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Abstract

The Electroencephalogram (EEG) signals are typically used indicators for the
detection of epileptic seizures in the human brain by placing sensors in the
scalp of the brain. In this paper, we classify focal (F) and non-focal (NF)
EEG signals by computing the area of 2D-PSR obtained for intrinsic mode
functions (IMFs). IMFs are obtained by disintegrating the EEG signals using
Empirical mode decomposition (EMD). The main objective of this work is
to classify the focal and non-focal EEG signal for the medical purpose. The
proposed technique namely area of 2D-PSR method has provided promising
class accuracy for classification of focal and non-focal EEG signals which
gives 98.95% accuracy with polynomial and RBF kernal.

Keywords: Focal and Non-Focal EEG signal, Empirical mode decom-
position (EMD), Intrinsic mode function (IMF), 2D-PSR (phase space
representation).
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1 Introduction

Epilepsy is the neurological sickness of the human brain which can have an
effect on people of all ages. The electroencephalogram (EEG) signals are
normally used for detection of epileptic seizures. EEG signals are classified
into two types namely Focal and non-Focal EEG signals, the proposed method
uses the pattern entropies and variances of the intrinsic mode functions
(IMFs) obtained by empirical mode decomposition (EMD) of EEG signal.
The average sample entropy (ASE) of IMFs and average variance of instan-
taneous frequencies (AVIF) of IMFs for separate EEG signal have been
used as functions for classifying type of Focal and non-Focal EEG signals.
(Rajeev sharma, Ram bilas pachori & shreya gautam, 2014). Electroen-
cephalogram (EEG) is broadly utilized signals for the scientific analysis of
brain activity.

In this case, about 20% of patients are with primary generalized epilepsy
and about 60% of patients who have Focal epilepsy in increase of drug
resistance (S. Pati and A.V. Alexopoulos, 2010). Focal epilepsy is a type of
epilepsy where onset of epilepsy takes place within the constrained location of
brain. Recording of signals from the brain wherein the primary ictal EEG signal
adjustments are detected may be defined as “Focal EEG signals. Other signals
recorded from other regions of brain, which is not participating in seizure
onset, referred to as “Non-Focal EEG signals (R.G. Andrzejak, K. Schindler,
and C. Rummel, 2012). Enormous studies primarily based on the signal
processing approach has been finished for computerized analysis, detection
and classification of epileptic seizure EEG signals. One of the essential
characteristics of seizure is presence of spikes in EEG signals used to detect
the onset of seizure (S. Mukhopadhyay & G.C. Ray, 1998; L.D. Iasemidis,
et al., 2003). The parameters extracted from EEG signals are very beneficial
for seizure detection and discrimination. Assuming the character of EEG
signals such as stationary, time-domain parameters and spectral parameters
based on fourier transform, have been employed for automatic detection
and diagnosis of epileptic seizure EEG signal (V. Srinivasan, C. Eswaran, &
N. Sriraam, 2005; K. Polat and S. Günes, 2007). Numerous strategies evolved
for epileptic seizure detection are based on linear prediction (lp) (S. Altunay,
Z. Telatar, and O. Erogul, 2010) and fractional linear prediction (flp)
(V. Joshi, R.B. Pachori, and A. Vijesh, 2014). Exploiting non-stationary nature
of EEG signals time-frequency based totally methods like Short Time Fourier
Transform (STFT) had been applied for detection of seizure EEG signals
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(A.T. Tzallas, M.G. Tsipouras, & D.I. Fotiadis, 2007; A.T. Tzallas, M.G.
Tsipouras, & D.I. Fotiadis, 2009). For evaluation and classification of seizure
EEG indicators time frequency based strategies additionally include wavelet
transform (H. Adeli, Z. Zhou, & N. Dadmehr, 2003; R. Uthayakumar &
D. Easwaramoorthy, 2013) and multiwavelet transform (L. Guo, D. Rivero,
and A. Pazos, 2010).

Empirical mode decomposition (EMD) is proposed (N.E. Huang et al. in
1998) that is suitable for analysis of non-linear and non-stationary signals.
These days’ new strategies were proposed for evaluation and classification of
epileptic seizure EEG signals based on EMD (R.B. Pachori, 2008; Y. Xia &
D.P. Mandic, 2010). The suggest frequency of each intrinsic mode function
(IMF) has been proposed as a feature to perceive distinction among ictal
and seizure free EEG signals (R.B. Pachori, 2008). Normal and seizure EEG
signals are in comparison on the premise of Hilbert weighted frequencies of
various IMFs (R.J. Oweis and E.W. Abdulhay, 2011). Area computed from
the hint of analytic signal illustration of IMF, is located to be useful parameter
for analysis of normal and epileptic seizure EEG signals. (R.B. Pachori and
V. Bajaj, 2011). Fourier-bessel expansion has been used to calculate mean
frequency of IMFs and region of analytical imf has been computed using
modified vital tendency degree (CTM) (V. Bajaj and R.B. Pachori, 2011).
These computed area and mean frequency of IMFs are used to perform class of
seizure EEG signals. The coefficient of variation and fluctuation index of IMFs
were proposed as features for recognition of ictal EEG signals (S. Li et al.,
2013). Detection of epileptic seizure has been performed using immediate
vicinity computation of IMFs (V. Bajaj & R.B. Pachori, 2013). The amplitude
modulation (AM) bandwidth and frequency modulation (FM) bandwidths
of IMFs were used as features to categorise seizure and non-seizure EEG
signals (V. Bajaj & R.B. Pachori, 2012). For detection of seizure in EEG
signals, multivariat EMD has been utilized in (Y. Xia, and D.P. Mandic, 2010).
Currently area of elliptical pattern, received from 2nd order distinction plot
of IMF has been used as feature for seizure type (R.B. Pachori and S. Patidar,
2014). The signal processing technique can be evolved for discrimination
between Focal and non-Focal EEG signals, for epilepsy diagnostics before
surgical operation. Detection of Focal and non-Focal channel might also
resource in localizing the area of Focal epilepsy. It should be cited that the
localizing the area of Focal epilepsy may be useful in pre-surgical analysis
of epilepsy. Consequently, we provide a new method based totally on EMD
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and sample entropy (J.S. Richman & J.R. Moorman, 2000; V. Bajaj and
R.B. Pachori, 2011) for discrimination among Focal and non-Focal EEG
signals. Firstly, EMD has been used because the technique for decomposing
EEG signal into IMFs for each signal of EEG signal pair (R.G. Andrzejak,
K. Schindler, and C. Rummel, 2012). Average sample entropy (ASE) and
average variance of instantaneous frequencies (AVIF) of IMFs have been
computed and proposed as capabilities to classify two types of EEG signals.

2 Methodology

2.1 Dataset

The EEG dataset used in this paper is available publicly in Andrzejak et al.
(2012) has been used. The dataset includes intracranial EEG recordings
from five epilepsy patients who had longstanding drug resistant temporal
lobe epilepsy thereby making them candidates for surgical operation. The
sampling of EEG alerts has been completed at 512 or 1024 Hz sampling
frequency relying on range of channels being much less or more than 64.
Focal EEG channels are described as all those channels that detected first
ictal EEG sign changes as judged through at the least two neurologists who
are certified electroencephalographers. There are 3750 pairs of randomly
selected signals to be had in dataset, for each focal and non-focal EEG signal.
Every pair incorporates two EEG alerts Specifically x and y which might
be recorded from adjoining channels. The area of 2D-PSR method approach
has been applied over first 50 focal and 50 non-focal EEG alerts available
in Andrzejak et al. (2012)

2.2 Empirical Mode Decomposition

The empirical mode decomposition (EMD) is developed from the assumption
that any signal consists of different simple intrinsic mode of oscillations.
It is an adaptive signal decomposition technique which represents any
time-domain signal into a finite set of amplitude and frequency modulated
(AM–FM) oscillating components which are bases of the decomposition
termed as intrinsic mode functions (IMFs). It should be noted that the EMD
method based decomposition does not require any conditions about the
stationarity and linearity of the signal. In this decomposition, the signal x(t)
(sample taken) can be represented as a sum of oscillatory components or IMFs
and a trend or residue as follows: where M is the number of IMFs and rM (t)
is the residue.
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The IMFs of a signal must satisfy the following conditions:

1. In the whole data set, the number of extrema and the number of zero-
crossings must either equal or differ at most by one and

2. At any point, the mean value of the envelopes defined by the local maxima
and the local minima is zero.

The EMD algorithm for the signal x(t) can be summarized by the following
steps:

1. Extract all the extrema of x(t)
2. Interpolate between respective minima and maxima to obtain two

envelopes em(t) and el(t)
3. Compute the average as:

m(t) = (em(t) + el(t))/2 (1)

4. Extract d(t) (decomposed signal) from m(t) as:

d(t) = x(t) − m(t) (2)

5. Check, if the d(t) satifies the above mentioned conditions for IMF or not.
6. Repeat steps 1–5, for d(t) until it satisfies the conditions for IMF.

Once the IMF is obtained, define the IMF1(t) = d(t). Now calculate a residual
signal r(t). r(t) can be obtained by

r(t) = m(t) − IMF1(t) (3)

Which acts as the new signal to extract the next IMF by applying shifting
process. The sifting technique is repeated till the residual r(t) will become
monotonic characteristic from which, similarly no extra imf may be mined.
Finally, the signal m(t) is given by the sum of IMFs and a residual

m(t) =
M∑

i=1

IMFi(t) + r(t) (4)

Where M is number of extracted IMFs and r(t) is residual. Figure 1 depicts an
example of seizure free EEG signal with its 12 imfs and Figure 2. Depicts an
example of seizure EEG signal with its 10 imfs.

2.3 Computation of Area of 2D-PSR

The imfs are symmetric am-fm components and might offer precious
diagnostic functions for the classification of epileptic seizure and seizure
free EEG signals. The signal X(n) can be delayed by one by one unit
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Figure 1 Empirical mode decomposition of Focal EEG signal.

Figure 2 Empirical mode decomposition of Non-Focal EEG signal.
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and denoted as X(n+1) and X(n+2). X(n) can be defined by the difference
between X(n+1) and X(n) by time delay method which is frequently used
(Takens, 1981) also the signal Y(n) can be defined by the difference between
X(n+2) and X(n+1) in the same way. For phase space reconstruction, which
is given by equation as

X(n) = X(n + 1) − X(n) (5)

Y(n) = X(n + 2) − X(n + 1) (6)

Now the X(n) is plotted against Y(n) that gives us the 2D-PSR for the IMFS
of Seizure free and Seizure signals.

Computing the mean values of X(n),Y(n) as:

Mx = 1/
√

N

N−1∑

n=0

X(n)2

My = 1/
√

N

N−1∑

n=0

Y (n)2

Mxy = 1/N
∑

X(n)Y (n)

D =
√

(Mx2 + My2) − 4(Mx2My2 − Mxy2)

Maj =
√

3(Mx2 + My2) + D

Min =
√

3(Mx2 + My2) − D

From the above parameters Major axis (Maj), Minor axis (Min), the area of
2D-PSR is computed as:

Area of 2D-PSR = π * Maj*Min

2.4 Support Vector Machine (SVM)

An SVM classifies statistics with the aid of locating the first-class hyperplane
that separates all data points of one class from the ones of the alternative
class. The best hyperplane for an SVM means the one with the largest mar-
gin between the two classes. Margin means the maximal width of the slab
parallel to the hyperplane that has no interior data points. It is a machine
learning method based totally on statistical learning concept and useful for
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pattern recognition problem. The radial basis function (RBF) kernel can be
defined as

K(X, Xk) = e−||X−Xk||/2σ2

In this work, the kernel such as Linear, RBF, polynomial is used in the SVM as
the classifier to classify the focal and non-focal EEG signal. The effectiveness
of the classifier can be evaluated the usage of unique parameters. If TP and
TN are the total number of correctly identified true positive samples and true
negative samples respectively and FP and FN are the total number of correctly
identified false positive samples and false negative samples respectively then
the performance parameters can be defined as: Sensitivity is a degree which
suggests the proportion of the high quality samples from take a look at set,
efficaciously diagnosed as positive samples. Specificity is a degree of potential
of classifier to as it should be perceive share of negative samples successfully
recognized from the bad samples. Accuracy is described as the proportion of
the samples successfully categorized out of total number of samples. Positive
predictive value is the ratio of genuine fine values to the full range of fantastic
samples identified by using classifier. Negative predictive value is the ratio
of genuine negative values to the whole range of negative samples identified
with the aid of classifier. All these parameters can be calculated by the formula
given in the Table 1.

Table 1 Statistical parameters for performance evaluation

Sensitivity
TP

TP + FN
× 100

Specificity
TN

TN + FP
× 100

Accuracy
TP + TN

TP + TN + FP + FN
× 100

Positive predictive value
TP

TP + FP
× 100

Negative predictive value
TN

TN + FN
× 100

Mathews Correlation
Coefficient

TP.TN − FN.FP
√

(TP + FN)(TP + FP )(TN + FN)(TN + FP )

Error rate prediction
FP + FN

TP + FN
× 100
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3 Results and Discussion

The difference equation (5 and 6) is plotted among them to identify the exact
point where the sudden spike occurs. Figures 1 and 2 shows the Empirical
mode decomposition of Focal and Non-focal EEG signal. Figures 3 and 4
shows two dimensional phase space representation of Focal and Non-Focal
EEG signal. Figure 5 shows the comparison of area of 2D-PSR for first 4
imfs of focal and non-focal EEG signals for a window length of 10000. The
obtained feature vector is given as input to Linear, RBF, and Polynomial kernal
SVM classifier to evaluate the performance for the whole dataset in both the
cases. Five-fold cross validation process has been employed to make sure
the reliability and balance of the overall performance assessment of linear,

Figure 3 2D-PSR of Focal EEG signal.

Figure 4 2D-PSR of Non-Focal EEG signal.



180 R. Krishnaprasanna and V. Vijaya Baskar

Figure 5 Comparison of area of 2D-PSR for first 4 imfs of focal and non-focal EEG signals
for a window length of 10000.

RBF and Polynomial kernal classifier. The Different statistical parameters are
measured to show the effectiveness of the classifier which are: Sensitivity,
Specificity, Accuracy, Positive predictive value, Negative predictive value,
Matthews correlation coefficient and Error rate prediction which are calculated
as shown in the Table 1. The statistical parameters such as sensitivity,
specificity, accuracy, positive predictive value, Negative predictive value,
Matthews correlation coefficient and Error rate prediction are calculated for
10000 window size from the area of 2D-PSR method which is shown in
Table 2.

Table 2 Statistical parameter values obtained

Performance Parameters
(10000 window size) Linear Polynomial RBF

Sensitivity (%) 93.6 97.9 97.9

Specificity (%) 93.6 97.9 97.9

Accuracy (%) 96.8 98.95 98.95

Positive predictive value (%) 93.98 97.94 97.94

Negative predictive value (%) 93.6 97.9 97.9

Mathews Correlation
Coefficient

0.938 0.979 0.979

Error rate prediction (%) 6.4 2.1 2.1
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The experimental results have been found promising indicating significant
discrimination ability for the classification of Focal and Non-focal classes.
The highest overall classification accuracy obtained 98.95% in the case of
Polynomial and RBF kernal.

4 Conclusion

This research shown that the area of 2D-PSR method is better in the clas-
sification of the focal and non-focal EEG signal with better accuracy than
the existing methods. The empirical mode decomposition (emd) technique is
a beneficial and promising technique to decompose EEG signal into a hard
and fast of imfs. The emd is based totally at the nearby characteristic time
scale of signal and relevant to nonlinear and non-motionless processes. The
obtained IMFs are shifted by a time variant and plotted against the future
shifting sequence which gives an ellipse structure that paves the way to
calculate the area of two dimensional PSR. The experimental results show
that the extracted features of focal and non-focal EEG signal are effective and
satisfying statistical parameters such as sensitivity, specificity etc. as given in
Tables 1 and 2 can be achieved with linear, polynomial and RBF kernal. The
area of 2D-PSR set of rules will be useful for discriminating seizures from
seizure unfastened durations for intracranial or scalp EEG recordings, and
warn seizure inception for medical doctors, caretakers and patients. From our
type results, it’s far virtually indicated that the RBF and polynomial kernel had
supplied 98.95% in the class of focal and non-focal EEG signals. In future,
the area of 2D-PSR method may be studied for the category of sleep degrees
of human brain, class of human emotions using EEG signals.
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