
LoRaWAN Firmware Update
Over-The-Air (FUOTA)

Julien Catalano

Principal Architect – Head of Standards at Kerlink, France
LoRa Alliance Technical Committee FUOTA Working Group Chair, Fremont, CA,
United States
E-mail: j.catalano@kerlink.fr

Received 30 December 2019; Accepted 21 June 2020;
Publication 30 April 2021

Abstract

Firmware Update is a key feature for IoT, especially for LPWA end-devices
with 10+ years of lifetime. LoRaWAN Firmware Update Over-The-Air is
a set of application layer specifications, including Multicast Setup, Frag-
mentation, Clock Synchronization, Firmware Management as well as Multi-
Package Access, enabling the delivery and management services of firmware
updates to several end-devices.

Keywords: Firmware update, OTA, multicast, fragmentation, forward error
correction, clock synchronization, firmware management.

1 Introduction

Low-Power Wide Area (LPWA) Internet of Things technologies allow ser-
vice providers and enterprises to offer long-range connectivity for battery-
powered objects that consume little energy. Some popular use cases for
LPWA devices include temperature and environmental sensors; smart meters
for gas, electricity and water; asset and inventory tracking; agribusiness
support; and industrial monitoring. One of the common attributes of LPWA

Journal of ICT, Vol. 9 1, 21–34. River Publishers
doi: 10.13052/jicts2245-800X.913
This is an Open Access publication. © 2021 the Author(s). All rights reserved.



22 J. Catalano

devices is device longevity: generally, an LPWA-equipped sensor or a meter
is expected to operate for more than 10 years without battery replacement or
charging. But low-power and longevity requirements of Internet of Things
(IoT) end-devices make LPWA firmware update an essential and challenging
component of an end-to-end IoT solution. During the lifetime of the device,
many things can change. Objective of the device may evolve, regulation and
standards may change, vulnerabilities, security issues or bugs may be found.

LoRa Alliancer Technical Committee has created a dedicated working
group to tackle the design of the specifications which bring the build-
ing blocks of the firmware update service for LoRaWAN end-devices: the
Firmware Update Over-The-Air (FUOTA) Working Group. The group took
the challenge to create generic protocols to address the following:

• Synchronize the real-time clock of LoRaWAN end-devices
• Create and manage fragmentation sessions to send a large block of

data to LoRaWAN end-devices, with specific Forward Error Correction
(FEC) code

• Schedule and manage temporary multicast sessions on LoRaWAN end-
devices, with either continuous (Class C) or slotted (Class B) receptions

• Operate basic firmware management operations, query of versions and
reboot the end-device

• Discover aforementioned packages and others, send multiple commands
in a single payload to limit the number of message exchanges.

All those protocols have been designed to be usable on any existing
or future LoRaWAN link layer specification versions, including current
1.0.x and 1.1.x, without modifications. The design requirement imposed
construction of these protocols at the application layer.

A typical firmware update campaign goes as follow. The network appli-
cation selects a group of end-devices to be updated, typically based on their
hardware and current firmware versions. The Application Server makes sure
end-devices clocks are synchronized, and sets up, on each end-device, a
fragmentation and a multicast session. When the multicast session starts, the
application sends to all end-devices fragments of the firmware file leveraging
the physical-layer broadcast capability of LoRaWAN. When all fragments
have been received or reconstructed using error correction code, each end-
device is eventually instructed to reboot using the new firmware, possibly
after status and version checks.

The remainder of this paper is organized as follows. Section 2
describes the LoRaWAN FUOTA architecture. Section 3 goes through every



LoRaWAN Firmware Update Over-The-Air (FUOTA) 23

application layer package, their purpose, and functionalities. Section 4
addresses the validation of the specifications with interoperability tests.
Finally, Section 5 opens the road for future work.

2 Architecture

The LoRaWAN FUOTA architecture is depicted in Figure 1. It is composed
of three elements, the LoRaWAN end-device (ED), the Network Server (NS)
and the Application Server (AS).

The LoRaWAN interface, between the end-device and the Network
Server is handled by the LoRaWAN link layer protocol and is by design not
modified by the FUOTA specifications.

The focus of the FUOTA specifications is the File Distribution Service,
composed of the multicast, fragmentation and clock synchronization basic
blocks, and on the Firmware management protocol. All those packages are
described in detail in Section 3.

2.1 Network Server

The Network Server is the central element handling the LoRaWAN link layer
protocol. NS stands between the end-device and the Application Server. The
FUOTA specifications rely on the capabilities of the LoRaWAN, and thus on
the NS, to deliver the messages to the end-devices.

The NS shall follow the LoRaWAN specifications. FUOTA protocols rely
specifically on the multicast capabilities of the NS. Multicast is part of the
LoRaWAN protocol and requires specific care for network planning on the

Firmware
Update
Server

LoRaWAN

Firmware Management

LoRaWAN

End-Device Network Server

Backend
Transport Backend Transport

Firmware Management

Application Server

File Distribution Client File Distribution Server
Mcast Management

User Application User Application

Mcast Frag Clock
Sync

App Stack App Stack

File Distribution Client

Interface in-scope for TC/FUOTA GW
Interface out-of scope for TC/FUOTA GW

Secure BootLoader

Firmware
Update
Agent

Mcast Frag Clock
Sync

Figure 1 LoRaWAN FUOTA specifications architecture [1].



24 J. Catalano

NS. The server needs to choose the set of gateways used to broadcast the
messages, to reach the involved end-devices efficiently, in accordance with
the local regulations and limiting self-interference.

The interface between the Application Server and the NS is not in the
scope of the LoRa Alliance technical specifications and it is vendor-specific.
It is often implemented using standard Internet protocol, such as HTTP REST
API or MQTT clients.

2.2 End-devices

LoRaWAN end-devices supporting FUOTA need to implement, in addi-
tion to the LoRaWAN link layer protocol stack, the file distribution client
composed of three protocols—namely clock synchronization, fragmenta-
tion and multicast—and the firmware management protocol. Note that,
by design, those protocols can be implemented individually. They can be
used for other purposes than firmware update. An example of FUOTA
protocols’ supplementary usage is the clock synchronization used solely
for real time adjustment of the end-device clock for application needs.
Another example is delivering other types of files to the end-devices, not just
firmware.

The end-device architecture also includes the traditional user application.
This is the essential software feature of the end-device, which lives in parallel
with the FUOTA mechanism. The user application is not in the scope of the
FUOTA work, except by the fact that it can be updated using the FUOTA
protocols.

Another element of the end-device architecture is the firmware update
agent, residing inside the bootloader, the program that initiates the device
bootstrap process. This agent is not part of the specifications, as it is very
specific to the end-device firmware designer and embeds the security mech-
anisms necessary to verify and apply the new firmware in the end-device
memory.

To support the FUOTA architecture, several conditions are necessary for
the end-device. Along with supporting the LoRaWAN link layer protocol, the
end-device must support a multicast identity on that layer. The device must
be able to store the received fragments and run the forward error correction
(FEC) algorithm to recover the lost fragments. To be on-time at the multicast
rendezvous, the end-device needs to keep a good track of time. To apply
a new firmware, an end-device ought to verify and swap images, boot and
sometimes restore another version of its firmware. All that needs to happen,



LoRaWAN Firmware Update Over-The-Air (FUOTA) 25

in a secure fashion and using as little energy as possible, while reporting back
to the Application Server.

2.3 Application Server

The Application Server (AS) is the counterpart of the end-device applica-
tive stacks on the server side. Application Server, in its stricter sense on
the LoRaWAN, handles the application encryption and decryption of the
messages while also processing the application data mechanics.

As depicted in Figure 1, AS has several interfaces with the NS and the
ED. As previously stated, the AS-NS interfaces are vendor-specific. The
user application interface is also application provider-specific. The interface
between the AS and a firmware update server is also left to the vendors.

The FUOTA work defines the interfaces between the AS and the ED for
the file distribution service and for the firmware management. The set of
FUOTA specifications is defining the delivery of a given file to multiple end-
devices, over-the-air, with data loss protection. It also defines the basic set of
commands to manage the device firmware.

There is a strong interaction between the AS and the NS. As the interfaces
are vendor-specific, AS vendor must develop in accordance to NS interfaces.
Moreover, as the AS needs to gather multicast settings to inform the ED, it
also needs to be negotiating the parameters with the NS. On the other hand,
the NS must be able to cope with the relatively large amount of data the
AS will provide for broadcast. Broadcasting a firmware file is not the usual
LoRaWAN downlink load NSs are used to. A typical end-device firmware
file is a few tens of kilobytes in size. There is also a strong time interaction
between the AS and the NS, as the ED are instructed to receive the data during
a certain period of time. The AS must be sure that the NS will deliver packets
within that time.

3 Application Packages

This section dives into details of each application layer packages defined
to achieve FUOTA, starting with the file distribution service protocols
(multicast, fragmentation and clock synchronization), then the firmware
management protocol and finally the Multi-Package Access utility package.

The packages are designed to be in the application layer, with as little
friction as possible with the lower layers. The definition of those pack-
ages follows the general application layer design guidelines [7]. The main



26 J. Catalano

guidelines are the LoRaWAN link layer version independence, the regulatory
region independence, the idem-potent operations and deterministic command
and answer lengths. Those guidelines serve the purpose of ease of integration
and evolution of the system.

3.1 LoRaWAN Application Layer Clock Synchronization

The LoRaWAN Application Layer Clock Synchronization [2] package is
designed to enable clock synchronization of the LoRaWAN end-devices
with the LoRaWAN network clock, with second resolution. The LoRaWAN
network clock is based on GPS clock. The GPS system is built on atomic
clock, bringing high accuracy and allowing synchronization of the entire
network with the same time base. In addition, the GPS clock is not affected
by leap second adjustment and provides a continuous incrementing counter,
starting at the so-called GPS EPOCH, on January 6th, 1980 00:00:00 UTC.

Synchronizing end-devices clock to the same time-base is a necessary
feature to achieve FUOTA efficiently. The end-devices need to be well
synchronized to be able to open their receiver at the same moment to catch
the broadcasted frames. Better clock synchronization means less energy
consumption. The end-device will not waste energy unnecessarily listening
if it does not open the reception window too early. It will not waste energy
reconstructing lost packets or require another broadcast session if it does not
open its reception window too late.

This feature is not only useful for FUOTA but can also be used for
other applications. It may be useful to have a correct notion of time to
act at a given moment, for example switching on a light at sunset, or to
synchronously sample sensors data with other end-devices, for example to
correlate temperature reading of one sensor with a door opening sensor.

This specification is defining application layer clock synchronization,
to complement the LoRaWAN link layer capabilities or other mechanisms
available on the end-device. LoRaWAN link layer offers a clock synchro-
nization procedure if the end-device is Class B capable. End-devices can
also be equipped with GPS receiver and accomplish clock synchronization
with that. This application package, however, does not require any additional
capabilities on the end-device. It is also more power efficient, as it requires
communication only if the end-device is out-of-sync. The downside of an
application layer clock synchronization is the precision. The best that can be
achieved with this package is around a second accuracy. This is enough for
FUOTA but might not satisfy other application requirements.



LoRaWAN Firmware Update Over-The-Air (FUOTA) 27

The specification defines a set of commands and responses to accomplish
clock synchronization. The end-device can proactively request a clock adjust-
ment, and the network can also demand the end-device to periodically check
or even force a synchronization procedure.

3.2 LoRaWAN Fragmented Data Block Transport

The LoRaWAN Fragmented Data Block Transport [3] package aims to define
a means to transmit a data block, such as a firmware file of tens of kilo-
bytes, split into fragments, to an end-device or a group of end-devices. The
specification is independent of the rest of the FUOTA specifications but it
can be associated with the multicast specification described in Section 3.3.
The specification resides at the application layer and it does not rely on any
capabilities of the underlying layers, specifically the LoRaWAN link layer
frame counter or acknowledgements.

Fragmentation is a required feature for FUOTA as a firmware file is
usually much larger than the LoRaWAN frame size. There is a need to
define a method to split a data block in multiple fragments to fit into
LoRaWAN packets. Those fragments must be reassembled on the receiver
side, taking into consideration that some fragments might be lost, and that
the fragment delivery may be a broadcast session to several end-devices.
The requirement to perform broadcasting of fragments implies that a given
end-device cannot indicate to the network when a fragment is missing, as it
would create a large amount of individual uplink frames. The specification
design uses Forward Error Correction (FEC) code to enable feedback-less
reconstruction of lost fragments. FEC algorithms are well-known in other
industries like optical data reading (Compact Disk, QR code) or video
broadcast.

Fragmentation and FEC are not only useful for FUOTA operations, but
also to other applications. Transferring large amount of data to an end-device
can be used for configuration or cryptographic material updates.

The specification defines first the session establishment mechanisms to
inform the end-devices that a fragmentation session will start, possibly asso-
ciated with a multicast session. The session parameters include the expected
size of the data block, the size of each fragment among other information.
Cryptographic integrity of the data block is provided in the protocol. A set
of commands and responses allow the network to request information on
existing fragmentation sessions, to create and to delete sessions. The second
part of the specification describes a forward error correction code to be able



28 J. Catalano

to reconstruct missing fragments. The FEC is a systematic code, i.e. the first
fragments are the original ones, followed by redundancy fragments. Redun-
dancy fragments are computed with a Low-Density Parity-Check encoding of
the original fragments. When a fragment is lost and a redundancy fragment
has its information, with the help of other original fragments, the data can be
recovered. The protocol allows other recovery mechanisms to be defined in
the future.

This specification is agnostic to the transported content. It enables split-
ting a data block into fragments, having the receiver(s) ready to handle the
stream of data and addressing transmission loss. When the data block is
received, it is up to the end-device software agent to use it in whatever
purpose it was transmitted.

3.3 LoRaWAN Remote Multicast Setup

The LoRaWAN Remote Multicast Setup [4] package defines a protocol to
setup and manage LoRaWAN link layer multicast sessions. LoRaWAN link
layer defines two classes of communications which are multicast capable:
Class B and Class C. This specification defines a means to enable a temporary
Class B or Class C session. It follows the same design principle as the other
specifications and resides at the application layer. There is a stronger imple-
mentation interaction with the LoRaWAN link layer and this specification.
The application needs to enable some capacity at the link layer, both on the
end-device and on the Network Server.

Multicast feature is essential to FUOTA as it greatly optimizes the distri-
bution of the firmware in the network. In most cases, end-devices operator
will upgrade a group of end-devices at once, not one-by-one. Multicast
transmission towards multiple end-devices saves network bandwidth and
time-on-air, the most precious resources of a LoRaWAN network. When a
group of end-devices are within the reach of a common gateway, the radio
resources used to update that group are essentially the same as upgrading a
single end-device.

Multicast feature also has utility for other applications. For instance, a
street lighting application will benefit from multicast to switch all of the
lamps of a street using a single LoRaWAN message over-the-air.

The specification defines commands and responses to create, query and
delete multicast sessions on the end-devices. A multicast session is built using
two commands. One command is used to exchange the security context,
specifically the LoRaWAN link layer multicast address, the valid range of



LoRaWAN Firmware Update Over-The-Air (FUOTA) 29

frame counters and key material. A second command is specific to the
communication class to enable, either Class B or Class C. That command
is defining the radio parameters and the session start time and duration. It
should be noted that a Class B session will last longer but would consume
less power on the end-devices side, due to the slotted communication of this
communication class. This is where clock synchronization is important to
allow the group of end-devices to start their multicast session at the same
time and in sync with the network operations.

3.4 LoRaWAN Firmware Management Protocol

The LoRaWAN Firmware Management Protocol [5] package is defining
the basic operations to manage firmware on end-devices. This is the only
specification of the FUOTA working group portfolio that is specific to
firmware. This specification brings generic features to manage firmware, such
as controlling the firmware version running on the end-device or the hardware
revision of the device.

Firmware management is used from the beginning to the end of the
FUOTA process. It is helpful for the network application to know the current
running firmware version of each end-device before applying an update. It is
useful to apply the downloaded update by rebooting the end-device.

Aside from the FUOTA process, firmware management can also be
used by broader device management applications. Collecting current running
firmware associated with hardware version helps fleet manager to get an
accurate inventory of their devices. Being able to reboot remotely an end-
device is also beneficial outside of firmware update procedure. For example,
to fix a bug or have the end-device restart from a known state, reboot is
sometimes necessary.

The specification defines a handful of generic commands and responses to
read and act on the firmware version present on the end-device. The network
application can request the currently running version of the firmware and the
hardware. It can also request the ready-to-upgrade firmware version stored
in the end-device memory, potentially received with a fragmented broadcast,
or request to delete such image. It allows the network application to trigger
a reboot or to schedule it at a later time. The notion of time is once again
linked to the capacity of the end-device to be clock synchronized. Clock
synchronization dependency is relaxed by this specification as it proposes
relative (countdown) time operations. This allows simple end-devices to use
that package without strong requirements on time keeping.



30 J. Catalano

Version information provided by this package is relatively vague on
purpose. It is left to the end-device manufacturer to define the content of
the version fields and their meaning. Some may use the standard semantic
versioning (major, minor, patch numbers), while others may encode the
checksum (e.g.: CRC32) of the firmware file. The specification helps trans-
porting that information between the end-device and the network application
but does not impose any formatting.

3.5 LoRaWAN Multi Package Access Protocol

The LoRaWAN Multi Package Access Protocol [5] is defined for efficient use
of multiple packages implemented on the end-devices. This protocol allows
the network application to query the existing packages on a given end-device
and their version. It also allows to concatenate multiple packages commands
or responses in a single LoRaWAN frame. Responses are possibly fragmented
by this protocol. This saves communication round trips and improve reactiv-
ity of the system. The Multi Package Access Protocol has been assigned a
dedicated LoRaWAN FPort (225) so it is possible to discover the capabilities
of an end-device without prior knowledge using this registered well-known
port.

Multi Package Access Protocol is helpful for the FUOTA process as
the procedure deals systematically with several packages. The most obvious
usage of that capability is to setup the multicast and the fragmentation
sessions in a single downlink frame. This avoids an additional communication
round-trip which can delay the set-up. In LoRaWAN link layer Class A, a
downlink only follows an uplink and the delay between uplinks is at the
discretion of the end-device. The FUOTA network application can also use
this access method to query the capabilities of the end-devices, especially the
supported version of each package. An end-device supports only one version
of a given package, and multicast, fragmentation and clock sync packages
each have two versions defined already.

Querying package versions and accessing multiple packages in a single
frame is useful for virtually any other application packages. In order to
benefit from that feature, packages must follow simple rules [7]. They need
to define opcodes, just like the the FUOTA packages do. More importantly,
the command and response lengths must be deterministic and based on the
opcode. If that is the case, any application package can use this protocol and
be used along with FUOTA packages commands or responses.



LoRaWAN Firmware Update Over-The-Air (FUOTA) 31

This specification defines a command to request an end-device to provide
the list of packages it runs, and their version. Each package has an identifier,
a version number and a dedicated FPort. Package identifiers are registered
within the LoRa Alliance for specified packages or can be end-device specific
and shared out-of-band with the network application. The version number is
intrinsic to the package, and the package’s FPort is the direct LoRaWAN port
to contact that package on the end-device. The port is defined per end-device.
It can be suggested by the package definition and this protocol’s discovery
mechanism allows to deviate from the recommended values. A protocol is
defined to access multiple packages with a single frame based on the package
identifiers and their commands. Carrying multiple commands can lead to
large responses, possibly larger than what LoRaWAN regional parameters
specification allow. This specification defines a fragmentation method to split
and request retransmission of fragments from an end-device. It is to be noted
that this fragmentation is different from the one describes in Section 3.2,
as it addresses uplink (from an end-device to the network application) and
unicast only fragmentation, as opposed to [3] defining downlink multicast
fragmentation.

4 Interoperability Tests

The FUOTA working group is chartered to define protocols presented in this
document between LoRaWAN end-devices and Application Servers. In order
to validate the protocol specifications, it is important that those specifications
are tested and understood without ambiguity by the developers before being
released to the public. There are several methods in the industry to validate a
specification. Some choose to have an open-source reference implementation
so that an implementer can read the specification and the source code to solve
any remaining doubts.

Another way to validate a specification, especially between a device and a
server, is to run interoperability tests. The idea behind those tests is to be sure
that both parties, the end-device implementer and the server developer, have
understood the specifications correctly and there are no details missing. This
is the approach chosen by the FUOTA WG members to validate the packages.
It is worth to be noted that what is evaluated is the clarity and completeness of
the specification text. In case any ambiguity or misunderstanding are found,
the specifications are amended before release.



32 J. Catalano

Implementing interoperability tests allows members to be one step ahead
as they already design and develop their products or software in advance,
before the specifications are released.

5 Future Work

The previous sections have described the current state of the FUOTA capabil-
ities designed within the LoRa Alliance. This set of specifications are relevant
for firmware upgrade and to other usage as discussed. While they are enabling
a standard way to achieve FUOTA capabilities on end-devices attached to a
LoRaWAN network, there are many other topics to address.

FUOTA as it is defined is one block of a larger and more complete
device management system. Being able to update software and query pro-
tocol capability is one of the challenges addressed by device management
systems. They also address device configuration, device security provision-
ing or device monitoring. Device management systems are often associated
with device data model, a method to describe capabilities of an end-device
associated with an access protocol.

FUOTA set of protocols enable file distribution to a group of end-devices.
Nothing is specified yet on the content of such file. Other standard bodies,
such as IETF SUIT [8], are defining what should be transported to end-
devices. That working group defines a manifest file format, as well as means
to ensure confidentiality and authenticity of the firmware file. Another topic
to address is the compression of the transferred file. Technologies to be
explored include compression, delta firmware upgrade, and partial firmware
upgrade algorithms. The usage of those technologies relies on the capacity of
the end-device to be able to process such compression.

Ultimately, not everything is relevant to be standardized, as the end-device
application/business logic and firmware format will be deeply dependent on
the manufacturer and application requirements.

References

[1] FUOTA Working Group of the LoRa Alliance Technical Committee,
FUOTA Process Summary Technical Recommendation TR002, Jan.
2019.



LoRaWAN Firmware Update Over-The-Air (FUOTA) 33

[2] FUOTA Working Group of the LoRa Alliance Technical Commit-
tee, LoRaWAN Application Layer Clock Synchronization Specification
v1.0.0 TS003-1.0.0, Sep. 2018.

[3] FUOTA Working Group of the LoRa Alliance Technical Commit-
tee, LoRaWAN Fragmented Data Block Transport Specification v1.0.0
TS004-1.0.0, Sep. 2018.

[4] FUOTA Working Group of the LoRa Alliance Technical Committee,
LoRaWAN Remote Multicast Setup Specification v1.0.0 TS005-1.0.0,
Sep. 2018.

[5] FUOTA Working Group of the LoRa Alliance Technical Commit-
tee, LoRaWAN Firmware Management Protocol Specification v1.0.0
TS006-1.0.0, to be released.

[6] FUOTA Working Group of the LoRa Alliance Technical Committee,
LoRaWAN Multi Package Access Specification v1.0.0 TS007-1.0.0, to
be released.

[7] FUOTA Working Group of the LoRa Alliance Technical Committee,
Application Layer Package Design Guidelines Technical Recommenda-
tion TR003, to be released.

[8] Internet Engineering Task Force (IETF), Software Update of Internet of
Things (SUIT) working group, work in progress.

Biography

Julien Catalano is Principal Architect and Head of Standards working at
Kerlink in France since 2013. Julien also acts as chair of the Technical
Committee FUOTA Working Group at the LoRa Alliance since 2017.

He holds a master’s degree from the École Centrale de Marseille and
started his career as a research engineer for Philips Research in Eindhoven,
the Netherlands.



34 J. Catalano

Julien has more than 15 years of experience in the Internet of Things
industry, tackling embedded software development, system architecture and
strategic partnership in research, industrial companies and start-ups. He is
a strong believer in open standards, building them in several organizations.
This sparked his recognition by the LoRa Alliance with the Working Group
Leadership Award in 2019.


	Introduction
	Architecture
	Network Server
	End-devices
	Application Server

	Application Packages
	LoRaWAN Application Layer Clock Synchronization
	LoRaWAN Fragmented Data Block Transport
	LoRaWAN Remote Multicast Setup
	LoRaWAN Firmware Management Protocol
	LoRaWAN Multi Package Access Protocol

	Interoperability Tests
	Future Work

