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Abstract

Intent based network management reduces the complexity of network pro-
gramming from a growing set of deeply technical APIs to context-free
high-level objectives that the network should autonomously achieve and keep.
The practical implementation of an intent based network requires substan-
tial automation technology embedded in the network. Automation should
cover the entire lifecycle of intents, from their ingestion to fulfillment and
assurance. This article investigates the feasibility of automatically assembling
interworking implementation units into intent specific automation pipelines,
where units are reusable self-learning closed loop micro-services with self-
declared capabilities. Each closed loop may gain knowledge and respond to
dynamically changing network conditions, thereby enabling network auton-
omy in reaching the declared intent objectives. The human-network intent
interface for expressing intents is proposed to be based on the aggregation
of the deployed network and service automation capabilities, rather than a
formalism decoupled from the actual network implementation. This prin-
ciple removes the ambiguity and compatibility gap between human intent
definition and machine intent fulfillment, while retaining the flexibility and
extendibility of the intents offered by any specific system via onboarding
additional micro-services with novel capabilities. The concepts discussed by
the article fit into the architecture and closed loop work items already defined
by ETSI ZSM and provides considerations towards new areas such as intent
driven autonomous networks and enablers for automation.
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1 Introduction

Intent based service and network management is a paradigm shift in the
telecommunications industry. On the surface, intent refers to the way oper-
ators and enterprises interact with network technology to express their
expectations about services, efficiency and system behaviour in general or
related to particular use cases. As opposed to today’s programmable net-
works, which are governed through condition-action policies and manual
mastering of ever growing set of Application Programming Interfaces (API)
and exposed capabilities, intent promises to enable network users declare
their end goals with the network, rather than providing a list of instructions
to execute without being able to articulate why those instructions were
provided. The network itself should figure out when and what actions or
reconfigurations to execute, in which technology or vendor domains, for
which end users, terminal devices or geo-area. Therefore, below the surface
of an intent based network, there is automation and, increasingly, autonomy.
While automation means more the recitation of previously pre-programmed
workflows, albeit enriched with conditions and some degree of adaptation
capability via scripting, autonomy refers to a whole new level of network
responsibility. It is about delegating massively complex inter-domain, multi-
vendor and multi-technology orchestration, service management, real time
parameter configuration and resource management to the network, in the face
of a dynamic flow of demands and users to be served. Essentially, as we
argue in this article, the full rollout of the intent paradigm should eventually
transform programmable networks to self-programming networks.

The inception of intent based networking can be traced back to the solid
foundation of policy-based networking [1], evolving through intent based
policy management [2] to intent based networking [3]. The terms intent
based networking and intent based orchestration have been in use by multiple
standard organizations, including Internet Research Task Force (IRTF) [3, 4],
3rd Generation Partnership Project (3GPP) [5, 6] and in the realm of Software
Defined Networking (SDN) such as Open Networking Foundation (ONF) [7]
and Open Network Operating System (ONOS) [8]. The definitions of intent
in each work group are slightly different and specific to their respective core
technology. Nevertheless, intent is commonly understood to be a high-level
declaration of business or service level objectives to be achieved by the
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network or desired behaviour the network is expected to be conform with.
The intent does not carry any concrete actions or configuration steps that
the network should take in order to achieve the described goals. It is also
recognized that in order for intents to be a feasible communication abstraction
between humans and networks, networks are required to implement certain
mechanisms of automation and intelligence, potentially by using artificial
intelligence and machine learning techniques [9]. However, none of the above
sources provide a deep technological view on what method and apparatus
would actually make a network capable of interpreting the intents in the first
place, and to dynamically derive the necessary actions or configuration and
apply them to existing software and infrastructure. Self-learning enablers that
are key for autonomous network side decision making and action monitoring
are also kept at very high level.

This article aims to progress the discussion around intents by publishing
concrete ideas and proposals. We inspect what are the key ingredients that
make intent work so well between humans and derive key requirements
from the observations in the context of a brief historical overview of intent’s
evolution throughout the telecommunications history. We also analyse what
is the challenge in managing todays networks that are increasingly software
defined and programmable yet are far from being intent based. The main
contribution of the article is a hierarchical intent management architecture
built on the foundations of self-learning closed loops [10] with automation
extended to the assembly and orchestration of the closed loops themselves.
A key principle introduced by the article is to reverse the usual direction
of looking at how human defined intents are supposed to be unambiguously
interpreted by machines. Instead of aiming for a “generic” network intel-
ligence that can understand intents in any form and unlimited richness of
expression, we argue that it is more realistic to provide means for synthetizing
an intent interface that reflects the aggregated capabilities of the what the
network could do autonomously. This interface would evolve as the network
management services are extended by onboarding new developments of
micro-services with automation capabilities.

The rest of this article is organized as follows. Section 2 starts with a
brief historical overview of intents in telecommunications and coins the term
Intelligent Intent Based Networking (I2BN) by arguing that intents drive the
need for more network side intelligence. It is followed by discussing what
are the challenges of managing a programmable network and what is the
benefit of intents. Next, system requirements are derived from analysing the
human-network intent interface, leading to the definition of an intent based
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management architecture, the life-cycle of intents and the interactions of
intent management with other network operations. Section 3 dives in imple-
mentation aspects, starting by laying out a set of practical design principles
for intent based networks and providing corresponding high-level solutions.
Section 4 is a technology deep dive into how the self-learning closed loops
may be built from reusable micro-services, and what are the consequences
of using machine learning for realizing parts of the functionalities. Finally,
Section 5 concludes the article.

2 Towards I2BN

This section argues for the need of substantial intelligence and automation
within the network for intents to become a value-added construct and lays
out a vision of what is referred to as Intelligent Intent Based Network or
I2BN.

2.1 What is Intent?

In real life, intent is an objective given by someone to another person, captur-
ing an objective or state to be reached without providing the means to achieve
it. The other person is supposed to autonomously derive the necessary tools
to be utilized and the necessary steps that need to be undertaken. Feedback
about the progress and end result as well as major obstacles are expected to
be delivered in the opposite direction. In human life, professional or private
alike, intent is the essence of collaboration and delegation.

Intent works for humans due to a number of reasons. First, humans are
intelligent, both in formulating the intent and comprehending it. Yet this
intelligence would not be enough without shared context and knowledge
between those participating in the exchange of the intent. That is to say that
the interpretation of an objective may depend on the environment and shared
history between the persons. Additionally, humans tolerate incomplete infor-
mation sets, which makes them able to start the execution of a task even if
not every detail of the execution path is laid out upfront or there remain open
questions. Finally, dialogue is an invaluable capability that we use to resolve
ambiguity as we proceed with intent execution, asking for clarification from
the intent’s provider, or reporting on an unforeseen circumstance that may
require the reconsideration of the intent. Recognizing that in a given context
we do not have the enough information or the right skills to decide or act is
another capability people naturally have.
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Intent based networking is a paradigm that aims to reformulate the man-
agement of network domains, e2e networks or services, along the principles
of how the human intent works. Today’s networks are programmable, yet
they need programmers. Networks allow the definition of policies, which
are essentially conditional actions to be executed at pre-defined scenarios.
Engineers and operational staff need to define when and what the network
functions should do in meticulous details, at multiple resource and technology
layers and on massive scales. No entity in the network, including the man-
agement layer, has a full representation of the overall goals, towards which
the individual policies represent particular and incomplete programs. In con-
trast, intent based networks are to allow the definition of much higher level
and, therefore, more persistent, sometimes invariant and abstract objectives,
without requiring instructions on how to reach them. This of course requires
additional capabilities within the intent based network itself, namely a level
of intelligence, which, speaking of machines, will be artificial. But, as with
humans, no intelligence itself is sufficient to carry out an intent without the
ability to comprehend the context, knowing the potential actions available
to manipulate the scenario, and being aware of the expected outcome of each
action in the given context. In networks, context awareness means sufficiently
real time and detailed measurement and monitoring on resource, network
function, technology domain, e2e and service level. Knowing the potential
actions means to have the necessary APIs for resource management, domain
controllers, Quality of Service (QoS) provisioning and changing, slicing and
more. Knowing the outcome of the potential actions means the ability to cal-
culate, evaluate and rank which action at which scope would be most efficient
and impactful in aligning the network and services with the goals formulated
by or derived from the intent. An additional capability, which is the substitute
for human intelligence and language, namely the comprehension of intent and
its mapping to actions that make sense in any moment, is needed for bridging
the major abstraction and automation gap between intent and APIs. This is
a novel requirement compared to non-intent based networks (such as those
having only policy or workflow automation).

Intent based networking itself is not a new term. Yet existing proposals
have usually a narrow domain specific use case driven automation scope,
leaving the above identified abstraction and automation gap open in general,
especially when considering e2e service level intents that are supposed to
govern network behavior across multiple technology and vendor domains.
Therefore, to highlight the difference, this article proposes the term Intelligent
Intent Based Network or I2BN as reference to the above vision that brings
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intent fluidity in networks on par with how naturally humans interact based
on intents.

2.2 A Brief History of Intent

During the last decades, the social acceptance and utility of telecommunica-
tions in private and business life have evolved alongside the technology itself,
as interaction with the technology has become increasingly streamlined. The
technology went through many stages (Figure 1), from its inception in 1876
by A. G. Bell as an analogue point-to-point channel and telephone exchanges
driven by manual switchboards; through 2G, the first digital system for
mobile human-to-human voice communication; 4G, with smartphones and
mobile Internet; and now 5G with massive Internet of Things (IoT), Ultra
Reliable Low Latency Communications (URLLC) and machine to machine
communication services. Each of these major steps required adaptation in
how end users interacted with the technology, where the means to interact
essentially constitute the intent interface from a consumer’s perspective. In
the early landline days, one could only call places and ask for a person to
come to the phone. Intents were then basically entries in the phone book
that could be dialed (or, even earlier, asked from the switchboard operator).
Later, with 2G and the personalization of devices came the intent to call or
text individuals, which essentially kept the customer services at the same
complexity level. Then, with 4G, smartphone and touchscreen evolution came
a seemingly explosive evolution of digital content and interactions brought
to the mobile platform, yet considering the underlying telecommunication
services, most of it was and continues to be running on best effort packet
switched data connectivity. Likewise, operators of the telecommunications
systems had to adapt their interactions and means of achieving their business
targets, mostly sculpted by the evolving means of automation [9]. From liter-
ally having humans in the loop to do the cable switching, they went through
manually triggered batch scripts to big data processing and analytics, which
support a solid level of workflow automation in the policy- or rule-based
systems. Yet, current network management solutions require the operator to
specify the lifecycle of any particular automation loop that is to be executed,
without such loops forming autonomously by the system based on high-level
objectives. 5G integrates various machine type communications and means
of mixing services on the same infrastructure, a leapfrog from 4G’s one
network – one service principle. The more diverse the services though, the
higher the risk of fragmented user and management interfaces (both human-
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Figure 1 The brief history of intent and automation in telecommunications.

or API-centric). Thus, for the first time in using or managing networks, intent
and intent based automation may not only be a convenience layer but a rather
instrumental and deeply integrated artifact to prevent management complex-
ity from limiting the accessible and exploitable capabilities of the system in
terms of efficiently serving versatile demands. This is even more pressing as
with 5G cellular technology gets integrated into non-telco businesses such
as enterprises and verticals, where the primary concern and knowledge is
not rooted in telecommunications as opposed to a classical Communication
Service Provider (CSP) with telco expertise. Therefore, high-level interfaces
and intelligent intent based interaction patterns backed by a much more
autonomous system than today are key to unlock the technological and
business potential of telco and vertical fusion.

2.3 Challenges of Managing a Programmable Network

It was mentioned in Section 2.1 that today’s networks are programmable.
That is, network functions, U-plane and C-plane, as well as management ser-
vices expose standard or proprietary N-bound interfaces that can be leveraged
to cause the network apparatus to execute specific pre-defined programs. A
good example is SDN, where the programmable apparatus consists of SDN
controllers exposing an N-bound API that can be used to query the controller
about network status or provide configuration in a form that is more abstract
than the APIs of the particular transport network equipment under the SDN
controller.

One point to be made is that programmability is a necessary enabler
to build more autonomous systems. Another point, however, is that raw
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Figure 2 Challenges of programmable networks and the benefits of the intent paradigm.

programmability is not sufficient to achieve high level of automation, that
is, where automation goals are beyond configuration parameters that can be
committed to the registers of traffic-facing equipment in an atomic step.

The challenge of managing a programmable network and what is the
benefit of the intent based paradigm are presented in Figure 2. Whenever
the operator of the network has a high-level technical or business objective
(e.g., providing good Vehicle-to-Everything (V2X) service in an area [5, 6],
or achieving efficient resource utilization without compromising customer
experience unless it would cost excessive amount of resources), that imple-
mentation of the objective has to be broken down to specific cases. With
policy-based management (the state of the art of network programmability),
each case has to represent a condition and action, both of which are need to
be expressible by means of the collective set of APIs exposed by the network
functions to be involved in achieving the objective. That is, the operator has
to plan out the execution steps that would (presumably, and hopefully) reach
the objective, in details. Also, as such planning involves many unknowns
and simplifications, it may not be entirely successful, which would require
(semi-)manually redoing the entire loop. That is, we are currently dealing
with open-loop network programming at least in the management layer. An
additional dimension of complexity is the cardinality of the rules that need
to be programmed to articulate even a single high-level objective, not to
mention the many (and potentially conflicting) objectives a business has to
balance. Consequently, such network programming exercises are not even
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near real-time and are not repeated frequently, leading to the following “best”
practices:

• An ever-growing collection of use case specific independent APIs and
their closed loop implementation blueprints by vendors

• Long development cycles, narrow scope, hard-wired management or
optimization loops (such as with Self-Organized Networks)

• Complexity exposed through increasing number of parameters with no
universally optimal value set

• In most of the cases automation means process automation

In contrast, the intent paradigm draws an interface at the level of objective
formulation and claims that the programming step(s) should be encapsulated
by the network itself. In order to allow incremental development and deploy-
ment of such a future system, reusing the existing APIs (which are currently
exposed to human experts) is recommended. This paradigm shift by I2BN
implies no pre-defined relationship between API providers and consumers, as
any concrete action has to be a function of the future demand, traffic mix to be
served, configurations, resource availability and load, realized service quali-
ties, etc. As these depend on external factors such as user mobility, application
and server behaviour, content to be transferred, etc., they cannot be prescribed
in advance; they have to be derived on the spot as they happen. Therefore, it
cannot even be described which APIs will need to be called to collect the
necessary insight and which APIs will need to be used to actuate any changes
to maintain the objective (that’s exactly the problem of policy-based systems).
This further implies that the network has to become autonomous and self-
programming as depicted in Figure 2, becoming capable of deriving these
insights and actions through measurement/data collection and configuration
setting APIs. The technical enablers for such system include at least the
followings:

• Means for efficient data collection and correlation. This implies machine
readable syntactical and semantical annotation of data as well as means
to identify data collected from various sources that share a common state
and context by serving the same end-to-end data flows.

• Ability to consume and process analytics that is context/intent aware
at near real-time speeds at scale [3]. This is required to support
micro-service architectures and programmatic pipeline orchestration
and deployment necessary to compose purpose-build insight driven
closed loops.
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• Software based architecture and programmability (softwarization, SDN,
etc.), as mentioned before.

In addition to the above functional considerations, there are novel trust
and security implications posed by an autonomous system, including but not
limited to:

• Autonomy and trust (network taking business critical decisions); owner-
ship of responsibility.

• Security with Machine Learning (ML) models (trained on untrusted
data, deployed in micro-services across multiple clouds, integrating
open source).

2.4 Requirements Driven by an Intent Based Human – Network
Interface

After reviewing the management challenges of today’s programmable net-
works, let us turn to the requirements towards an intent based human-network
interface. As this interface is the visible part of an intent based system, it is
logical to start deriving requirements from the expected interactions. Never-
theless, requirements to the system beyond the interface are also collected.
We start by listing motivations and expectations of potential users of such a
system, focusing on business users, operators and enterprises, as they are the
primary consumers of management services.

Motivation: Different roles in a CSP such as planning, operations support
system (OSS) and business support system (BSS), sales, marketing, wish
to continuously evolve the services to provide customer value and business
revenue.

Ô Requirement: Support all CSP roles to define their objectives using a
language/API that is close to their own domain abstractions and support
their conventional decomposition of systems and services.

Motivation: Verticals and Enterprises (industrial networks, private net-
works) with to increase revenue through adding value to own business and
increase production efficiency in their own technology.

Ô Requirements: Clean-cut high-level interfaces between industry users
and telco technology to support telco integration without deep telco
knowledge.

Motivation: Bi-directional interfaces, human to machine (H2M) and
machine to human (M2H), are needed to enable not only the definition of
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business, service or resource level objectives, but also to receive insight on
system state, intent fulfilment and assurance.

Ô Requirements: Provide meaningful feedback actionable for the entity
who provided the original intent (e.g., to enable reconsidering it) rather
than logging deeply technical error messages.

Motivation: Simplicity, safety & trust to delegate management execution
(fold the complexity into the system) is inevitable if the user facing interface
is intent based.

Ô Requirements: Automatically reach the objectives based on the con-
text/state of users, devices, resources and potential actions. Harmonize
actions to reach multiple objectives (related to multiple intents), resolve
or indicate conflicts.

Motivation: Therefore, mechanisms of trust, supervision, direct control
and manual override are expected to be exposed and integrated by an intent
based system.

Ô Requirements: Enable to directly interact with specific resources and
override auto-derived contextualized targets in case of unforeseen cir-
cumstances (e.g., sudden business need with contracted requirements
that cannot be derived automatically).

Based on the above requirements, we proceed to discuss design and
architecture principles of a system that could fulfil them.

2.5 Architecture

A potential architecture for bridging the gap between high-level objectives
and operating the APIs of the existing domain and resource controllers is
depicted in Figure 3.

The main architectural components of the system are a set of Intent
Managers, which are organized into a hierarchy. Intents related to end-to-
end (e2e) services or expected e2e network behaviour should be received by
an entity that is entitled to act in e2e. Therefore, at the top, the customer
(i.e., user) facing Intent Manager is referred to as the E2E Intent Manager
(IM). The E2E IM is on top of a next layer or more specific Intent Managers
(having the scope of a domain, technology, administrative area, etc.). This
second level of IMs is necessary as no single entity is expected to have the full
detailed view of the entire system, including all vendors, technology domains
and resources. E2e intents received by the E2E IM have to be analysed,



170 P. Szilágyi
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segmented and cascaded down towards those more specific IMs. While the
E2E IM remains responsible to the fulfilment of the e2e intent, it has the
freedom to decompose and delegate (domain) specific parts of it to specific
IMs. In this way, E2E IM uses the API of the next level of IMs. In turn, the
specific IMs use the APIs existing domain controllers, such as Radio Access
Network (RAN), Transport or Core domain controllers (e.g., orchestrators,
SDN controllers) to make the necessary calls that would fulfil the part of the
intent that was delegated to them by the E2E IM. Just as intent is decomposed
and travels down, measurements and insights are collected and streamed
upwards in the hierarchy of IMs. This is necessary to prevent low level details
within a particular domain or resource context being exposed to the operator.
Thus, the E2E IM has the task to synthetize and present service, network and
resource state related to an intent with abstraction level and terms matching
that of the original intent.

So far only e2e intents were considered. However, an intent based system
should also support receiving more specific intents or even direct configura-
tion on domain controllers or resource level. Such requests are expected to
originate from domain experts who know what they are doing and therefore
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can also consider the consequences of interacting with the system on lower
levels. Still, allowing such interactions is essential to retain access to the
system’s full configuration space and enable quick overrides, both in cases
of handling temporary or exceptional demands with direct and known con-
figuration needs, and to override any decision taken by the system for any
reason.

In alignment with the Zero Touch Network and Service Management
(ZSM) architecture [10], the E2E IM may be part of the E2E Service Man-
agement Domain, whereas the next layer of IMs could be part of specific
Management Domains. Communication between the IMs is possible via the
ZSM Cross-Domain Integration Fabric.

2.6 Intent Life-cycle and Interaction with Network Operations

The lifecycle of an intent is discussed in the wider context of planning and
operating network services, as depicted in Figure 4. The network itself can
be regarded as a set of hardware and software assets (including not only
U/C-plane functions but also management services including closed loops),
which interplay with their current configuration and the current demand (user
traffic) to serve. In pre-launch, usually planning activities are carried out to
design and dimension the key metrics of the network. Basic service blueprints
are also provided, along with the first bootstrapping configuration. In an
intent based system, basic intents may already be provided. The network
transitions into and operating network as it starts to serve user demand. As
the user demand is usually dynamic in nature, the network needs to adapt its
operation to provide the required service. There may be various adaptation
loops. Traditionally, the operator may provide configuration changes based
on high level Key Performance Indicators (KPI), faults, anomalies or other
performance degradations [11, 12]. As this is an open loop process, it is
slow (many days or weeks per cycle). Additionally, and more interestingly,
various closed loops (i.e., software-based automation) in the system may
take proactive or reactive actions to keep the system within proper operation
bounds. With intents, such loops are expected to be driven by the objectives
described in the intents and the current state of the network, i.e., the level
of fulfilment regarding of said objectives. Those closed loops are necessarily
part of the intent managers as it requires that the intent (which is more static
and context-free) is interpreted in the current context of network resources,
e2e and domain level state, and actions that make sense in the given context
are triggered (usually via API calls to the domain managers).



172 P. Szilágyi
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Actions of an intent based system related to the lifecycle of intents may
be categorized as intent fulfilment and intent assurance [3]. Intent fulfilment
refers to the steps taken by an Intent Manager in context of receiving a new
intent or an update to an existing intent (e.g., the E2E IM receives an intent
from the operator, or a lower level IM receives an intent from the E2E IM).
The goal of intent fulfilment is to bring the system’s state in alignment with
the new or updated intent’s objective. The first action related to handing a new
or updated intent is intent ingestion, which refers to receiving the intent via
the exposed intent interface. It triggers actions such as validating the intent’s
syntax and semantics (API compatibility) and storing the intent in the IM’s
Intent Repository. Next, the intent needs to be translated, which means to
analyse which part of the intent needs to be delegated by using services of
other entities (lower ranking IMs, domain/resource controllers, orchestrators)
and what actions may be taken directly by IM itself that originally received
the intent (Figure 5). Delegation requires analysis based on the intent’s goals
and the APIs exposed by the potential other services, as well as based on the
current context (network state, load, resource availability, etc.) of the system.

Note that Intent based automation does not replace existing technology/
domain-specific or protocol layer automations (e.g., Transmission Con-
trol Protocol (TCP) congestion control, fast reroute on transport link/node
failures, dynamic routing, path protection/restoration) or self-configuration
mechanisms (e.g., SON Automatic Neighbor Relation (ANR) [13]). Such
mechanisms continue to exist and are expected to operate within their design
boundaries. Instead, the IM interacts with other orchestrators only to use their
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services for intent fulfillment and assurance, not to manage those entities
(Figure 5).

The lifecycle of some intents may end at the fulfilment case, if the
intent’s goal simply describes the availability or presence of a service. In that
case, onboarding all necessary software artifacts (e.g., software images) and
deploying the related (micro-)services (starting and scaling containers) com-
pletes the goal of the intent by definition. However, in other cases, the intent’s
objective attributes certain operational criteria (related to availability, quality
of service, end user experience, etc.) in addition to the need of existence of a
service. Those intents have their lifecycle tied to the operation of the referred
service and may require frequent recurring actions executed via the APIs of
the available domain/resource controllers to keep those operational criteria
achieved. As such actions need to be triggered automatically by the Intent
Manager who is responsible for that (part of the) intent, Intent Managers
will need to leverage closed loops [14] (Figure 6). The closed loops may
be created purposefully by the IM or may exist anyways but are utilized
by potentially multiple IMs. The closed loops have to address network and
service state monitoring, analytics and actions. Monitoring may include
collection of performance management (PM) or fault management (FM)
counters; resource, network and service state modelling; application insight;
collected across e2e, domain and individual resource scopes. Collected data
is then analysed. The purpose of the analytics is to assess the system’s intent
compliancy, that is, how much the intent’s objectives are met, and to derive
potential actions that would bring the system closer (ideally, to meet) those
objectives. The technical enablers of such analytics will be discussed deeper
in Section 4 in relation to self-learning closed loops [15].

IMs have to implement reporting towards the entity which ingested the
intent they are working on. Reporting requires abstraction and aggregation
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of information to align the reported data with the ontology of the intent so
that the report’s semantics are comprehensible by the intent’s author. This
is essentially the inverse of intent translation but applied to measurements
and insights related to the intent, not to the intent itself. Within such report-
ing capabilities, advanced Intent Managers may have an extended use of
measurements. Besides evaluating the system’s intent compliancy, measure-
ments can be used to profile system capabilities. Such profiles may include,
e.g., intrinsic limits on U-plane performance, resource capacities, amount of
demand to be served within a given quality, etc. Profiles like that may be
used to do a pre-launch assessment of a new or updated intent as part of the
intent ingestion process. This assessment evaluates whether the objectives
associated with a given intent are realistic and achievable by the system. As a
trivial but intuitive example, if the intrinsic delay of a system within a given
path is 20 ms but an intent with a 10 ms target is ingested, the receiving
IM may immediately give a feedback to the intent’s author that this intent
is not realistic (at least at areas serviced by the given path). The feedback
may indicate clues of what would be realistic, or, if the reason for likely
undeliverable intent is the presence of high load or other high priority services
taking up resources, indicate where is the conflict so that the intent’s author
may issue changes to other intents or arbitrate priorities.
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3 Implementation Considerations

The relation of intents and closed loops has been hinted already as we
discussed the lifecycle of intents and how they relate to network operations.
Now this relation is explored more deeply and systematically with the aim of
deriving more concrete design, architecture and implementation guidelines.
We start from a list of numbered Design Principles (DP), each of which
captures a key aspect of how an intent based system (i.e., the intent related
part of it) could be realized in practice.

3.1 Design Principles

DP#1: Intents are not generic wishes expressed in isolation from any particu-
lar system, but they are based on declared and aggregated network & service
automation capabilities (of a specific system). Such capabilities should be
exposed to the operator in formal language to promote machine readability
and eliminate ambiguity that is inherently part of natural languages. This
design principle acknowledges two important differences between human and
machine capabilities. First, human-like generic intelligence is not available
in machines, therefore the freedom of thought and associations that can
drive a human-to-human intent expression is not realistic on machine intent
interfaces. Second, systems cannot evolve themselves or acquire new capa-
bilities (as opposed to humans, who can autonomously acquire knowledge
to fill the gaps in their capabilities); therefore, what any deployed system
(set of services, available software images, hardware (HW) resources, etc.)
can achieve is limited by its implementation and will only change through
software development effort. Therefore, it is beneficial if the user of an
intent based system is guided to author intents that already reflect what the
system is able to achieve, to avoid user dissatisfaction upon freely entering
a series intents that turn out to be incomprehensible or unimplementable
(even though the intents may be perfectly valid when directed to a human
engineer, it’s just that the underlying system lacks implementation for them).
It also helps the user discover the right syntactical and semantical terms when
expressing intents, rather than the system trying to bridge the gap between
under-specified or overloaded human terms and rigid fully specified machine
APIs.

DP#2: Autonomy is increasing, supervision becomes coarser and trust in
delegation is inevitable with intent based systems. That is, intents trig-
ger automated decisions and actions in contexts/situations not explicitly
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prescribed in advance (as opposed to rules or policies). While this is the very
reason behind the inception of intent based systems, the processes, workflows
and best practices around managing such systems must also be changed and
adjusted.

DP#3: Intents are implemented by means of closed-loop automation micro-
services, not as a single monolithic cross-domain full-stack entity. This
is in-line with contemporary software-as-a-service architecture guidelines,
supports integration with cloud platforms and eliminates vendor lock-in.
However, it also generates technical requirements on how the system can be
composed from its parts, especially considering the high level of automation
such composition needs to achieve. Some of these requirements are the
following (more technical analysis will be given by Section 4):

• Micro-services expose services that define what type of automation
they claim to be able to perform, and what type of inputs (intents)
they can interpret. Such capabilities are better explicitly defined by the
implementation of the micro-services and not puzzled together by a
generic AI.

• One micro-service may use the services exposed by other micro-services
(e.g., to collect measurements and other real time network state/context
information; or to execute actions) to complete their operation. This is
analogous to how common software functionality is collected in and
published as reusable libraries or packages, which may themselves also
use further libraries, etc.

• Each micro-service may internally implement self-learning (adaptation
to context learned via self-monitoring) [15].

DP#4: Each intent is implemented by a recursively auto-generated closed-
loop (CL) hierarchy, from top-level (where the intent is received, e.g., at e2e
service level) to domain controller level.

• The hierarchy results in an upside-down tree with a single top-level
micro-service (the one that receives the operator’s input) per intent.
Additional micro-services are recursively identified and added by each
micro-service (starting by the top-level one) until domain level con-
trollers are reached.

• The operator may interact with the CLs at any level (top-level is where
the operator provides the input, but it may be already close to or at
domain level).

• It is the responsibility of an Intent Manager to orchestrate closed loops
together into a working pipeline along a given intent.
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DP#5: Approach to conflict resolution during the lifecycle of a single intent
and while handling multiple intents:

• Each CL receives higher level instructions related to a given intent from
only one upper level CL (but each CL may provide derived intents
to multiple lower-level CLs. Therefore, there are no inter-CL conflicts
within the implementation of one intent.

• The same CL may receive multiple intents or instructions from upper
level CLs (at top-level: the same micro-service may be the entry point
for multiple intents). Each micro-service is responsible to resolve con-
flicts among its inputs. Therefore, all potential conflicts are intra-CL
and should be handled by the CL’s implementation. Implementations
may compete in their ability to harmonize and fulfil more versatile
set of intents and requiring less of the system’s resources (compute,
bandwidth, etc.) in doing that.

3.2 Implementation Solutions

After outlining five Design Principles, let’s discuss potential implementation-
oriented solutions and practical considerations that are addressing one or
more of the DPs.

3.2.1 Auto-generating the CL hierarchy (DP#2,3,5)
Whenever a solution is composed of multiple interworking but potentially
separately authored components, a prominent task (that of the IMs) is to
assemble a working pipeline out of the available building blocks. According
to the DPs, the fulfilment and assurance of each intent may be distributed
across multiple IMs (which are the entities responsible for the intent within a
given scope, say, e2e or domain) by means of orchestrating and coordinating
multiple closed loops (which are the practical building blocks of software
based automation). Finding the right micro-services and chaining them in the
right way to form a closed loop needs to happen automatically already during
the intent fulfilment phase and should continue during intent assurance.
Intent assurance may use the same or potentially changed closed loop chain
compared to fulfilment – as assurance may need to onboard components in
addition to fulfilment such as real time measurements; whereas assurance
may not need components dedicated for one-time service onboarding, only
useful during fulfilment.

The interactions of a closed loop with other closed loops and its envi-
ronment are depicted in Figure 7. A closed loop may receive inputs from its
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Figure 7 Closed loop automation for intent contextualization and implementation.

hierarchically superior CL. This input is related to the fulfilment or assurance
of an intent. Additionally, the CL may collect context and measurements from
any other entity, such as domain controllers, or even other CLs. These inputs
are used by the CL’s internal logic and may be implementation specific.
Collecting input from another entity should not have impact on that entity
(besides the need for generating the information). On the output side, the CL
controls potentially multiple other CLs (at a lower hierarchy level) and pro-
vides feedback to its single higher-level CL. As discussed earlier, this status
may be an aggregated and transformed version of the status collected from
its own controlled CLs. The intent CL implements stateful representation of
its inputs as it potentially needs to work with the received information in the
long term and has to provide feedback in context of its input later on.

The IM’s ability to find the right micro-services automatically imposes
certain requirements on the micro-services themselves. First, each closed
loop suitable to be a building block in a closed loop declares the following
about itself:

• What kind of automation / task it implements (English description:
category, scope, etc.) – for human designer and engineering purposes,
similarly to API documents and container descriptions.

• Implemented input API (inputs steering the CL’s behaviour, e.g., targets,
thresholds, operational parameters).
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• Data dependencies: data required from other sources for its internal
operation.

• Software dependencies, especially other subordinate micro-services
implementing data dependencies or analytics services, whose services
are used as a dependency.

• Supported APIs on the CL’s “S-bound”, that is, which other entities N-
bound interface this closed loop is able to operate (e.g., the N-bound of
a domain controller, SDN-C, or resource manager). The input API of
other CLs also belongs to this category, if this CL is positioned, e.g., to
be used by an E2E IM.

It was mentioned that, unlike humans, the software systems are unable
to evolve their own behaviour while in deployment, and certainly not able
to comprehend data or control for which the precise implementation was
not provided by their developers. Therefore, two CLs can only be inter-
connected (i.e., one providing output that is taken as input by the other) if
there is a compatible output/input API at the two CLs. That is, intent CLs
may be connected based on syntactical and semantical API compatibility.
This requires that a CL’s input/control API description captures not only its
syntax (e.g., “integer is expected”) but also its semantic (i.e., what does that
integer control in the CL) – otherwise any two interfaces could be potentially
connected where one produces an integer and another expects one. Both
syntactical and semantical descriptions need to be machine readable. For
syntactical descriptions, schemas can be used, which are available in many
data modelling languages [16]. For the semantical description of a parameter,
the state of the art is to capture the semantics in human readable form (aimed
towards human developers) and assign a unique identifier to the parameter
(aimed towards the machine). The identifier may be without any context,
in which case the machine can evaluate equivalence by exact comparison;
alternatively, the ID may be embedded into a hierarchy of standardized or
well-known categories such as in Bluetooth Generic Attribute Profile service
framework [17] so the ID not only bears the uniqueness of the parameter
but also provides semantical description. Note, however, that interpreting
the semantic of any parameter by the machine requires that the developer
of the software module first understood it and wrote code that causes the
software module to behave accordingly – the machine’s role in runtime is
necessarily limited to conditional checks performed on the IDs to execute
the proper subroutine with the code that prescribes the right semantical
behaviour.
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Figure 8 Closed loop hierarchy for a single intent.

3.2.2 Assembling the CL hierarchy for a single intent (DP#4,5)
During intent fulfilment, the IM responsible for an intent (or part of it,
received through delegation from a higher-level IM) has to assemble a CL
hierarchy for the intent. Note that with multiple intents being submitted
to the system, multiple hierarchies may co-exist, each assembled for their
respective intent, and the same CL (that is, micro-service) may be involved
in multiple hierarchies (as it will be detailed shortly). Still, when viewing the
interworking CLs assembled for a single intent, it shows an upside-down tree
topology, as illustrated in Figure 8.

Assembling the interworking CLs may be possible by a breadth-first
search process. The search is started by the IM receiving the intent. The top
root node of the tree is the closed loop that handles the intent’s lifecycle
within the IM itself, that is, the logic that implements intent ingestion and
decomposition as part of the intent fulfilment phase. This logic then identifies
a next level of closed loops by searching for CLs that declare an API com-
patible with the decomposed and scoped objectives synthetized by the IM’s
intent lifecycle handler closed loop. Usually the top level IM’s decomposition
logic works at the e2e service level, and the next level of closed loops
will be the business logic of the domain IMs, as it was shown in Figure 3.
Alternatively, if the operator provides intent directly to a lower level IM, the
search process and the whole tree of CLs is rooted at that IM. In any case, the
top-level CL collects all other CLs that could (by means of syntactical and
semantical API compatibility) deliver on the decomposed targets. The search



I2BN: Intelligent Intent Based Networks 181

then proceeds recursively by transitioning the execution to one of the next
CLs and identifying additional CLs, following API compatibility as a means
to extend the CL tree. The search terminates if the CL tree is expanded into
the domain or resource controller APIs, that is, when the output of every
intent related CL is bound to a controller. Technically, at the end of the search
process, the resulting graph may not yet be a tree, as multiple higher-level
CLs may express compatibility towards the same lower level CL (or domain
controller at the lower level), creating diamond shaped links (i.e., when the
links from a first level CL branch towards multiple second level CLs, which
are then joined at the same third level CL or controller). Such cases represent
implementation choices, that is, the intent can be implemented using different
sets of CLs. Depending on the implementation of the intent based systems,
such choices may be presented back to the operator for manually selecting
the preferred implementation (e.g., based on the vendor of the micro-services
implementing the CL; or the associated cost or efficiency). Alternatively, the
operator may provide policies for the IMs to make selections automatically
based on certain conditions, and only those cases not covered by those
conditions should be returned for manual inspection. Regardless of the means
of resolving the implementation choices, the graph is then purged back to
a tree, where the delegation routes and responsibilities between levels of
CLs are unambiguous. Note that each CL may in practice require additional
supporting micro-services for its own operation, e.g., to assess the real time
context of the system, in concert with Figure 7. Those supporting micro-
services are not part of the CL tree as they are considered necessary software
dependencies for the implementation of the CL. Moreover, such supporting
micro-services may be reused by any number of CLs at any level of the
hierarchy (as it will be detailed in Section 4), therefore the tree structure that
is necessary to avoid control overloads and ambiguity in which entity controls
which part of the system does not (and should not) apply to them.

So far, we discussed the assembly of a CL tree that collectively imple-
ments the fulfilment and assurance of a single intent. As an intent based
system usually handles multiple intents simultaneously, there is a similar
tree for each intent. While the per intent graphs are trees, that is, any CL
can only occupy a single position in a tree, there is no limitation in any CL
participating in multiple trees. The most obvious example is when there is the
E2E IM, where a rich implementation may be capable of handling many e2e
intents. Alternatively, there may be an IM at a domain level (e.g., RAN) that
is able to handle various RAN domain related intents (e.g., related to QoS or
efficiency targets). This IM may likely be found to be compatible with and
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useful for the implementation of many objectives delegated and scoped to the
RAN domain, should such scoping be an action implemented by the E2E IM.
This means that the closed loop implementing the intent management logic
of this IM would be part of multiple CL trees. These examples are visualized
in Figure 9. Note, however, that this figure no longer represents the handling
of the same intent, hence the non-tree graph structure. In case a CL is part
of multiple CL trees, it is responsible for internally resolving any conflicts
within

Splitting the implementation of an intent may not only be based on
domains such as RAN, transport or core network, but also based on vendor
or software capability areas. That is, parts of the network may be served
by different vendor’s equipment and network functions, therefore the pro-
grammable layer (the available API of their domain controllers) differs. This
means that the search process that ultimately builds the CL tree for handling
an intent will have to split along service areas, as depicted in Figure 10.
Nevertheless, the remaining CL graph is still a tree with no ambiguity in
the control and responsibility flow, only the scope of CLs that are specific to
handle a particular vendor’s domain will be limited to that area.

3.2.3 Auto-generating the interface of the Intent Manager: CL
capability aggregation (DP#1)

The Design Principle #1 in Section 3.1 captured that in a realistic intent
based system, the expression of intent should not be an unstructured free-
style human type of statement (e.g., a natural language) but rather a form of
machine interpretable formal language. Moreover, the terms of said language
should not be arbitrary but driven by the capabilities of the underlying system
so that intents expressed by the operator are indeed comprehensible and
interpretable by the system. This goal can be achieved by auto-generating
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the human-machine intent interface based on aggregating the capabilities of
the available CLs and IMs.

The human-machine intent interface can be assembled automatically by
exposing the input interface of the CLs which fit into a chain of compatible
CLs (from top level to resource/controller level). These APIs present the
potential “asks” that could be implemented by the system. Such chains can
be discovered statically (that is, based on the exposed input and output APIs
as part of the description of the CLs, as discussed in Section 3.2.1) by a
search process similar to the one building the CL tree per intent; only this
time the search does not know the intent, so it assumes a potential input of a
CL as starting point. The assembly of the CL’s aggregated capability presents
a modular structure: onboarding an intent CL that exposes, e.g., QoS concepts
on its N-bound interface and also plugs into a chain of CLs (i.e., has S-bound
interface compatible with at least one N-bound interface at the next lower
level, etc.) enables the formulation of QoS intents on service level, which then
could be offered for the human operator as a plausible intent target. Without
such CL in the catalogue of CLs (e.g., repository of micro-service container
images), submitting such intent to the system would make no sense as the
system lacks the necessary implementation. A modern user interface could
create a visual “click through” experience that guides the operator through
the potential intents and their parameters.

3.2.4 Additional considerations
Discussing the intent interface and how the supporting implementation may
be automatically assembled has implicitly assumed that most intents are
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related to e2e service, and this assumption may be true for many use cases.
Still, an intent based system must not lock down its interfaces towards lower
level constructions, as there may be cases when the operator or user of the
system may wish or need to interact more directly. First, the operator has to
be allowed to exercise control on any level:

• Top-level: for high-level, context-free, declarative intents agnostic to
vendor, domain and technology choices. Usual intents include e2e
services and their objectives related to QoS or other Service Level
Agreement (SLA), which the operator wants to enforce regardless of
the current state, load and users of the system. The system is expected
to dynamically identify and carry out necessary actions (resource allo-
cations, path reservations, QoS architecture configuration, prioritization,
etc.) that is within the capabilities of the traffic facing network functions.
Feedback is expected to be on the service level, e.g., what percentage
of traffic or customers could be served with the contracted quality, etc.
In case of system capacity limits, it is expected that the system signals
were, how much and how often the demand exceeds the system capacity
so that the operator can schedule upgrades and extensions accordingly.

• Mid-level: e.g., domain level intents that may depend on features imple-
mented only by a specific vendor’s network functions, or the intent
needs to be scoped to a canary deployment for testing. Providing such
intent may require knowledge about detailed network function features
and some knowledge on expected results based on manual function
parameterization. Still, it is not expected that the intent captures a very
specific configuration of network functions, therefore there is room
for the automation for discovering the best setup and for continuous
context-based adaptation within the approved limits.

• Resource-level: e.g., direct configuration of domain controllers (or even
particular network function instances). Such action assumes deep exper-
tise in not only the changed controller or function but understanding of
the e2e impacts of administering the changes.

Manually changing low level or local parameters of an otherwise intent
based system basically exempts the manually configured entities from being
subject of autonomous management. They also have to be treated as bound-
aries for automation, i.e., values that are given and to which other parts of the
system have to adapt. It should be possible to move a manually parameterized
set of entities back under intent based management. In any such case, the
automation taking over the control should ensure smooth transitions (e.g.,
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only apply automatically derived parameters to newly established user plane
connections) so that no disruptive and potentially destabilizing configuration
changes are introduced to live user sessions.

4 Self-Learning Closed Loops

Once an intent is fulfilled and all necessary CLs are instantiated that can
supervise the enforcement of an intent’s objectives, it is necessary that those
CLs can adapt the system’s configuration according to dynamic changes,
events, shift in user demand, load, etc. As intent based systems lack policies
that prescribe which actions to execute on what condition, these rules have
to be derived autonomously. This section goes deeper into the problem of
self-learning, which essentially gives CLs the ability to respond to changes
in their execution environment and accumulate knowledge on which action
has the highest utility in keeping the intent’s objectives satisfied in a given
dynamic context.

4.1 Overview

Self-learning closed loops for management automation are part of network
and service management standards such as in [ZSM009-3]. Self-learning CLs
consider their past actions and their consequences when they make a decision
on future actions. This comes from the observation that the utility of a pre-
defined action is not absolute; an action that is very useful in some cases
may be not effective or even counter-productive in other cases. Supposing
that a CL with a set of objectives may choose from a list of actions through
which it may impact the network and services, a self-learning CL should
discover which is the best action under a given context that maximizes its
utility and reach the objectives. Such self-learning capability depends on
well-defined metrics that quantify the utility of the action (within a given
context). Currently such metrics have not been standardized or even de-facto
defined, creating a gap between this concept and its potential implementation.

A follow-up technical problem of self-learning CLs is related to the col-
lection of any such utility metric (once it is defined). It cannot be assumed that
the CL itself (which is an automation logic) is able to operate in a standalone
way, generating all the measurements needed for its decision process on its
own. That would not only mean that the self-learning CL has to have access to
low-level resource layers and at the same time be present in many technology
domains (i.e., essentially being a single central entity with connections to
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every other domain and resource controller), but also that multiple self-
learning CLs (e.g., from different vendors) would need to implement similar
or, for interoperability, the exact same utility measurements on a variety of
input data (where the data itself may also come from multiple vendors). Due
to the lack of standards, there is currently no accepted architecture that would
let self-learning CLs focus on their analytics and automation logic without
having to implement their own utility measurements.

A key concept related to self-learning CLs is the self-monitoring of
automated actions triggered by CL itself. The self-monitoring may be defined
by the efficiency and impact related to the action as illustrated in Figure 11
and explained below [15].

Definition of efficiency (as per the current [15]): the requested action
is successfully completed with the specific scope and target such as User
Equipment (UE), cell, etc. A self-learning in CL is supposed to filter out
actions that are inefficient in a given context. Example: successful execution
of vertical handovers due to the action of reconfiguring radio thresholds
is an efficient action (because the handovers do happen as a result of the
reconfiguration). If some UEs were to reject the handover (e.g., due to lack
of capability, or lack of real coverage from the targeted frequency layer), the
action would be less efficient or not efficient at all.

Definition of impact (as per the current [15]): the action is impactful if
it has reached its goal (e.g., resolved a system state degradation). A self-
learning in CL is supposed to filter out actions that have low impact in a given
context. Example: if the vertical handovers have resolved the degradation
by decreasing the load in the resource layers, the action was impactful.
Otherwise, even if the action was efficient (i.e., it did successfully change
what it was designed to change) the impact is low or even negative.

While the above concept of efficiency and impact was accepted in [15],
there is no detail about how to compute or quantify the efficiency and impact
of any particular action. The challenge is that a uniform metric would be
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preferred to enable the comparison of efficiency and impact across different
actions, yet the difference in the actions themselves and in the objective of
the self-learning CLs (i.e., what to optimize for) mean that the calculation
of efficiency and impact has to be specific to the action and to the CL’s
logic itself. Therefore, the general concept of efficiency and impact-based
evaluation cannot be practically used without inventing further methods to
calculate and report efficiency and impact type of metrics that are suitable for
self-learning CLs.

4.2 Proposed Operation

This section proposes a micro-service-based architecture decomposition
and related metadata and interface specification to enable standard real-
ization and automated assembly of self-learning CLs. A self-learning CL
should be decomposed into interworking micro-services where one or more
micro-services are responsible for action utility measurements and one or
more micro-services are responsible for automation logic (Figure 12). An
automation logic micro-service may consume measurements generated by a
measurement micro-service and produce decisions and actions. Additionally,
an automation logic micro-service may produce insight that is consumed by
one or more other automation logic micro-services. All these automation
logic micro-services together with the utility measurement micro-services
may collaboratively implement a complex distributed automation task, which
is the business logic of the self-learning CL.

Measurement micro-services are reusable components potentially provid-
ing input to multiple unrelated automation logic micro-services in separate
self-learning CLs. Each measurement micro-service is specialized to evaluate
network, service, traffic, user, equipment or any other network/user entity
state or performance from a specific perspective and provide a standardized
utility metric to any interested automation logic micro-service. The standard
utility metric is proposed to be the so-called incident rate. Incident rate is a
metric defined as a function of (1) a number of events that are considered
negative and (2) a total number of events. For example, the function may pro-
duce the ratio of (1)/(2). The definition of an event and when it is considered
negative is defined by the implementation of the measurement micro-service.

Each measurement service has, besides its code implementation, three
attributes: (1) objective; (2) input domain; (3) scope; defined as follows.

Objective: Any particular measurement micro-service is implemented to
generate incidents compatible with a specific objective (e.g., SLA assurance
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Figure 12 Micro-service based self-learning CL architecture.

objective requires incident definition related to the quality of the service;
power efficiency objective requires incident definition that is related to the
power consumption of the services; etc.). The objective is a static (design
time) metadata that is part of the micro-service implementation.

Input domain: The implementation of the measurement micro-service also
defines the input domain from which the incident measurements are gener-
ated (e.g., Network Function (NF) PM counters of a specific network function
type such as gNB-CU, cloud infra Virtual Machine (VM) resource coun-
ters, Virtual Network Function (VNF) application metrics, etc.). The input
domain is a static (design time) metadata that is part of the micro-service
implementation.

Scope: The scope of a measurement micro-service is defined dynamically
when the measurement micro-service is deployed in a system (e.g., by an
orchestrator management function). The scope of a measurement micro-
service is the intersection of its input domain and its deployment area (e.g.,
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Figure 13 Pairing of a measurement micro-service with an automation logic micro-service
based on micro-service metadata.

a geo-area, a network slice, etc.). That is, a deployed measurement micro-
service will generate incidents from the intersection of its input domain and
the deployment area (e.g., for all gNB-CUs within a network slice) where
the generated incidents are compatible with the measurement micro-service’s
objective (e.g., SLA assurance).

An automation logic micro-service autonomously makes decisions and
actions to converge a network or service towards a specific objective. In
order to make the automation logic micro-service part of a self-learning CL,
it should be coupled with the right measurement micro-service that gener-
ates incidents based on the same objective. This requires that automation
logic micro-services are also released with metadata defining their objective
and input domain, similarly to measurement micro-services. This enables
an orchestrator management function to automatically pair automation
logic micro-services with compatible measurement micro-services (based
on matching objective and input domain in their metadata), assembling the
self-learning CL from the disaggregated micro-services.
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4.3 Implementation and Benefits

The loose coupling between the measurement micro-services and automation
logic micro-services promotes an extendable marketplace where a growing
variety of incident measurements can be implemented and published by
different measurement micro-services (by a multitude of vendors), but all
exposing a uniform API (the incident metric) towards the automation logic
micro-services (by the same or different vendors).

The deployment of a self-learning CL is performed by an orchestrator
management function. The prerequisite for the deployment is to have all
micro-service implementations and attached metadata (both for measure-
ment micro-services and automation logic micro-services) available to the
orchestrator function. (Availability may be satisfied by the ability to acquire
such data on-demand, e.g., from a software store, not necessarily by having
everything on-premise.)

The deployment of a self-learning CL commences on a request coming
from an external entity above the orchestrator function (e.g., from the oper-
ator). The trigger should identify the CL and the deployment scope. The CL
is represented by the list of automation logic micro-services, wherein each
automation logic micro-service is represented by its implementation and the
objective and input domain metadata (Figure 14).

The first step of the self-learning CL deployment (Figure 15) is to collect
the measurement micro-service dependencies of the self-learning CL, i.e.,
the list of measurement logic micro-services that are needed to supply the
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Figure 14 Self-learning CL representation for deployment.
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incident rate to the CL’s automation logic micro-services. A measurement
logic micro-service is able to supply the incident rate to an automation logic
micro-service if the objective and input domain of the two micro-services are
the same. The right measurement micro-service for a given automation logic
micro-service may be found by searching through all known measurement
micro-services and comparing the metadata of each measurement micro-
service with that of the automation logic micro-service. On multiple potential
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matches, the initiator of the deployment (e.g., the operator) may be presented
with a choice option so that it can select the preferred implementation. Note
that the scope of the two micro-services are aligned by the orchestration
function by deploying them to the same area. The means for this is out of
scope of this article as it may involve state of the art software deployment
and database integration steps.

4.4 AI/ML for Automation

Self-learning capabilities are often attributed to using Artificial Intelligence
(AI) or, in practice, ML techniques. Using ML to implement self-learning
is indeed feasible, provided that the ML specific aspects of closed loops are
considered. This section intends to touch on a few key technical questions or
challenges related to embedding ML based functions in intent based systems.

4.4.1 Data management aspects
The use of ML methods starts with defining the data types and data sources
upon which selected algorithms are trained and later, once a model is trained,
executed. Considering service and network management use cases, key data
types and data sources could be the followings:

• Network measurements from telco software, i.e., the application part
of VNFs and Cloud-native Network Functions (CNF) (related to 3GPP
standard or proprietary functions in RAN, transport, core, edge, Multi-
access Edge Computing (MEC), Radio Intelligent Controller (RIC),
etc.). Traditionally, these are the evolved versions of what is traditionally
configuration management (CM) for configuration data and PM/FM for
operational or runtime data. This type of data is suitable for numerical
multi-dimensional time series analytics [11, 12]. While standardized
metrics [18] continue to be provided by modern software implemen-
tations, the rise of virtualization and micro-service architecture also
transformed logging practices. Currently kernel, system and application
text logs, originally written by engineers to be read by other engineers,
start to become a rich set of insight about how telco software operates.
The machine-based analysis of this type of data requires using advanced
ML techniques beyond statistical evaluation such as log analytics [19]
to deliver actionable insights for closed loop automation.

• Application insight from devices and apps (mobile Internet apps, V2X
modem, Industry 4.0 robot, xR, etc.) and their correlation with network
insight has high potential to implement feedback loops based on the
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Figure 16 Data collection and training instrumentation is key for ML based automation.

actual service the network provides to the ultimate end users. Assuring
true e2e SLAs, for example, is only possible if reliable and timely
measurements are available from the very end of the e2e. The correlation
with network insight is necessary to transform end user perception into
potential network side actions executable by domain controllers, such as
knowing that increasing a bandwidth allocation on a particular transport
service will convert to better service quality in an e2e service rather than
burning more resources by providing more speed to services where it is
not recognized.

• Cloud infra measurements from the on-premise or public cloud infras-
tructure hosting the network functions. With cloud native becoming the
new standard in network function architecting, additional dimensions of
operation such as the state of the supporting infrastructure and cloud
orchestration actions have to be considered by network and service
automation.

Collecting large amount of diverse data from a distributed system requires
data collection framework that is light on data sources (i.e., every piece data
is produced only once by a source), efficient in data routing and replication
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towards multiple data consumers, and allows for programmable lookup, sub-
scription or retrieval of available or new data [20]. In addition to identifying
the data sources and collecting the right type and amount of data, developing
ML models require properly setup data sets (training, development, test) and
compute framework for model training and validation.

4.4.2 Encapsulation of ML models
Using ML models in software usually does not mean that the ML model’s
input and output are directly exposed as an API. Instead, there is addi-
tional software encapsulation (Figure 17) that embeds the model for various
reasons:

• Easier deployment: hide vendor specific SW stack and dependencies,
e.g., by using state of the art container technology.

• Interfacing with input data sources: on the input side, implement data
source specific APIs to receive or collect data, and transform it to
produce the exact data format (syntactically and semantically) that is
expected by the model.

• Interfacing with published APIs: on the output side, transform the
model’s raw output to the representation that conforms to the APIs
published towards other entities.

• Self-monitoring and self-validation: implement logic that is able to
detect if the model is not producing reliable output for various rea-
sons detailed shortly. Additional logic may be embedded to trigger
re-training, model update, or fallback to non-ML based legacy busi-
ness logic in case the currently operated model is unreliable. Such
actions require integration with a model management or ML orchestrator
framework [21].
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4.4.3 Deviation between training and field data
The state-of-the-art technology of ML depends on model training and apply-
ing trained model to new data for inference purposes. Regardless of whether
model training and inference based on trained model are executed as strictly
separate phases (e.g., as common with supervised training of deep learning
models) or they partly or fully overlap (e.g., with in-situ reinforcement
learning), the latest model that is applied to fresh field data bears the risk
of not producing reliable output. This is due to the nature of ML technology:
models are derived through a complex training process based on past data,
with no analytical description available of how the model will perform on
unseen data. While there are several techniques and best practices to organize
training data in a way that its distribution approximates that of the data to
be analysed after deployment, there is no guarantee that live data will not
produce such outliers on the input layer of an ML model that throws the
model off its boundaries. Unlike mathematical formula based numerical algo-
rithms where proof can be derived on at least boundaries of the algorithm’s
output, generally no such constraints are available for ML models. Therefore,
it is even more important that ML models are surrounded with additional
logic that implements safeguards both by checking the input data before it is
processed by a ML model and by validating the output of the model before
taking it forward as input for further analytics or decision making.

Common reasons why operational or field data may be substantially
different from the data on which a model was trained include the followings:

• Changes in the network load due to activities not related to communica-
tion itself

• Changes in the behaviour of users or applications that are generating the
demand, resulting in different traffic patterns and ultimately different
network states

• Changes in the network itself, such as evolving technology and deploy-
ment

• Changes in the NF software releases and deployment (upgrading,
scaling, etc.)

Some of the others and when they happen may be well known by the
operator of the network (e.g., making changes to the network, rolling out
new software releases, etc. are certainly something that could be tracked).
Others have to be discovered retrospectively by observing their implicit
impact on network and service KPIs. In any case, continuous monitoring and
verification of training data vs. field data and the reliability of deployed ML
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models is required. Preferably, such monitoring should deliver the following
insights, which could even be channelized to automated actions, such as
model re-training, downgrade or fallback to non-ML solutions, as mentioned
above:

• Detect that there is an issue with the reliability or accuracy of an ML
model (i.e., separating this root cause from others such as there is a
degradation in the network itself due to wrong configuration and as a
side effect that also causes poor ML accuracy).

• Early detection of mismatching the distribution of training data (on
which the model should perform well) and the actual data subject
to analysis by the model. Operating on patterns, types or quality of
data that was completely missing from the training set of a model is
a common reason for model accuracy degradation, therefore imple-
menting automated checks on the data level may be a useful defense
layer.

• Proactively prepare for model re-training by keeping batches of new data
in cache. This practically means to have a ring buffer holding an amount
of the latest data that could be promoted into the model’s training data
set, should it be detected that new patterns contained in the latest data
is the reason behind poor model performance. The amount of data to
be cached depends on how much data the ML pipeline usually requires
generating a solid model. This can jump-start the re-training process by
saving time that would otherwise spent on potentially days or weeks
of data collection; additionally, if the new patterns on which the model
failed are scarce, it may take a long time before those pattern re-appear
again so that they can be caught.

The consequences of model accuracy degradation coupled with closed-
loop automation may be quite drastic, even leading to “spectacular failures”.
These are non-intuitive failures that, as opposed to the understandably poor
output when applying the model on unexpected data, happen when the model
processes data that is seemingly (to a human) similar to the data on which
the model was trained. ML models may fail in non-intuitive and non-graceful
ways because an ε change in the model input may trigger arbitrarily large
(unbounded) change in the model output if unbound activation functions are
used, such as the popular ReLU [22, 23]. This attribute creates a new type
of bugs (in addition to conventional software/implementation bugs like null
pointer dereference, etc.) and opens up new adversary attack vectors [24].
Therefore, in systems depending on ML for high level or automation,
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new mitigation techniques are required to harden ML technology or the
surrounding software layers against such failures.

5 Conclusion

Intent based management is a new paradigm in network and service man-
agement. In this article, we have looked through a brief history of intent in
telecommunications and observed how humans have used intent successfully
to understand the two key enablers for successful intents: intelligence and
shared context between the one creating the intent and the one interpreting
and implementing it. In intent based networking, this means intelligence in
the network, hence the term intelligent intent based networks or I2BN. This
article discussed an intent framework where intelligence comes from self-
learning closed loops, and shared context is achieved by expressing intents
by means of aggregated network capabilities rather than arbitrary terms.
Self-learning closed loops are necessary to enable automation with adapta-
tion capabilities; instead of simply replaying pre-programmed workflows,
they can synthetize new sequences of actions as a response to dynamically
changing user demand, network state and resource load. This requires stateful
representation and memory of which actions were triggered in which contexts
and what was their outcome in terms of efficiency and impact. The article
proposed concrete means to quantify and unify learning feedback across
various closed loops that are potentially implemented by different vendors.
The other contribution of the article is to approach the design of the human-
network intent interface from a novel direction. Recognizing the difference
between human and artificial intelligence, it is more pragmatic to present the
human user of the system with potential automation capabilities exposed by
available closed loop implementations, rather than presenting the network
with a generic human expression or language describing intents fully inde-
pendently from software APIs. The design, architecture and implementation
aspects of intents are discussed in the context of the ZSM architecture and
closed loop automation advanced topics. The technical consequences of using
machine learning for implementing parts of the intent based system are also
considered. Best practices to package and distribute micro-services with ML
were reviewed, as well as potential challenges with data collection, detection
of model obsolescence and non-intuitive model failures. The findings of
the article could be channelized into future standardization streams in ZSM
such as the new ZSM011 Intent-driven autonomous networks and ZSM012
Enablers for Artificial Intelligence-based Network and Service Automation.



198 P. Szilágyi
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