
Realization of Service-Orientation Paradigm
in Network Architectures

Rahamatullah Khondoker1, Abbas Siddiqui2, Paul Müller2

and Kpatcha Bayarou1

1Fraunhofer SIT, Rheinstr. 75, Darmstadt, Germany
2Integrated Communication Systems, University of Kaiserslautern, Germany

Received: 24 May, 2013; Accepted: 8 October, 2013

Abstract

The implementation of communication protocols in the current Internet
architecture is tightly-coupled which hinders the evolution of the Internet. This
article describes how the principles of Service Oriented Architecture (SOA)
can be employed to develop a flexible network architecture. The prototype
of the concept has been developed and demonstrated in the EuroView 2012
workshop. We showed that the SOA paradigm can be applied to networks
by utilizing the concepts of self-contained building blocks, dynamic protocol
graphs (PGs) and functional composition (FC) methods. We demonstrated
that both short-term flexibility (i.e., networks are adapted based on application
requirements) and long-term flexibility (i.e., networks can be evolved) can be
achieved by using the architecture.

Keywords: SOA, Network Architecture, Selection & Composition,
Template, AHP.

1 Introduction

The Internet today faces many challenges in terms of security, addressing,
and mobility [9]. The problems originate from the architectural [23] issues of
network functionality, their relationship, and the lack of design and evolution
principles.

Journal of ICT, Vol. 3 & 4, 329–346.
doi: 10.13052/jicts2245-800X.134
c© 2014 River Publishers. All rights reserved.



330 R. Khondoker et al.

The Internet architecture is a layered system like TCP/IP stack based on
OSI model. According to the OSI reference model, it should be possible to
modify or even exchange the implementation of a layer without the need to
adapt to the adjacent layers [19].

In today’s practice, there are layer violations in the Internet, because of
dependencies among protocols of different layers. For example, the addressing
protocol in layer 3 (IPv6) requires an updated transport protocol (TCP) in
layer 4. Thus, the evolution of the Internet “depends on rough consensus
about technical proposals, and on running code” [2]. The Internet has become
a complex system where it is hard to predict how the modification of one
protocol affects the overall system. Many issues considered by the IETF IPv6
working group reflect this complexity [4].

As major changes in the Internet seem to be impossible, especially within
a short time-frame, as a result new disruptive features are deployed in overlay
networks. Overlays are usually designed only for a specific purpose such
as filesharing, telephony, video-broadcasting, and are typically not open for
arbitrary extensions or reuse. Hence, overlays are not a suitable alternative for
a generic network infrastructure like the Internet.

Thus, there is a need of rethinking about network architectures [1]. This
article presents the basic concepts of network architectures based on the service
orientation paradigm from layered to layerless as shown in Fig. 1. The main
goal is to develop a flexible network architecture which can be adapted to
application requirements and network capabilities as well as to be able to
integrate new functionalities easily.

Figure 1 Layered to LayerLess Architecture



Realization of Service-Orientation Paradigm in Network Architectures 331

2 Service Oriented Network Architecture

Now the question is: how to apply the SOA paradigm to constitute a network
architecture? The main element of SOA is a service. A service reflects the
effects of an activity, i.e., a service represents a higher abstraction level since
different algorithms may implement the same service. A building block is
an implementation of a service. A Micro-protocol (MP) is an example of a
building block such as a retransmission MP, a data encryption MP, and a
Monitoring MP. Each building block can generate one or more effects, for
instance, a retransmission BB has an effect of reliable data transmission, a
data encryption BB has an effect of confidential data transmission. But there
are also effects like increasing the end-to-end delay or reducing the maximum
payload size. The interfaces of a building block should reflect the provided
service and hide the implementation details. Building blocks should also use
generic interfaces (i.e. as used in WSDL) so that interaction between building
blocks does not require extra adapters.

A network architecture should be flexible in two ways. Firstly, networks
should be able to adapt to specific customer or application needs and changing
environmental conditions. Secondly, networks should be able to evolve, i.e.
to add, change and even remove the functionality.

The flexibility is achieved by composing several (smaller) services to a
more complex and customized service. In today’s networks, complex protocols
are organized in layers, building a static protocol stack, sometimes called
Protocol Graph (PG) ([15]). Service oriented network architectures aim at
supporting dynamic composition of services, i.e. dynamic PGs1. Without
being dependent on a static PG it is easier to make use of new protocols
(i.e., building blocks) and to reuse a functionality on different levels. Having
dynamic PGs implies that there is no static placement of a functionality
as defined by the layers of the OSI reference model. In this sense, such
networks will be layerless so that compression or encryption can be used
for application payload only or also for some protocol headers. Furthermore,
it is not necessary that protocols are processed in a sequence, for example
there might be different branches in a PG to handle different but related
data types within a flow, e.g., signaling and media streaming. In order to
enable dynamic PGs the interaction between the building blocks should not
be defined by an executable code, but by the description which can be easily
changed.

1corresponds to a workflow in SOA terminology



332 R. Khondoker et al.

Figure 2 Proposed Network Architecture (the number in the blue circle indicates the
subsection where the component is described in the paper)

Fig. 2 depicts the proposed approach.An application sends its requirements
via the requirements-based API which is received by the service broker.
Service broker forwards the requirements to the composition approaches
where the PGs are generated. The composition process may generate more
than one PGs so that the most suitable one can be selected by the selection
process running inside the service broker. After selection of the most suitable
PG, it will be directed to the SONATE framework for the execution and to
initiate the communication between applications.

The following sub-sections describe the components of the architecture
in a sequence: 2.1. application / user requirements, 2.2. requirements-based
API, 2.3. network offerings, 2.4. a functional composition approach based on
templates, 2.5. AHP-based service selection method in the Service Broker,
and 2.6. the SONATE execution framework.

Subsection 2.7 briefly explains the prototype that has been demonstrated
in the EuroView 2012 workshop. Standardization possibilities of the concept
is discussed in Section 3. Section 4 concludes the paper.

2.1 Requirements

Requirements from a user or an application are represented by effects,
operators, attributes, and weights as shown in Fig. 3 [13]. An effect is just
the name, attributes quantify or qualify the effects and operators link effects



Realization of Service-Orientation Paradigm in Network Architectures 333

Figure 3 Requirements/Offerings

to attributes, typical operators are <, >, =, <=, >=, etc. Attributes can be
represented in different ways by giving an exact quantity (e.g. delay < 20ms),
Boolean values (e.g. Packet ordering = true) or in a qualitative way (e.g.
delay = low), though qualitative parameters need extra mapping or definition,
it may vary with respect to the context. The weight of an effect expresses the
application’s or user’s priority over other effects.

2.2 Requirements-Based API

The existing API was made with the assumption that the Internet supports a
limited number of protocols and relies on applications to specify the exact
protocol to use. The current API hinders the deployment of new transport
protocols such as SCTP [24], DCCP [6] and new addressing schemes as an
application is obliged to specify an address type (IPv4 [17] or IPv6 [3]).
Stipulation of protocol by applications fosters tightly bound coupling, which
forces the network stack to use that exact protocol rather than an improved
version of a protocol or one that is more suitable with respect to the network
conditions. In order to deploy a new protocol in the Internet architecture, it is
not enough just to change the application but it also requires modifying the
API or using another API so that a user can unveil its intention to use the newly
deployed protocol.

An application needs to be modified if it wants to use TCP[18] or UDP[16].
Peer addressing and address-resolution are part of an application, which makes
an application address type dependent. Different addressing types require
different socket so that there is a difference between the IPv4 TCP socket
structure and the IPv6 TCP socket structure and same is true for UDP.

The call of “setsockopt” is an example of another dependency where
protocol specific options such as TCP NODELAY can be turned on or off,



334 R. Khondoker et al.

as options are specific to a protocol so that it is a must for an application to
know details about a protocol.

Currently, there are multiple existing APIs each developed for different
transport protocols. If an application needs to switch a transport protocol, it is
not enough just to adjust socket options or to change addressing family but it is
also required to use a particular API given for a particular transport protocol.

Abstraction is used for hiding the complexity and to encourage the
flexibility. In our approach, we propose an API by which an application can
send its requirements in an abstract form to the underlying network such
that applications do not need to rely on specific protocols; the process of
selection would rather be handled by the network architecture. This triggers
the requirement for the network architecture to be able to handle those abstract
requirements from applications. Abstract requirements from applications also
help to create an unified API so that a single API can be used for multiple
transport protocols.

Current applications are tightly coupled with the given protocols, though
they only care about whether its connectivity demands are fulfilled. A require-
ments based API [22] will alleviate the developer from choosing a protocol
or even a protocol specification. Instead, requirements will be communicated
to the underlying network architecture. Using these requirements, the explicit
connection characteristics are requested for the new communication relation-
ship. Requirements are specified in terms of effects / capabilities, an effect is a
visible outcome of a functionality such as flow control functionality provides
effect of transmission rate adaptation between two parties.

2.3 Network Offerings

To constitute a PG based on the application requirements, the offered services
from the building blocks needs to be described so that the most suitable BB
can be selected and composed. Moreover, the services of the PGs should
also be described so that the best PG based on application requirements can
be selected and used for communication. For describing these services, a
communication service description language was developed. The language
consists of a taxonomy of vocabularies and a grammar [13]. The details of the
description language is beyond the scope of this paper.

2.4 Functional Composition

Functional Composition (FC) is the process of selecting and binding
of the building blocks (BBs). The following sub-section describes the
template-based functional composition approach which is developed and



Realization of Service-Orientation Paradigm in Network Architectures 335

demonstrated in the EuroView 2012 workshop [8] under the umbrella of
a German-based Future Internet (FI) research and experimentation project
named G-Lab [7].

2.4.1 Template-based functional composition
In order to create a requirements-based PG out of given functionalities,
it is necessary to define data and control flow of selected functionalities.
The control flow in a PG is defined by the placement of functionalities
while the data flow is defined by the connections among functionalities. The
template-based composition is a partial-runtime approach where ordering of
functionalities and their connections are defined at the design-time.

The basic idea of the approach is to split the functional composition
process among different time-phases (i.e. design-time, deployment-time, and
run-time) so that relatively inefficient activity in terms of time is performed
at design time and potentially less time consuming activities are performed
at run-time. In this case, time consuming activities are the selection and the
placement of functionalities but not the actual building blocks (i.e. selection
of encryption and compression functionalities but not their implementation-
s/BBs) and placing them in an appropriate order (i.e., encryption is placed on
the top of compression) in addition to connect them so that they can interact
with each other. To utilize the less time critical epoch (e.g. design-time) and
yet to provide flexibility, the template based composition approach utilizes
the devised abstraction of place-holder instead of using actual functionality
as shown in Fig. 4.

Figure 4 Template and Placeholder



336 R. Khondoker et al.

The Place-holder is one of the major entities in this approach. The
Place-holder provides named endpoints so called ports. The ports are well
defined in terms of effects or capabilities that must be provided by a place-
holder. Effects can be differentiated by the offered (i.e. provided by the port)
and the required (i.e. accepted by the port) effects as shown in Fig. 4. An
example effect of an encryption functionality is ciphering and this effect is
covered by various mechanisms such as AES, DES, Blowfish, etc. so that
it should be possible to change the mechanism without changing the effect.
Aforementioned mechanisms can have many implementations and may differ
in terms of defined ports (i.e. it implies same covered effects on those ports).
Any implementation which also has same ports as described in a place-holder
can be a suitable match to fill that place-holder.

code.1 Placeholders Example

<Placeholders>
<PlaceHolder Name=“Encryption” ID=“1”>

<ToggleEnable isEnable=“true”/>
<Port PortID=“up”>

<OfferedEffect Effect=“Ciphering.key” Operator=“=”←↩
Attribute=“256”/>

<OfferedEffect Effect=“Delay” Operator=“=” Attributed←↩
=“1ms”/>

</Port>
<Port PortID=“down”>

<OfferedEffect Effect=“Ciphering” Operator=“=”←↩
Attribute=“true”X/Of f eredEffect >

<OfferedEffect Effect=“Loss” Operator=“=” Attributes←↩
=“0”> </OfferedEffect >

</Port>
</PlaceHolder>

</Placeholders>
The Place-holder also contains ports for general functionalities such as

management, administration and monitoring. But those ports are active only
when a selected BB also provides that data, hence these ports are optional and
not considered in the BB selection process.

Template Description Language: The template description is split in
four main parts so called Domains, Placeholders, Connections and Covere-
dEffects. Where, Domains section describes the types of domains that are
covered by a template, examples of domains are telephony, video streaming,



Realization of Service-Orientation Paradigm in Network Architectures 337

file transmission, etc. The Placeholders section describes the covered function-
alities in a template, which is further sub-divided into individual placeholder
and its ports. Connections section of the language deals with the ordering and
the connections of the place-holders.

Example of an encryption placeholder is shown in the code.1, which
provides two offered effects (i.e. Ciphering.key and Delay) through the port
“up” and two offered effects (i.e. Ciphering and Loss) through the port “down”.
In this example no required effects are described as this functionality accepts
binary data as an input and gives binary data as an output.

Template Selection: For the selection of a template two simple matching
algorithms have been implemented. After receiving the application require-
ments, the domain will be extracted and it will be checked against stored
domain policies at the system. The domain policies are required in order
to have the special constraints/requirements which are not provided by an
application such as compression in file transfer (i.e. an application does
not care if data will be compressed or not as long as a file is efficiently
transferred to the communicating partner). After retrieving the domain poli-
cies, it will be merged with the application requirements to find a matching
template.

The first matching process goes through all of the merged requirements
and check against covered effects in a template. This selection process
works separately for a single template. The advantage of this approach
is that multiple processes can run in parallel without being dependent on
each other.

In the second algorithm, the selection process reads first the requirement
and checks against the available templates at the system and separates the one
which fulfills the requirement. After that it reads the second requirement out
of the requirements list and examines against sorted out templates from the
previous step. And this process goes on until one or more than one templates
have been sorted out which fulfill the given requirements. This method is useful
for the devices with limited cache as memory switching in threading can be
costly. When more than one templates satisfy the requirements then multi-
criteria decision analysis algorithms can be used to select the most optimal
template.

Selection of BBs for Filling a Template: There can be more than one
BBs which fulfill the application requirements and network and other con-
straints so called “suitable” building blocks. If an optimal choice has to be
made then all possible workflows are generated. Based on the qualitative
parameters, the best PG is selected. The Analytic Hierarchy Process (AHP)



338 R. Khondoker et al.

is used to select the best PG which is further described in the following
section.

2.5 Service Broker

The Service Broker is responsible for selecting protocol graphs (PGs) with
respect to the application requirements. Selecting the best PG using a single
selection criterion is trivial. For example, if there are two PGs where one offers
100ms end-to-end delay and another offers 200ms, then we should obviously
select the one with less delay.

However, the communication services provided by PGs have multiple
selection criteria such as delay, throughput, loss ratio, jitter and cost. That
is why, selecting the best PG is a Multi-Criteria Decision Making prob-
lem (MCDM). For solving such a problem, several Multi-Criteria Decision
Analysis (MCDA) approaches are used in managerial science like Ana-
lytic Hierarchy Process (AHP), ELECTREIII, Evamix, Multiple Attribute
Utility Theory (MAUT), Multi - Objective - Programming (MOP), Goal
Programming (GP), NAIADE and Regime [5].

We used AHP to select the best service for two reasons, firstly, it uses
an absolute scale to derive priorities that also belong to the relative absolute
scale (like probabilities) that can be combined like the real number system.
Secondly, there is a way to check the consistency of the evaluation measures.

2.5.1 Adaptation of Analytic Hierarchy Process (AHP)
for service selection

The Analytic Hierarchy Process (AHP) needs to be adapted for selecting the
best communication service automatically.

AHP is a process designed for assisting human decision making which is
used in many application areas like social, personal, education, manufacturing,
political, engineering, industry and government [20]. Basically, AHP is used
for determining priorities of different alternatives. The details of the AHP
process is beyond the scope of this text.

To use AHP in PG selection, the following steps are performed

1. Define the goal and the selection criteria for achieving the goal
2. Priority assignment of the selection criteria as an application requirement
3. Priority assignment of the criteria for the offered services

The first step is to define the goal, which is to select the best communication
service, and the selection criteria to achieve that goal. The selection criteria are



Realization of Service-Orientation Paradigm in Network Architectures 339

actually a set of required effects. Examples of the selection criteria are delay,
throughput, loss rate, jitter, MTU and cost. Both functional and non-functional
criteria can be selected.

After determining the selection criteria, the next step is to assign pairwise
priority between the selection criteria. One of the reasons of pairwise priority
assignment is that, it is easier for a person to take two criteria and to assign
a priority one over the other. It is initially difficult for a new application
developer to assign a pairwise priority. But, the efficiency of the priority
assignment process can be improved with the experience of the application
developer.

The third step of the process is to assign pairwise priority between the
offered services based on those selection criteria. However, as pairwise priority
assignment is a time-consuming task, and as offerings are decoupled from the
applications, the pairwise priority assignment of the offered services based on
those selection criteria needs to automated.

This requires a mapping mechanism to map the measured/calculated
values of the offered services to the pairwise priority assignment scale which
will be discussed in the next section.

The priority vector coming from the application side is then multiplied by
the priority vector from the offering side. The result is then called the overall
priority vector. The service with the highest priority value in the overall priority
vector is the best service.

2.5.2 Automated priority assignment for the offerings
Different PGs can have different effects. The value (or attribute) of these
effects can be assigned beforehand based on benchmarks or can be obtained
dynamically by using a sensing software. Whichever way the attributes
are obtained, the offered effects need to be automatically prioritized as the
offerings are decoupled/hidden from the application. Therefore, an automatic
The mapping should have certain properties. First, the mapping must be
generic, i.e. not specific to effects or units of measured values. Second, the
mapping must be monotonic.

An approach for mapping has been proposed which uses a monotonic
interpolation/extrapolation scheme [12] as shown in Fig. 5. In this case, the
application requirements provide value points for interpolation/extrapolation
(must be monotonic) of measured values to the priority scale. A monotonic
interpolation/extrapolation of these points is used to define a mapping. In
addition, the specific measured values of the offerings are then mapped to
these priorities. Assuming that f () is a function used to define a mapping. As



340 R. Khondoker et al.

Figure 5 Mapping mechanism

an example, considering interpolation, the requirements must contain at least
the following two points

• x0, where f (x0) = 0.11
• xn, where f (xn) = 9

If there are measurement values, y, not within the interval [x0, xn], we can
extrapolate

• if y < x0, then f (y) = 0.11
• if y > xn, then f (y) = 9

To use inter-/extrapolation, an application developer must specify two
points but can have as many parameters as he wants to be more precise.

The aforementioned mapping mechanism is used to assign a priority of
one service over another for every selection criteria (effect).

2.6 SONATE Execution Framework

The framework for service oriented network architecture (SONATE) executes
the selected PG. The flow consists of operations to invoke the specific BB and
to pass the corresponding values as input parameters to the connected BBs.

The PG is described in an Extensible Markup Language (XML). The
SONATE framework has the ability to process the XML based PG. The
processing of PG involves retrieval of BBs from the repository, connection of
BBs as specified in the PG and execution of BBs in the given order.

The SONATE framework has been implemented using the JAVAprogram-
ming language. The “Port concept” [21] has been used for the interaction



Realization of Service-Orientation Paradigm in Network Architectures 341

among building blocks. A crucial point in maintaining flexibility is loose
coupling. The building blocks that are tied to specific implementation details
of other building blocks, reduce the flexibility to freely combine building
blocks. To enforce loose coupling, the BB interaction model hides all BB’s
implementation details from each other.

In the runtime composition approach, BB instances need to communicate
with each others to make a PG, the concept of named communication endpoints
called “ports” is introduced. Building blocks can use the ports to distinguish
different kinds of communication partners or different operation modes.

2.7 Prototype Demonstrated

We demonstrated the concept of service oriented network architectures in
the EuroView 2012 workshop [8]. More specifically, we showed how net-
works react to user’s requirements, network/administrator constraints by
dynamically selecting and composing a customized protocol graph.

In the demonstration, the Firefox browser retrieves different types of
data (Voice, Image) with different user requirements, network constraints and
domain policies.

Two servers with different network conditions such as bandwidth and
jitter were configured. We have extended a Firefox plugin, to interconnect
Firefox with the Requirement-basedAPI to communicate with the components
in the SONATE Framework. Firefox sends the requirements via API to the
service broker, which is responsible for selecting the best PG at the end.
The service broker forwards requirements further to the template based
composition engine, which creates and returns multiple PGs so that the
most suitable is selected by the service broker using AHP. We encoded all
application requirements, network constraints and administrative policies in
the URLso that they can be uniquely identified. The selected PGs are displayed
by a browser-based visualizer.

We showed that both long and short term flexibility are achieved by the
proposed architecture.

Short Term Flexibility: In this scenario, different image compression
mechanisms have been provided which are selected based on the application
requirements and the network conditions. Application requirements provide
trade-off between expected quality and transmission speed. If an application
requires a better quality then no image compression or a very low compression
mechanism is deployed. But, if transmission speed is the priority of a user then
the best compression mechanism (i.e., high compression ratio) is selected. The



342 R. Khondoker et al.

scenario is complicated by the given administrative policies with respect to
network conditions. If the given bandwidth is less than or equal to certain
threshold like 1 Mbps then compression mechanism is deployed, otherwise,
in the case of faster networks, no compression mechanism is deployed
in the PG.

Long Term Flexibility: In this scenario, a better implementation of an
encryption mechanism has been deployed in the system which provides better
security in terms of key-strength.As soon as a user demands for higher security,
the newly deployed mechanism is used in the automatically generated PG. The
scenario shows how quickly a newly introduced functionality can be deployed
in the presented architecture.

3 Standardization Candidates

The components of the architecture including communication service descrip-
tion language, requirement-based API, and template-based functional com-
position can be seen as the potential candidates for standardization. These
items can be included in the ITU-T study group 13 (ITU-T SG 13) where
the potential future networks technologies like cloud computing, mobile, and
next-generation networks are discussed [11]. Moreover, the API can be exam-
ined within the Name-Based SocketsArchitecture community of IETF [10]. In
addition, the language can be considered in the Operations and Management
Area of IETF [14].

4 Conclusion and Future Work

The implementation of communication protocols in the current Internet
architecture is not loosely-coupled which hinders the evolution of the Internet.
This article describes how the principles of Service Oriented Architecture
(SOA) can be employed to develop a flexible network architecture. The
SOA paradigm can be applied to networks by utilizing the concepts of
self-contained building blocks, dynamic protocol graphs (PGs) and func-
tional composition (FC) methods. It is shown that both short-term flexi-
bility (i.e., networks are adapted based on application requirements) and
long-term flexibility (i.e., networks can be evolved) can be achieved by using
the architecture.

Heterogeneity, availability of diverse functionalities in different network
elements, is an issue which needs to be tackled in the future. The proposed
approach expects to have a controlled environment where every node has the



Realization of Service-Orientation Paradigm in Network Architectures 343

same functionalities available. However, existing mechanisms like negotiation
can be used to deal with heterogeneity. Moreover, new functionalities can be
deployed from a trusted domain.

References

1. R. Braden, D. D. Clark, S. Shenker, and J. Wroclawski. Developing a
next-generation internet architecture. 2000.

2. B. Carpenter. Architectural Principles of the Internet. RFC 1958 (Infor-
mational), June 1996. Updated by RFC 3439.

3. S. Deering and R. Hinden. Internet protocol, version 6 (ipv6). RFC2460,
Dec 1998.

4. Ralph Droms and Jari Arkko. Ipv6 status pages, March 2008.
5. Matthias Ehrgott and Xavier Gandibleux. Multiple criteria optimiza-

tion state of the art annotated bibliographic surveys. Kluwer Academic
Publishers, 2003.

6. S. Floyd and E. Kohler. Profile for datagram congestion control protocol
(dccp) congestion control id 2: Tcp-like congestion control. RFC4341,
March 2006.

7. German lab (g-lab). http://www.german-lab.de/. Online; accessed
11-October-2012.

8. Daniel Günther, Dennis Schwerdel, Abbas Siddiqui, Rahamatullah
Khondoker, Bernd Reuther, and Paul Müller. Selecting and composing
requirement aware protocol graphs with sonate. In 12th Würzburg Work-
shop on IP: Joint ITG, ITC, and EuroNF Workshop on ‘Visions of Future
Generation Networks’ EuroView 2012, July 2012.

9. Mark Handley. Why the internet only just works. BT Technology Journal,
24(3), 2006.

10. Name-based sockets architecture draft-ubillos-name-based-sockets-03.
http://tools.ietf.org/html/draft-ubillos-name-based-sockets-03. Online;
accessed 05-May-2013.

11. Itu-t sg13: Future networks including cloud computing, mobile and
next-generation networks. http://www.itu.int/en/ITU-T/studygroups/
2013–2016/13/Pages/ default.aspx. Online; accessed 05-May-2013.

12. Rahamatullah Khondoker, Bernd Reuther, Dennis Schwerdel, Abbas
Siddiqui, and Paul Müller. Describing and selecting communication
services in a service oriented network architecture. In the proceedings of
the 2010 ITU-T Kleidoscope event, Beyond the Internet? Innovations for
future networks and services, Pune, India, December 2010.



344 R. Khondoker et al.

13. Rahamatullah Khondoker, Eric MSP Veith, and Paul Müller. A descrip-
tion language for communication services of future network archi-
tectures. In Proceedings of the 2011 International Conference on the
Network of the Future, pages 69–76, 2011.

14. Operations and management area. https://datatracker.ietf.org/wg/.Online;
accessed 05-May-2013.

15. Sean W. O’Malley and Larry L. Peterson. A dynamic network architec-
ture. ACM Transactions on Computer Systems, 10:110–143, 1992.

16. J. Postel. User datagram protocol. RFC768, Aug 1980.
17. Jon Postel. Darpa internet program. RFC791, Sept 1981.
18. Jon Postel. Transmission control protocol. RFC793, Sept 1981.
19. Recommendation. Recommendation x.200 (07/94), x.200 information

technology, open systems interconnection, basic reference model the
basic model. 1994.

20. Thomas L. Saaty. Decision making with the analytic hierarchy process.
Int. J. Services Sciences, 1(1):83–98, 2008.

21. Dennis Schwerdel, Danile Günther, and Rahamatullah Khondoker. A
building block interaction model for flexible future internet architectures.
7th EURO-NF CONFERENCE ON NEXT GENERATION INTERNET,
2011.

22. Abbas Siddiqui and Paul Müller. A requirement-based socket api for a
transition to future internet architectures. Sixth International Conference
on Innovative Mobile and Internet Services in Ubiquitous Computing
(IMIS-2012), 2012.

23. IEEE Std. Ieee std., 1471-2000 ieee recommended practice for architec-
tural description of software-intensive systems-description. 2000.

24. R. Stewart, Q. Xie, and et al. Stream control transmission protocol.
RFC2960, Oct 2000.



Realization of Service-Orientation Paradigm in Network Architectures 345

Biographies

Abbas Siddiqui is a Ph.D. candidate with the topic
of Flexibility in the Network Architectures, where
he proposed a partial-runtime composition approach
to create customized network-stacks. The name of
his approach is “Template-Based Composition”. After
completion of his master in “Electrical & Communi-
cation Engineering” with focus on Mobile & Internet
Engineering from University of Kassel, Germany, he
started to work as a software engineer in the industry,
where he gathered several years of experience as a

software developer before, leaving the industry for the sake of research.
His current research revolves around Service Architectures, Smart Living,
e-Health, and Sensors Technology.

Paul Müller is a Computer Science (CS) professor and
director of the regional computing center at the Univer-
sity of Kaiserslautern in Germany. His current research
interests are mainly focused on distributed systems,
Future Internet (FI), and service-oriented architec-
tures. His research group Integrated Communications
Systems(ICSY) is aiming at the development of ser-
vices to implement integrated communication within
heterogeneous environments especially in the context
of the emerging discussion about FI. This is achieved

by using concepts from service-oriented architectures (SOA), Grid technology,
and communication middleware within a variety of application scenarios
ranging from personal communication (multimedia) to ubiquitous computing.



346 R. Khondoker et al.

Dr. Kpatcha Bayarou received his Diploma in elec-
trical engineering/automation engineering in 1989,
a Diploma in computer science in 1997, and his
Doctoral degree in computer science in 2001, all
from the University of Bremen in Germany. He
joined the Fraunhofer Institute for Secure Informa-
tion Technology (Fraunhofer SIT) in 2001. He is
the head of the “Mobile Networks” department that
focuses on Cyber Physical Systems and Future Inter-
net including vehicular communication. Dr. Bayarou
managed several EU and nationally funded projects
and published several conference papers related to

security engineering of mobile communication systems, mobile network
technology, and NGN (Next Generation Networks).

Since 2010, Rahamatullah Khondoker has been
working towards his PhD degree on “Description
and Selection of Communication Services for Ser-
vice Oriented Network Architectures (SONATE)”
at the University of Kaiserslautern in Germany. He
was awarded from Ericsson, Germany in the year
2008 and from the FIA Research Roadmap group in
October 2011. Currently, he is affiliated with the
Fraunhofer SIT located in Darmstadt, Germany. He
worked with the DFG project (PoSSuM), BMBF

projects (G-Lab, G-Lab DEEP, Future-IN), and EU projects (PROMISE,
EuroNF). Currently, he is focusing on the security of Future Internet
Architectures, Software-Defined Networking (SDN), and Network Function
Virtualization (NFV).


