach was adopted:
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This piece of code utilizes the Saxon library to load both the XML
and Schematron files. It then proceeds to establish a Schematron validator,
employing it to validate the XML against the designated Schematron rules.
Comparable libraries for Schematron validation are also available in other
programming languages. Examples include “libxml2” for C/C++, “lxml” for
Python, and “Xerces” for both Java and C++. The selection of the appropriate
library and corresponding code hinges on the programming language and
environment of the Health Information System (HIS) in question, in this
scenario, Java.

When the message contains data as displayed in the aforementioned
Figure 11, the resulting report confirms the data’s validity. Conversely, if the
data, as illustrated in Figure 14, fails to adhere to all stipulated rules, the
outcome is depicted in Figure 15.

Upon inspection, it is clear that the observation code does not match the
necessary heartbeat rate LOINC code. Furthermore, the patient is not defined.

Figure 14 Non-compliant heartbeat rate data.

 

Figure 15 Negative report of Schematron validation or heartbeat rate.
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Finally, the datetime field doesn’t have proper format. Thus, the received data
is not a proper FHIR resource and does not comply with the specification and
HL7 standard.

5 Conclusion

The potential for enhancing personalized healthcare through the utilization
of data collected via personal wireless trackers is substantial. One key factor
contributing to this potential is the widespread availability of these track-
ers, such as smartwatches and fitness bands. These devices have gained
popularity due to their affordability and practicality, leading to their increas-
ing prevalence. Moreover, these trackers continuously gather data, offering
healthcare professionals more comprehensive and detailed insights into indi-
viduals’ daily conditions. This wealth of information empowers healthcare
practitioners to make better-informed decisions. Additionally, the advance-
ment of 5G and 6G network technologies further enhances communication
between Internet of Medical Things (IoMT) devices and cloud platforms.
This advancement translates to improved performance and Quality of Service
(QoS). Nevertheless, the integration of personal health data into formal medi-
cal information systems comes with challenges. These challenges necessitate
important steps such as syntax verification and semantic validation of medical
data. Adhering to standards and regulations, along with ensuring proper data
structure definition (DSD), becomes crucial for seamless communication.
Successfully addressing these challenges would enable Electronic Health
Records (EHRs) to accommodate processed sensor data that aligns with
established standards and holds clinical relevance. The outcome would be
a standardized approach to personalizing medical services, representing a
notable stride towards ensuring accessible and uninterrupted care.

This research introduces a comprehensive approach that involves spec-
ifying semantic data constraints and validating the information obtained
from wearable smart devices. This validation process is executed through
a Schematron that aligns with internationally recognized Electronic Health
Record (EHR) standards and regulations as defined by Integrating the Health-
care Enterprise (IHE) and Health Level 7 (HL7). A pivotal element in
contemporary healthcare data exchange is Fast Healthcare Interoperability
Resources (FHIR), which serves as a crucial link between data generated by
wearable devices and the structured, standardized format required by formal
Electronic Health Records. The integration of FHIR signifies a significant
advancement in healthcare technology, as it establishes a bridge between
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the data generated by wearable devices and the formal Electronic Health
Record system. This bridging process holds immense potential, not only for
enhancing patient care but also for driving forward medical progress through
the utilization of data-driven insights. It marks the advent of a new era in
healthcare, one that is fueled by the valuable information gathered from
wearable devices. To ensure adherence to the set standards and regulations,
semantic constraints were meticulously defined for healthcare data types.
This involved creating a framework that outlines the permissible limits and
characteristics of the collected data. Additionally, a well-structured validation
process was meticulously developed and modeled. This process ensures the
seamless transfer and integration of the acquired data into an official Elec-
tronic Health Record (EHR) system, maintaining data accuracy, consistency,
and compliance throughout. The result is a robust foundation for leveraging
wearable technology’s potential to revolutionize patient care and accelerate
medical advancements.
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