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Abstract

The Internet of Things (IoT) model is presented in this paper with multi-layer
security based on the Lenstra-Lenstra-Lovasz (LLL) algorithm. End nodes
for the Internet of Things include inexpensive gadgets like the Raspberry Pi
and Arduino boards. It is not practical to run rigorous algorithms on them,
as opposed to computer systems. Therefore, a cryptography procedure is
required that could function on this IOT equipment. Bitcoins and Ethereum
are examples of cryptocurrency and Ripple employs techniques such as
elliptic curve digital signature, Elliptic-Curve Diffie-Hellman (ECDH), and
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algorithm to sign any cryptocurrency on SECP256k1 elliptic curves transac-
tions. By using Lenstra-Lenstra-Lovasz on a real-world Bitcoin blockchain
and applying it to multiple dimensions, such as nonce leakage and weak
nonces across several elliptic curves with different bit sizes on a Rasp-
berry Pi, we can demonstrate the security of elliptic curve cryptosystems.
Public key encryption techniques are seriously threatened by the develop-
ment of quantum computing. Therefore, employing lattice encryption with
Nth Degree Truncated Polynomial Ring Units (NTRU-NTH) on the Bitcoin
blockchain will increase the resistance of Bitcoin blocks to quantum comput-
ing assaults. The execution time taken on SECP256k1 is 131.7 Milli seconds
comparatively faster than NIST-224P and NIST-384P.

Keywords: RAG – Random number generator, EdDSA – edwards curve
digital signature algorithm nonce – number only used once, The NIST –
National Institute of Standards and Technology, SEC – U.S. securities and
exchange commission, ECC – elliptic curve cryptography, IoT – Internet of
Things.

1 Introduction

Security has taken on a greater significance because of networks’ quick
development. Digital signatures are now an essential component of security
authentication since they may confirm the truthfulness and dependability
of a message. Due to a few unique circumstances, the original signer must
provide the authorized proxy signer the authority to forge an authentic signa-
ture on their behalf. The Shor algorithm [3] has demonstrated that current
cryptography based on conventional number theory, such as the ElGamal
algorithm and Rivest, Shamir, and Adleman (RSA) algorithm, will no longer
be reliable under quantum attacks. Research on quantum computers has
become a hot topic in recent years. The American NIST is likewise openly
seeking postquantum cryptography techniques.

Existing cryptography typically involves RSA (Rivest, Adi Shamir and
Leonard Adleman) which is used extensively in creating digital signatures,
elliptic curve cryptography [1, 19] which is used in encrypting signatures and
discrete log method which is used in ECDH key exchanges. Unfortunately,
these cryptographic algorithms are at great risk from quantum computers. In
RSA we have message M, two Prime numbers P and Q, and C and D are the
cipher and decypher values. We then compute N = P*Q with ϕ = (P-1)(Q-1).
The generated cipher and decypher for message M are C = M eMODN and
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D = Cd(MODN) respectively, where e is the encryption key value so that
it is not share of values from P and Q. In elliptic curve cryptography we have
equation y2 = x3 + ax + b Mod P whose working is based on discrete log-
arithm values, where x and y values are from 0 to P-1, a and b are constants.
We then use a private key d as a scalar value and multiply with generator point
G. We then use ESDA and EdDSA to sign and verify the messages. In regards
to the discrete log, Alice creates a =gaMODP , Bob creates b =gbMODP ,
and finally, both Alice and Bob recover the values of K = ab(MODP ) and K
= ba(MODP ) respectively. An alternative to these cryptographic techniques
discussed above is prone to quantum attacks and a technique that still creates
a hard problem in the era of quantum computers is Nth degree truncated
polynomial ring (NTRU) – Key Encapsulation Mechanism (KEM) [4]. NIST
has defined many standards when it comes to encryption such as AES, SHA-
3, lightweight cryptography, and post-quantum cryptography methods. In
post-quantum cryptography methods, we have a key exchange mechanism
to replace discrete logs and digital signatures. In digital signatures, we
have NTRU, Dillitium, and Falcon. Both NTRU and Falcon employ lattice
cryptography to be robust against quantum computing attacks.

Let’s look at how cryptography works, a lattice is a collection basis that
can vary from single to N dimensions [2, 18]. A vector from the point of
the origin a vector value is represented as a polynomial value. A polynomial
value looks something like this (5x2 + 1) ∗ (3x + 2) we end up in 15x3 +
10x2 + 3x + 2(MOD11) on prime field P = 11. Substituting further we get
4x3 + 10x2 + 3x + 2(MOD11) We then pick up a value of N to constrain
the values and in this case, we might have N = 4(x4 − 1) this will enable us
to constrain the values that we have into what is called the ring. These are
the two main operations that we need to do when we have our message M
of pattern M = [1,0,1,1] which can be easily represented as polynomial as
1 + x+ x3.

Let us take an example to demonstrate lattice encryption and decryption
with N = 11, p = 3, q = 32 we create factors [−1, 0, 1] of the polynomials
as selected in our case (5x2 + 1) ∗ (3x + 2) and take the value of f as our
first polynomial f = −1 + x + x2 − x4 + x6 + x9 − x10 we can also
represent f as [−1, 1, 1, 0,−1, 0, 1, 0, 0, , 1,−1] and select second polynomial
as g = −1+x2+x3+x5−x8−x10. We then find the inverse of f with MOD
Q and MOD P as f.fq(MODq) we obtain 1 and f.fp(MODp) = 1, we get
fp = 9x10+5x9+16x8+3x7+15x6+15x5+22x4+19x3+18x2+20x+
5. So Bobs private key and public key is (f, fq) and h = p.fq.f(MODq)
respectively. Now we take a random polynomial r = 3x2+5x−1 for message
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M. To encrypt a message M we multiply a random polynomial r with Bob’s
public key and add the message M.i.e encryption = (r.h + M). To decrypt
this we multiply the encrypted value (r.h+M) with one of Bob’s private key
elements like f. So we end up with decryption as (r.h+M).f.(Modq).

When we expand the equation we get r.p.fqf + Mf(MODq) and we
know that f.fq(MODq) = 1 and our result is r.p+M.f . Then we multiply
r.p+M.f with fp(MODP ) to get the message M.

In the proposed work, the NTRU-Nth degree truncated polynomial ring-
key Encapsulation Mechanism (KEM) is used. This algorithm is based on a
secure lattice encryption method that is faster than other public key protocols
like RSA and faster when decrypting due to the absence of polynomial fac-
torization in the case of RSA and the discrete logarithm problem in the case
of elliptic curves. Adding a layer of protection against quantum computing
attacks on Bitcoin transactions for the Blockchain the work contributes a
high level of security. This paper is organized as follows Section II presents
related work. Section III provides a theoretical principle of elliptic curve
digital signature (ECDSA) and the LLL Algorithm. Section IV describes the
methodology in three parts, A A-Potential pitfall I: Crack ECDSA due to
leak of nonce, B-Potential pitfall II: Crack ECDSA due to weak nonces using
LLL, C- Lattice Encryption using NTRU – Nth degree Truncated polynomial
ring – Key Encapsulation Mechanism (KEM), and Section V summarizes our
conclusions and future work.

2 Related Work

The most popular LR method is known as the Lenstra-Lenstra-Lovász
(LLL) algorithm [5]. It was given a name based on the names of the
creators. The LLL method, however, poses numerous difficulties because
of its increased processing complexity and unpredictable execution time.
According to this [6], the lattice reduction algorithm’s complexity is only
dependent on the size of the matrix and the lattice basis norm. The LR
algorithm’s computational cost can be impacted by the matrix structures (i.e.,
the correlation between the columns) of a given lattice matrix, which is often
determined by its condition number or determinant. In this study, obtained
a tighter upper bound on the complexity of the LLL algorithm in terms of
the condition number and determinant of a specific lattice matrix to examine
how the matrix structures can affect the program’s complexity. Here [7], an
ABPS system was developed that can withstand quantum attacks. The new
technique permits a signer whose attributes meet the access structure to assign
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their signing privileges to other individuals. This system offers a few charac-
teristics, including absolute privacy and fine-grained access. The processing,
storage, and security comparisons were assessed using performance analysis.

A Proxy Re-Signature (PRS) enhancement known as Attribute-based
Proxy Re-Signatures (ABPRS) [8] enables a semi-trusted proxy to change
a signature from one entity into another without disclosing the signing key
or the identity of the original signer. The suggested primitive, which has
various applications, combines PRS and Attribute-based Signatures (ABS)
capabilities. Additionally, by utilizing a general transformation technique, a
multi-hop unidirectional ABPRS scheme that fulfills a better security notion
of co-selective unforgeability was produced [12]. [12] focuses on exploiting
implicit key leakage caused by improper cryptographic primitive usage and
searches the Bitcoin Blockchain for ECDSA nonce reuse. Additionally, sys-
tematically describes how an attacker might exploit duplicate r values to leak
secret keys and nonces, which goes beyond the straightforward situation in
which the same key and nonce have been used several times. The findings
demonstrate that attackers have already taken advantage of ECDSA nonce
reuse, which has been a persistent issue in the Bitcoin ecosystem [17]. The
proposed work provides a resistance of Bitcoin blocks to quantum comput-
ing assaults. Also provides an additional security layer and increases the
performance in terms of execution time.

3 Theoretical Principle

3.1 Elliptic Curve Digital Signature (ECDSA)

ECDSA is a digital signature scheme on digital currencies like Bitcoin and
Ethereum. The security of the ECDSA relies on the selection of nonce values
to be truly random otherwise it can significantly reduce the security of the
signature. Looking at the table performance of EdDSA seems to be in and
around ECDSA, Further it supports the clustering of signatures to merge them
in the process of signing a message. This is due to the underlying technique
used in EdDSA is based on the Schnorr signature method.

1. In Schnorr signature, signature (R, S) is created for message M.
2. Initially we generate the private key (x) and later we derive the public

key using a point on the elliptic curve to obtain P = x. Generator point G
3. A random vale k is selected to obtain the signature values of R = random

k* Generator G
4. Then s is derived from S = random k – Hash (Message M, R)*x.



386 Md Sameeruddin Khan et al.

Figure 1 ECDSA [13].

5. We therefore have public key P and signature (S, R) for message M
6. To validate the signature we compute public key P*Hash (Message M,

R)+S * Generator G
7. Therefore we obtain x*Generator G*Hash (M, R)+(k-Hash(M, R)*x)*G

this gives x*G*Hash(M, R)+k*G–Hash(M, R)*x*G=k*G
8. The value of k*G is equal to R, and so if the result is the same as R, the

signature matches.

Alice applies ECDSA to sign the message as follows:

1. Compute message hash e = Hash(message)
2. Let h be the Ln be the leftmost bits of e, Ln has a bit length of the group

order N.
3. Select a random number nonce k such that 1 < nonce k < N – 1
4. Compute a point on the curve as (x1, y1)= k * Generator point G
5. Compute coordinate r = x1(MODN). If coordinate r=0, jump to step

3.
6. Compute coordinate s = k−1(h + rdA)(MODN) If coordinate s=0,

jump to step 3.

7. The pair of signature obtained is (r, s)
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Bob verifies the message as follows:

1. Compute message hash e = HASH(msg)
2. Let h be the least significant bits Ln of e
3. Compute c = coordinate s−1(MODN)
4. Compute u1 = h * c MOD N and u2 = r.c (MODN)
5. The signature is invalid if the curve point coordinates (x1, y1) =

u1∗Generator G +u2 ∗QA and if (x1, y1) = 0

6. If r ∼= x1 (MOD N) then the signature is valid and is shown in figure 1.

4 Methodology

Some of the Fortune 500 companies have identified quantum computing as a
strategic project and significant differentiator in marketplace [15]. It’s clear
quantum computing represents a fundamentally new approach to data secu-
rity but people realize the danger the quantum computers pose to confidential
data. Lattice-based encryption relies on very difficult mathematical problems
involving lattices. A lattice is a mathematical structure that can be used to
represent an infinite grid of points. Every lattice is formed from a basis vector
that, when multiplied together, can form any point in the lattice. A 2D lattice
with a basis of [0, 2] and [1,0] would look like Figure 2,

Figure 2 Lattice with Noise e⃗.
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A lattice can be comprised of an infinite number of dimensions and an
infinite number of basis vectors. To use lattice for encryption we came up with
a really hard problem that involves them and the best problem we have so far
is the closest vector problem. The closest vector problem simply is, when you
are given a lattice find the closest point in that lattice to any given nonlattice
point. In other words, we pick a random point that is not exactly a lattice point
but is close to one of the points in the lattice for example the red dot in the
below lattice we need to find out the closest black dot to the red dot in the
given lattice. In this example, it is pretty clear that the black dot encircled with
a red boundary is the closest to the red dot. This problem can get complicated
with an increase in several lattices and dimensions. Then we try to encode
the data in a secure lattice point which is difficult to find unless you derive a
solution to the closest vector problem. In lattice-based cryptography, lattice
structures are created by scaling several dimensions every time, and a random
point on the lattice is selected as our vector. Then we add a small error to this
lattice vector and a new problem is created to compute the original vector in
the lattice. The existing pub key ciphers like RSA and ECC [9] have a serious
threat due to advancements in quantum computers. The underlying problem
on which ECC [10, 11, 14] and RSA are based like discrete logarithm
problems and modulus arithmetic would no longer be a challenge to quantum
computing. As an infant step, we begin the application of lattice-based cryp-
tography on 2 – a dimensional lattice having an x-axis and a y-axis. Suppose
we select two points such as p1 = (2, 0) and p2 = (0, 2) and we represent
them as vector v⃗1 = [2, 0] and vector v⃗2 = [0, 2] respectively, where (0,0) is
the origin point of the vector. Where we have vector v⃗3 = v⃗1 + v⃗2 = [2, 2]
and vector v⃗4 = 2v⃗1 + v⃗2 = [4, 2], this is shown in Figure 3.

We introduce difficulty in lattice cryptography by having small noise e⃗
upon the original vector, this leads to difficulty in finding the actual vector for
our defined lattice in Figure 2. With this, we have the closest vector problem
and short vector problem. In regards to the closest vector problem, we need
to find the grid point in the lattice closest to our original point. In regards to
the shortest vector problem, we need to find a short vector that is close to the
origin and not a long vector that is far from the origin.

4.1 Potential Pitfall I: Crack ECDSA Due to Leak of Nonce

Figure 4 pictorially shows the Leak of Nonce, Tables 2 and 3 show the crack
of ECDSA, due to the leak of nonce using NIST-224P and SECP112R2
recommended parameters.
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Figure 3 Example 1- Lattice with three different vectors.

Figure 4 Leak of nonce.

4.2 Potential Pit Fall II: Crack ECDSA Due to Weak Nonces
Using LLL

Lattice attacks to find nearest vectors: Suppose we have two vectors v⃗1
and v⃗2 which connect from the origin to two points and are orthogonal (if
there are 90 degrees between vectors) one can easily find the nearest point.
By applying Baini’s algorithm we find the solution to w = av⃗1+ v⃗2 if not we
get an incorrect answer. To test the orthogonal match between vectors v⃗1 and
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Table 1 Lattice nearest point
(’Find nearest to: ’, 40, 10)

(’Cos(theta): ’, -0.1351132047333135)
(’Grid point: ’, 8, 2)

(’Grid point: ’, -4, 10)
(’Solution (not rounded): ’, 5.0, 0.0)

(’Solution: ’, 5.0, 0.0)
(’Nearest: ’, 40.0, 10.0)

== Try for other vectors on lattice ==
(’Grid point: ’, -2, 8)
(’Grid point: ’, 3, 9)

(’Cos(theta): ’, 0.8436614877321074)
(’Solution (not rounded): ’, -5.0, 6.0)

(’Solution: ’, -5.0, 6.0)
(’Nearest: ’, 28.0, 14.0)

== Try for other vectors on lattice ==
(’Grid point: ’, -4, 10)
(’Grid point: ’, 4, 12)

(’Cos(theta): ’, 0.7633862853691145)
(’Solution (not rounded): ’, -5.0, 5.0)

(’Solution: ’, -5.0, 5.0)
(’Nearest: ’, 40.0, 10.0)

== Try to solve for the point generated in the first part ==
(’Grid point: ’, 56, 58)

(’Grid point: ’, 156, 160)
(’Solution (not rounded): ’, -55.0, 20.0)

(’Solution: ’, -55.0, 20.0)
(’Nearest: ’, 40.0, 10.0)

v⃗2 we compute

cos θ =

(
v⃗1v⃗2

|v⃗1|.|v⃗2|

)
We want cos θ to be zero. Figure 5 pictorially represents weak nonce

and table IV shows a crack of ECDSA with weak nonce using NIST-384P
recommended parameters. Suppose v⃗1 = (5, 1) and v⃗2 = (−2, 8) and we
want to find nearest point (27,8), we initially determine the angle between the
points (5,1) and (−2,8) is around 90 degrees, then we solve for the nearest
neighbor problem using Babai’s algorithm then we have the lattice shown
in Figure 6. Figures 7 and 8. show a lattice with three different vectors and
angles between the basis in the lattice respectively.

We now solve a (5) + b(1) = 27 and a(-2)+ b(8) = 8. By solving the linear
equation for a and b we get a=5.52 and b=0.309. By rounding a=6 and b=0 we
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Table 2 ECDSA: CRACK ECDSA, if nonce known (NIST-224P recommended parameters)
N=269599466671506397946670150870

19625940457807714424391721682722368061
a= -3

b=189582862855666080004086685444939
26415504680968679321075787234672564

h=1
Gx=1927792911356629307111030803469

9488026831934219452440156649784352033
Gy=1992680875803447097019797437088

8749184205991990603949537637343198772
Message 1: Journal of The Institution of Engineers (India): Series B

Sig 1(R,S):2029599427741442929295070651658
173608897422568270788530201997173796631173795
32558753336121063760245326848558369490648244

88859151416487
Private Key:541292815471459030624375887544175049

6072635000360049154325556394651
The private key is found:541292815471459030624375887544175049

6072635000360049154325556394651
Execution time:162.4 Milli seconds

Table 3 ECDSA: CRACK ECDSA, if nonce known (SECP112r2 recommended parameters)
N=36DF 0AAFD8B8 D7597CA1 0520D04B
a=6127 C24C05F3 8A0AAAF6 5C0EF02C
b=51DE F1815DB5 ED74FCC3 4C85D70

h=04
G=04 4BA30AB5 E892B4E1 649DD092

8643ADCD 46F5882E 3747DEF3 6E956E9
Message 1:Journal of The Institution of Engineers (India): Series B

Sig 1(R,S):527349671015913583819624162679876
317691106918931019007002247480372

Private Key:527349671015913583819624162679876
317691106918931019007002247480372

The private key is found:52734967101591358381
9624162679876 317691106918931019007002247480372

Execution time: 131.7 Milli seconds

get vector point (30, 6) which is near to (27,8). Let us take another example
with lattice vectors (102,113) and (37,41) then the angle (Cosθ) between
them is closer to zero and therefore unable to solve and we get a solution
of (−53,10) which gives us the wrong point (−4,−26) and is not closer to
(27,8). This is shown in Figure 8.
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Figure 5 Weak nonce.

Figure 6 Example 3 – Lattice with three different vectors and noise vector e⃗.

Let us consider an example to find a reasonably orthogonal basis for the
lattice spanned by the vectors using LLL

Step 1: v⃗1 = (15, 23, 11) v⃗2 = (46, 15, 3) v⃗3 = (32, 1, 1)

v⃗1∗ = (15,23,11) v⃗2∗ ≈ (27.69,−13.07,−10.43)
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Table 4 ECDSA: CRACK ECDSA, with weak nonce (NIST-384P recommended parame-
ters)

N=394020061963944792122790401001
4361380507973927046544666794

a=-3
b=2758019355995970587784901184
038904809305690585636156852142

h=01
Gx=26247035095799689268623156744

56698189185292349110921338781
Gy=83257109614890299855467512895

2010817928785304886131559470
Message 1: Journal of The Institution of Engineers (India): Series A
Message 2: Journal of The Institution of Engineers (India): Series B

Sig 1(R,S):3423261458548848898852540948931344807
085600387736643272894693030998275398314458147965598
559320939858442240117117325516258857266970661811701
541794949074003527743606265418262436256531180053873

193436132601717968940106887742283463739140
Sig 2(R,S): 31164173466376373049775752907488091201

017043939466276049860299590543868505964092524414484
094810248355412924852246388485553581256888004936621
311515690072846460603131320671748389940297712694045

347455566476060871970222078555038561539
K1:164270964493299706907759837549259174162
K2:13254871285685242157511648372836879079
Private Key:179641037423842868867582096685

40522959616075007273694172290933922951233515919380
888328428588819991925102919506687486

The private key is found:179641037423842868867582096685
40522959616075007273694172290933922951233515919380

888328428588819991925102919506687486
Execution time: 1761.9 Milli seconds

we take v⃗1∗ = (46, 15, 3) – (46,15,3).(15,23,11)
(15,23,11).(15,23,11)(15, 23, 11)

≈ (27.69,−13.07,−10.43)

in practice if v⃗k is the only working vector, we only need the Gram-Schmidt
basis = v⃗1∗, v⃗2∗,....... ⃗vk∗ and we won’t need the rest.
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Figure 7 Example 3 – Lattice with three different vectors.

Figure 8 Angle between basis in lattice.
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Step 2: v⃗1 = (15, 23, 11) v⃗2 = (46, 15, 3) v⃗3 = (32, 1, 1)
v⃗1∗ = (15,23,11) v⃗2∗ ≈ (27.69,−13.07,−10.43)

Now use v⃗1 to reduce v⃗2 v⃗2 = (46, 15, 3) −−⌊µ⌉ (15,23,11)

This is our new v⃗2 = (31,−8,−8)

Checking the Lovaz condition:

||v⃗1∗||2 = 875||v⃗1∗||2 ≈ 1046.43

µ2,1 =
v⃗2.v⃗1

∗

v⃗1
∗
.v⃗1

∗ v⃗1
∗2

= 875v⃗1
∗2
µ2,1 =≈ 0.221

3

4
]− µ2

2,1 ≈ 0.701

4.3 Lattice Encryption Using NTRU – Nth Degree Truncated
Polynomial Ring – Key Encapsulation Mechanism (KEM)

A lattice-based public key method NTRU- Nth degree Truncated polynomial
ring uses shortest vector problem and is three twice faster than other public
key protocols like RSA and three times faster while decrypting due to non-
usage of polynomial factorization in regards with RSA or discrete logarithm
problem in regards with elliptic curves. To send a secret message between
Alice and Bob requires the generation of private and public keys. The private
key is known only by Bob while the public key is known by Alice and Bob. To
generate private and public key pair we select two polynomials f and g with
degree N-1on coefficients −1, 0, 1. The polynomial f ∈ Lf selected by Bob
must satisfy a requirement that inverse modulo p and modulo q must satisfy
while computed using the Euclidean algorithm. In simple words f ∗ fq = 1
and f ∗ fp = 1MODp. If the selected f is not invertible Bob has to try
with another f. Bob’s private keys are polynomials fand fp. The public key h
is computed using h= polynomialpfq ∗ g(MODq). Alice and Bob mutually
agree on the largest polynomial N, p, and q and then two short polynomials
f and g are generated by Bob to generate his key pairs. The coefficients for
these polynomials are −1, 0 and 1.

1. Let us consider an example with p=2, q=32 and N=11
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Table 5 NTRU for key encapsulation mechanism Ntruhps 2048509
Public key size: 699

Secret key size: 935

Cipher text size: 699

Public key (only showing 1/8 of key):=
bc2ea5d3461cc42f37bd3c6f8b8d598606b174800b21445f83d89

60101e4afb3a71e99dc54635a044f1e9ee3790098bc33a094d06e

0a7b1ce8525cc64650603fd6826eb9084200f827fe94abfa9494b

a67a5acc0a11453

Secret key (only showing 1/8 of key):=
af4a26827c639017d9a5224ecfbb18915d466b44745ccfe245c

9c40a5fdeb7ae5608bc11dd3c29dbbf011b8954490ad95e8cbe

b07e6f41de025b887d9b4c3f606e2816c22590cae81d7c47544b

bfde5ce4afd6395999c65270e564e7659f10606486ac02d0174a

070d8cd3279ccad75d4a6b0eec

Cipher text: : 61afb3a85ad1931380de5ce5f1d

8b5612cffa1f66d2437cc3f21ebafe22e227e6688b179ab79db

0c5e100efae821b2862ec0baf538d07047a920eb2c435992795

3d2191c25d3ab2b97a947a8217e872c5f92899e8a6f51

Key (A): 4b8cfd5a5c49d8ede5c343c7ad2058568

153ad0a1ecdeee7e330318fc662f800

Key (B):4b8cfd5a5c49d8ede5c343c7ad2058568153ad0

a1ecdeee7e330318fc662f800

Keys are the same

2. If Bob has values for polynomials f = [−1, 1, 1, 0,−1, 0, 1, 0, 0, 1,−1]
then polynomial representation is f = −1+a+a2−a4+a6+a9−a10

then has picks g = −1 + a2 + a3 + a5 − a8 − a10

3. The we should be able to compute f−1 for MOD p and MOD q and
therefore polynomial f ∗ polynomialfq(MODq) = 1 and polynomial
f ∗ polynomialfp(MODp) = 1 Due to inverse function we get fp =
9a10+5a9+16a8+3a7+15a6+15a5+22a4+19a3+18a2+29a+5

4. The public key h = p ∗ polynomialfq ∗ polynomialf(MODq), then
obtain fq ∗ g = [−5,−9,−1,−2, 11, 12, 13, 3, 22, 15, 16, 29, 60, 19,
−2,−7,−36,−40,−50,−18,−30]. In order to create a ring we then
divide by aN-1 and get Bob’s Public Key H : [24, 19, 18, 28, 4, 8, 5, 17,
4, 17, 16] with private keyf and fq

5. Encryption is done by taking Bob’s public key (h), random polynomial,
and message M to compute Encrypt = r ∗ h+MessageM
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Table 6 NTRU for key encapsulation mechanism Ntruhps 2048677

Public key size:930

Secret key size:1234

Cipher text size:930

Public key (only showing 1/8 of key):=

3d30ad496e845fbe86b1bd731d550ec77fbcebf47578c2

4510c18f42329dce118b2c852b8acc977aa63609153780

68d49d7cd8d631c3a5701907f882fd8b71f76c13046fe3

e0c7beb5c88866cb15455c9d8deb3f82dc2c493a9fed5f

63dde2574bab7f0f20db0a91d20f9e0e3d4f56a0112af600

Secret key (only showing 1/8 of key):=

8479e9e09c3d27bfb9a786650f433b2fb128d4ee0d73a2

c869bcd18b909f46d25f2d112174e51f8b576467ea43b

dd26bd60ba0003d0a13469fe7ccdec8d38136bdb8308a

de6398b2c21fb7cf2d87989212d0848952130298ad249

f71e743e2e317daeddb6cab9a4072a645818b776e49ae

1652801322a13c3f1bd513b7d21f0ad2738179b833ae0

11d504838addd040888c1abdb815a1e19d9f1

Cipher text:

8479e9e09c3d27bfb9a786650f433b2fb128d4ee0d73a

2c869bcd18b909f46d25f2d112174e51f8b576467ea43

bdd26bd60ba0003d0a13469fe7ccdec8d38136bdb8308

ade6398b2c21fb7cf2d87989212d0848952130298ad24

9f71e743e2e317daeddb6cab9a4072a645818b776e49a

e1652801322a13c3f1bd513b7d21f0ad2738179b833ae

011d504838addd040888c1abdb815a1e19d9f1

Key (A):

47f897119dcb315df84ad5a9bb59a710af36bcc6d425cb415c069924f094661d

Key (B):

47f897119dcb315df84ad5a9bb59a710af36bcc6d425cb415c069924f094661d

Keys are the same

6. To decrypt we initially multiply Bob’s private key fq and Mod q we
follow the below steps,

• Decrypt = (r∗publickeyh+MessageM)∗polynomialf(Modq)
• Decrypt = (p∗r ∗polynomialfq ∗g+M)∗polynomialf(Modq)
• Decrypt = (p ∗ r ∗ g +MessageM ∗ polynomialf)
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Table 7 Elliptic curve point generation times in milli seconds
Algorithm Ciurves Execution Time
ECDSA Signa-
tures

NIST-P192 178.78

NIST-P224 185.74
NIST-P256 191.84
SECP-160k1 151.4
SECP-192k1 157.36
SECP-224k1 163.18
SECP-256r1 176.74
Brainpool-
p160r1

157.94

Brainpool-
p192r1

166.04

Brainpool-
p224r1

187.66

Brainpool-
p256r1

190.1

ECDSA
RFC6979

281.4

EdDSA
Signatures

Ed25519 174.5

Ed448 285.54

• Decrypt = (p ∗ r ∗ g + MessageM ∗ polynomialf) ∗
polynomialfp(Modp)

• Decrypt = p ∗ r ∗ polynomialf ∗ polynomialfp+MessageM ∗
polynomialf ∗ polynomialfp(Modp)

• Decrypt = 0+MessageM∗polynomialf∗polynomialfp(Modp)
• Since polynomial f ∗ polynomialfp(Modp) will be 1, we obtain

Decrypt = Message M.

Tables 5 and 6 demonstrate NTRU for key encapsulation mechanism
on NTRUHPS 2048509 and NTRUHPS 2048677. Table VIII demonstrates
lattice encryption using NTRU – Nth degree Truncated polynomial rings
respectively. Figure 9 pictorially shows the performance of ECDSA vs.
EdDSA across various curves, TABLE VII shows point generation times in
milliseconds. Table IX provides the execution time of ECDSA on standard
curve databases like NIST-224P, SECP112R2, NIST384P, and SECP256K1
by keeping the N size constant. The table concludes that the proposed
ECDSA on SECP112R2 consumes less execution time compared to other
curves as mentioned.
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Table 8 Lattice encryption using NTRU – Nth degree truncated polynomial ring
Algorithm n p q Result
Moderate Security 250 5 256 ==== Bob generates public key ===

f(x)= [1, 1, -1, 0, -1, 1]
g(x)= [-1, 0, 1, 1, 0, 0, -1]
d = 2
Bob’s Public Key:
[235L, 117L, 220L, 164L, 205L, 97L, 210L,
87L, 164L, 71L, 206L, 254L, 29L, 132L,
32L, 148L, 171L, 80L, 247L, 205L, 65L, 49L,
183L, 80L, 219L, 101L, 252L, 2L, 133L, 7L,
21L, 248L, 160L, 218L, 212L, 233L, 147L,
144L, 253L, 168L, 255L, 166L, 198L, 139L,
146L, 160L, 18L, 83L, 198L, 155L, 157L,
63L, 209L, 67L, 144L, 85L, 205L, 250L,
32L, 159L, 249L, 211L, 76L, 6L, 160L, 64L,
217L, 33L, 82L, 111L, 124L, 59L, 114L,
230L, 153L, 12L, 196L, 188L, 187L, 116L,
255L, 109L, 145L, 149L, 135L, 124L, 47L,
81L, 208L, 118L, 13L, 139L, 1L, 48L, 104L,
70L, 152L, 221L, 243L, 200L, 125L, 144L,
3L, 98L, 86L, 31L, 170L, 212L, 202L, 211L,
130L, 123L, 253L, 135L, 37L, 91L, 76L,
153L, 81L, 126L, 196L, 7L, 117L, 191L,
252L, 6L, 100L, 236L, 181L, 65L, 210L,
247L, 164L, 223L, 86L, 174L, 85L, 148L,
56L, 180L, 43L, 200L, 7L, 61L, 65L, 153L,
231L, 232L, 3L, 61L, 20L, 42L, 5L, 95L,
125L, 248L, 96L, 242L, 140L, 225L, 19L,
96L, 77L, 104L, 23L, 158L, 102L, 83L, 194L,
24L, 114L, 147L, 78L, 155L, 13L, 175L, 25L,
227L, 168L, 221L, 53L, 114L, 136L, 31L,
193L, 155L, 60L, 246L, 232L, 232L, 161L,
1L, 146L, 111L, 220L, 243L, 122L, 86L,
145L, 220L, 60L, 124L, 251L, 204L, 143L,
125L, 145L, 189L, 151L, 20L, 151L, 169L,
200L, 94L, 237L, 131L, 137L, 144L, 136L,
158L, 240L, 181L, 51L, 152L, 237L, 112L,
251L, 218L, 118L, 231L, 26L, 172L, 10L,
19L, 42L, 123L, 13L, 119L, 173L, 27L, 36L,
97L, 249L, 214L, 44L, 231L, 221L, 231L,
76L, 86L]

(Continued)
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Table 8 Continued
Algorithm n p q Result

==== Alice generates public key =====
Alice’s Original Message : [1, 0, 1, 0, 1, 1, 1]
Alice’s Random Polynomial : [-1, -1, 1, 1]
Encrypted Message :
[187L, 74L, 177L, 96L, 97L, 155L, 55L, 25L,
24L, 54L, 126L, 155L, 226L, 215L, 83L,
161L, 249L, 157L, 216L, 19L, 29L, 154L,
190L, 23L, 177L, 227L, 242L, 74L, 66L, 58L,
23L, 123L, 148L, 223L, 146L, 177L, 250L,
2L, 171L, 118L, 126L, 0L, 39L, 164L, 139L,
155L, 23L, 1L, 253L, 20L, 101L, 153L, 200L,
232L, 49L, 235L, 117L, 150L, 40L, 40L,
138L, 191L, 93L, 98L, 93L, 58L, 193L, 126L,
62L, 29L, 168L, 50L, 54L, 219L, 230L, 127L,
107L, 185L, 189L, 149L, 20L, 207L, 73L,
94L, 106L, 175L, 53L, 143L, 178L, 34L, 22L,
102L, 211L, 3L, 196L, 143L, 162L, 29L, 70L,
162L, 183L, 102L, 122L, 72L, 71L, 176L,
171L, 211L, 215L, 101L, 109L, 32L, 81L,
93L, 252L, 20L, 25L, 7L, 177L, 110L, 72L,
20L, 222L, 243L, 197L, 250L, 149L, 122L,
237L, 194L, 198L, 225L, 88L, 94L, 254L,
123L, 250L, 135L, 19L, 241L, 161L, 221L,
80L, 107L, 149L, 18L, 246L, 55L, 233L,
203L, 2L, 10L, 170L, 66L, 159L, 171L, 148L,
175L, 66L, 121L, 178L, 226L, 99L, 182L,
230L, 0L, 103L, 236L, 171L, 91L, 183L, 41L,
77L, 140L, 29L, 225L, 96L, 192L, 49L, 83L,
93L, 86L, 120L, 0L, 130L, 119L, 45L, 210L,
221L, 234L, 169L, 230L, 206L, 37L, 104L,
250L, 86L, 251L, 158L, 239L, 11L, 137L,
37L, 181L, 140L, 167L, 129L, 182L, 162L,
47L, 77L, 23L, 34L, 130L, 190L, 142L, 59L,
179L, 196L, 191L, 178L, 133L, 62L, 66L,
239L, 38L, 130L, 168L, 135L, 88L, 139L,
243L, 119L, 77L, 93L, 88L, 137L, 165L,
244L, 172L, 121L, 79L, 121L, 142L, 184L,
172L, 54L, 139L, 213L, 170L]
==== Bob decrypts =====
Decrypted Message : [1L, 0L, 1L, 0L, 1L, 1L,
1L]
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Table 9 ECDSA execution time on different standard curves
ECDSA on differ-
ent standards

Execution time in
milli seconds

NIST-P224
(Proposed)

162.4

SECP112R2
(Proposed)

131.7

NIST-384P
(Proposed)

1761.9

SECP256k1 [20] 2763

Figure 9 Performance of ECDSA vs EdDSA across various curves.

5 Conclusions

Looking at potential pitfall I – the crack of ECDSA due to the leak of nonce
and potential pitfall II – the crack of ECDSA due to weak nonces using
LLL in an earlier section of this paper it is very obvious that ECDSA is not
secure over Bitcoin blockchain on curves like SECP256k1. Authors urge to
keep the Bitcoin blockchain transaction secure by using lattice encryption
using NTRU – Nth degree truncated polynomial ring – Key Encapsulation
Mechanism (KEM) which is three twice faster than other public key protocols
like RSA and three times faster while decrypting due to the non-usage
of polynomial factorization regarding RSA or discrete logarithm problem
in regards to elliptic curves. Thus providing an added level of security
for the Bitcoin blockchain against quantum computing attacks on Bitcoin
transactions.
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