
A Prototype Similarity-based System for
Remaining Useful Life Estimation for
Future Industry by Singular Spectrum

Analysis-Long Short Term Memory
Neural Networks Algorithm

Prakit Intachai1,∗ and Peerapol Yuvapoositanon2

1The Electrical Engineering Graduate Program, Faculty of Engineering,
Mahanakorn University of Technology,140 Cheumsamphan Rd., Nong-chok
Bangkok 10530, Thailand
2Mahanakorn Institute of Innovation, Faculty of Engineering, Mahanakorn
University of Technology,140 Cheumsamphan Rd., Nong-chok Bangkok 10530,
Thailand
E-mail: prakit2554@gmail.com; peerapol@mutacth.com
∗Corresponding Author

Received 29 November 2019; Accepted 26 May 2020;
Publication 17 August 2020

Abstract

In this paper, we propose a prototype similarity-based approach of esti-
mating the remaining useful life (RUL) of turbofan engine data using the
singular spectrum analysis and the long-short term memory (SSA-LSTM)
neural networks algorithm. The algorithm consists of two steps. First, the
optimal window length of the trajectory matrix of the dataset is empirically
determined from a prototype dataset. Second, the estimation of the RUL of
the target datasets is performed using the window length parameter obtained
from the first step. The validity of the proposed algorithm is verified by testing
with 200 turbofan engine datasets. The results are shown to have a significant
improvement in the performance of the RUL estimation over the existing
LSTM algorithm.
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1 Introduction

Recently, predictive approaches for estimating remaining useful life (RUL)
of a device or a machine have gained increasing interest in the mainte-
nance perspectives [1, 2]. The reliability of these approaches depends on the
accuracy of the RUL estimation. However, the RUL estimation is generally
difficult in practice because some devices may not be suitable for physics-
based estimation of true RUL when the real-life system is complex [3], or the
characteristic of some time series data is described as non-linear [4]. Different
techniques can be used in order to estimate the RUL, such as the data-driven
methodology in Ref. [5], and similarity methods presented in Refs. [6–8]. The
data-driven models are more suitable in some cases where supported models
for the RUL are not achievable.

The singular spectrum analysis (SSA) is a decomposition technique for
general time series [9]. The SSA decomposition process is data-adaptive and
does not involve any harmonic function. Therefore, the SSA is suitable to
perform on non-linear and non-stationary time series. The noise of time series
in the process of the SSA can be described as definition of window length
(L) [10] when L is an integer for creating the trajectory matrix. In Ref. [11],
shown the estimation of L∼T/2 is shown when T is the total number of
data in the time series. The estimated window length (Lest) or L∼T/2 is a
simple method of choosing L. Elsner and Tsonis [12] present some dialogue
and remark that choosing Lest = T/4 is a common method, and L from that
method is not larger than Lest = T/2. A method of L selection states that
a suitable parameter for L should depend on Lest < T/2 as presented in
Ref. [13]. In Ref. [14], L selection is described as Lest = log(T )c with c ∈
(1.5, 3.0). Moment test for L selection in the SSA [15] is presented for the
method of determining Lest by a statistical test, with Lest> 2

√
T described

as the estimated window length. Therefore, in order to do that each of the
datasets must be estimated separately. For a set of time series, there is no
existing approach suggesting an estimated window length optimally for the
group of datasets. However, the length L is large when a time series is long.
Also, for a system that has to deal with many time series, it is not practical
for determining L for every time series.
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In this paper, we propose an algorithm for the RUL estimation of multiple
target time series with the LSTM network by means of the basis functions
decomposed from the prototype time series using the SSA. The LSTM is
adopted in our approach since its usages in the RUL estimation have been
widely studied in the literature [16, 17]. By this approach, determining L
for the target time series can be performed using the information derived
from the prototype time series. The window length L optimal or Lopt for
the prototype time series is achieved at the point where the root mean square
error (RMSE) obtained from the LSTM is minimized. For the target time
series, which will be shown later, that can be reconstructed from the prototype
basis function with scaling factor, the same optimal window length Lopt can
also be applied. The proposed system offers the advantage of determining
the optimal parameters for a large number of time series using only those
determined from the representative one called the prototype. The proposed
technique is therefore a multi-step approach for the RUL estimation of a target
time series using the LSTM with transformed basis functions obtained from
the prototype time series. Since the subcomponents of the prototype time
series are obtained from the SSA, this algorithm is called the SSA-LSTM
algorithm.

The organization for the remaining of the paper is as follows. In Section 2,
the definition of the trajectory matrix of a dataset, the window length and
the basis functions are presented. In Section 3, the relationships between the
prototype and target datasets via the basis functions and their coefficients
are described. The construction of the SSA-LSTM algorithm and the deter-
mination of the window length are defined. Finally, Section 4 shows how
the validity of the proposed algorithm in the prototype similarity-based RUL
estimation is tested for the turbofan datasets acquired from Ref. [18]. Finally,
conclusions are provided in Section 5.

2 Methodology

2.1 The Diagonal Averaging Parameters and their Coefficients

The ability of the SSA is mentioned in Ref. [10]. The SSA can be applied
to the stationary and non-stationary time series data because it can describe
what time series with no a priori information about the data structure. The
SSA technique is based on the singular value decomposition (SVD) of
the trajectory matrix of the SSA [10]. The model of the trajectory matrix
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can be expressed as

X =


x(1) x(2) x(3) · · · x(K)
x(2) x(3) x(4) · · · x(K + 1)
x(3) x(4) x(5) · · · x(K + 2)

...
...

...
. . .

...
x(L) x(L+ 1) x(L+ 2) · · · x(T )

 , (1)

where X denotes the trajectory matrix and x(t), t = 1, 2, · · · , T is the time
series data of interest. L is the window length and 1 < L < T − 1 defines the
number of rows in X. K is the embedding dimension and K = T − L + 1
where T is the time interval of the observed time series data. The trajectory
matrix of X is processed by the SVD, and the matrices U,D and VT are
derived in the process of decomposition as

UDVT = svd(X), (2)

where D denotes the eigenvalues matrix of svd(X), and the value of eigen-
values is expressed in the diagonal matrix as D = diag(λ1, λ2, · · · , λL).
U and V are the eigenvectors matrices. X̂i denotes the ith eigentriple that is
determined by X̂i = λiUiVi

T .
The eigentriple X̂i can be applied to the process of eigentriple grouping

and diagonal averaging of the SSA [10, 11]. θi(t) describes the result from
the process of diagonal averaging as X̂i where L is the parameter to be
determined.

3 Prototype and Target Time Series

3.1 The Basis Function and its Coefficient

In this section, we explain the idea of how to represent a time series, called
the target, using the basis functions derived from another time series, called
the prototype.

The hypothesis underlying this idea stems from the concept of basis
functions in Fourier series of a periodic time series [19]. First, the estimates
of the prototype and the target time series are determined from

x̂(pro)(t) =

T−1∑
i=1

θ
(pro)
i , (3)
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Figure 1 The concept of representing the target time series x̂(tar)(t) from the diagonal
averaging parameters θ(pro)i (t), and their coefficients C

(pro)
i from the prototype time series

through the analysis and synthesis parts of SSA, is illustrated. The reverse operation, i.e.,
representing the prototype from the target, is also shown.

x̂(tar)(t) =
T−1∑
i=1

θ
(tar)
i , (4)

where θ(pro)i and θ(tar)i denote the diagonal averaging results from the basis
function x̂(pro) and x̂(tar) of the prototype and the target, respectively.

Now the relationship between the prototype and the target can be
described as

x̂(pro)(t) =

T−1∑
i=1

C
(tar)
i θ

(tar)
i (t), (5)

x̂(tar)(t) =
T−1∑
i=1

C
(pro)
i θ

(pro)
i (t), (6)

where
C

(pro)
i = diag(θ

(pro)
i (t))−1diag(θ

(tar)
i (t)) (7)

is the coefficient matrix required for reconstructing x̂(pro)(t) from θ
(tar)
i (t)

and
C

(tar)
i = diag(θ

(tar)
i (t))−1diag(θ

(pro)
i (t)) (8)

is the coefficient matrix required for reconstructing x̂(tar)(t) from θ
(pro)
i (t).

This relationship can be depicted through the analysis and synthesis opera-
tions of the SSA in Algorithm 1.
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Algorithm 1 Algorithm for estimating the coefficients of the prototype and
target time series.

Input: θ(t) // Diagonal averaging parameter.
Define: t // Index of time series.

T // End index of time series.
i // Index of window length.
L // The window length.

Check value of input θ(t).
For t=1 to T

IF θ(t) < Threshold
Set θ(t) = Threshold

else
Set θ(t) = θ(t)

End
End

Diagonalization of θ(t) for diag(θ(t)) and determine its inverse.
While i<=L do

Calculate the ith coefficient matrix of the prototype x(pro)(t), C(pro)
i as in (7).

End
While i <= L do

Calculate the ith coefficient matrix of the prototype x(tar)(t), C(tar)
i as in (8).

End
Calculate x̂(pro)(t) from (5).
Calculate x̂(tar)(t) from (6).

Results: C(pro)
i , C(tar)

i , x̂(pro)(t), x̂(tar)(t).

3.2 Reconstruction of a Time Series from a Group of
Subcomponents

Operating on the separated groups of the SSA data can lead to an enhanced
performance [20, 21]. Therefore, we divide the analysis components into
three groups as follows

x̂p(t) =


x̂1(t) = C1θ1(t)

x̂2(t) =
B∑
i=2

Ciθi(t)

x̂3(t) =
L∑

i=B+1

Ciθi(t)

, (9)

where x̂p(t) denotes the pth group of the sub-component x̂(t) which in turn
is the estimated version of x(t) and B is an integer designating the number
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of components in the second group, p = 2. The choice of B can be changed
as B = 3, 4, 5 or B = 3, 4, · · · , L− 1. From (9), the estimate of x(t) can be
achieved by the summation of the three groups:

x̂(t) =

3∑
p=1

x̂p(t) (10)

3.3 Estimation Model for Reconstructed Data

The combination of the SSA and neural networks has been studied in the
literature [22, 23] and the results of estimation performance are improved as
compared to those from using only the neural networks. It was shown that the
LSTM is promising for the estimation of trendy time series [16, 17]. Since
the RUL datasets of multiple turbo fan engines time series [18] is trendy, the
LSTM is then adopted as the neural network algorithm of the estimation part
in our proposed SSA-LSTM architecture for the RUL estimation.

In Figure 2, the schema of the SSA-LSTM architecture is illustrated. The
datasets, which are arranged as time series, are categorized as features of
x(F )(t) and their associated RULs x(RUL)(t) have gone through the analysis
and synthesis of the SSA resulting in groups of the reconstructed datasets
x̂
(F )
p (t), and x̂

(RUL)
p (t) for p = 1, 2, 3 for feature and RUL datasets, respec-

tively. x̂(RUL)(t) is the training datasets to the LSTM networks whose outputs

y
(RUL)
p (t), p = 1, 2, 3 are the estimation results of the three LSTM networks.

Figure 2 The proposed SSA-LSTM algorithm for RUL estimation is illustrated. Three
sub-components of features, x̂(F )

p (t) p= 1, 2, 3 and x̂
(RUL)
p (t) p= 1, 2, 3 from analysis and

synthesis parts of SSA are used by the LSTM in order to generate the estimated RUL
y
(RUL)

(SSA−LSTM)(t).
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The estimate of the true RUL is simply the combination of y(RUL)
p (t) :

y
(RUL)
(SSA−LSTM)(t) =

3∑
p=1

y(RUL)
p (t) (11)

The process of determining the optimal value ofL, theLopt, involves analysis
and synthesis of both the features and true RUL of the prototype turbofan
engine datasets [18]. The three LSTM networks are fed with the synthesized
sub-components of the features x̂(F )(t) and are trained with the synthesized
sub-components of the true RUL. The root mean squared errors (RMSE) of
the prediction for all possible values of L up to T/2, i.e., Lest = T/2, are
measured. The values of L at the minimum RMSE is then selected as the
optimal data-dependent L, i.e., Lopt.

Algorithm 2 The Singular Spectrum Analysis-Long short Time Memory
(SSA-LSTM) Algorithm

Input: x(F )(t) // Normalized feature data of training and test data.
x(RUL)(t) // The RUL data set associating x(F )(t) of training and testing data

sets.
Define: x̂

(F )
p (t) // The pth normalized sub-component feature data.

x̂
(RUL)
p (t) // Sub-component of RUL data sets.

Training: Analysis and synthesis by SSA at x(F )(t) and x(RUL)(t) of training data.
Determine x̂

(F )
p (t) and x̂

(RUL)
p (t) of training data from (9).

Train the LSTMs with the RUL data sets by x̂
(F )
p (t) and x̂

(RUL)
p (t) of training

data.
Testing: Analysis and synthesis by SSA at x(F )(t) of test data.

Determine x̂
(F )
p (t) of test data from (9).

Estimating RULs by x̂
(F )
p (t) of test data.

Calculate y(RUL)(t) from (11).
Result: y(RUL)(t).

We also show that considering the similarity between the prototype and
the targets, Lopt that is obtained from the prototype can be applied to the
analysis and synthesis parts of the SSA of the targets as well.

4 Experimental Results

4.1 The Data Sets

The data sets for the experiments were the turbofan engine degradation simu-
lation dataset provided by the Prognostics CoE at the NASA Ames Research
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Algorithm 3 Algorithm for determining the optimal window length, Lopt.
Input: L // Window length.

x(pro)(t) // Prototype data.
Define: T // End index of time series.

Lest = T/2 // Estimated window length.
x̂(pro)(t) // Estimated time series data of prototype data.
RMSEi // The ith RMSE that is calculated from (15).

For i=3 to Lest

Take x
(pro)
i (t) to the process of analysis and synthesis in SSA.

Determine x̂
(pro)
i (t) from (9).

Estimate the RUL by LSTM and calculate RMSEi from (15).
End

Find the index that produces the minimum of RMSEi and select the index for the
optimal window length Lopt.

Result: Lopt.

Center [18]. In the datasets obtained from Ref. [18], there are 200 datasets
recorded from several sensors under different conditions of both normal and
fault modes. Features and RULs datasets are also provided. In order to cope
with different scales experienced in the datasets, we apply the normalization
process before performing the RUL estimation. Ref. [24] describes how the
turbofan engines are used. Let x

′′(F )(t) and x
′′(F )(t) be a raw dataset and its

time average respectively and σ be the standard deviation of x
′′(F )(t) from

various sensor measurements, then its feature and normalized version can be
calculated by

x
′(F )(t) =

(x
′′(F )(t)− x

′′(F ))

σ
, (12)

x(F )(t) =
x
′(F )(t)− x

′(F )
min (t)

x
′(F )
max(t)− x

′(F )
min (t)

, (13)

where x
′(F )(t) and x(F )(t) are the features and its normalized version of the

raw data x
′′(F )(t), respectively. The maximum and the minimum of x

′(F )(t)

are defined by x
′(F )
max(t) and x

′(F )
min (t), respectively. The normalized feature

x(F )(t) is fed to the analysis and synthesis operations by the SSA to produce
the basis functions act as in Figure 2.

In Figures 3(a)–(c), an example of x
′′(F )(t) is compared with its feature

and normalized version, x(F )(t). In this section, we explain the idea of how
to represent a time series, called the target.
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Figure 3 An example of a date set to be used as a feature which is categorized into (a) raw
dataset, (b) the feature and (c) the normalized feature.

4.2 Optimal Window Length of Prototype Data and Performance
Metrics

In this section, we provide an empirical approach in determining the optimal
window length Lopt and the value of B of the prototype data. The perfor-
mance metrics are the mean absolute error (MAE) and the RMSE defined
respectively as

MAE =
1

T

T∑
t=1

x(RUL)(t)− y
(RUL)
(SSA−LSTM)(t), (14)

RMSE =

√√√√ 1

T
(

T∑
t=1

x(RUL)(t)− y
(RUL)
(SSA−LSTM)(t))

2, (15)

where x(RUL)(t) is the true RUL data and y
(RUL)
(SSA−LSTM)(t) is the RUL

estimate of the SSA-LSTM algorithm as shown in Figure 2. In our similarity-
based approach, Lopt is calculated from a dataset, namely the prototype
data, selected from the 200 datasets. The true RUL datasets contain T= 116
records. From Ref. [11], the estimate maximum range of the window length to
be used for the trajectory matrixX in (1), Lest, is determined by Lest = T/2,
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i.e., Lest= 58. The RMSE of the estimated RUL of the prototype data for
3 ≤ L ≤ 57 is plotted in Figure 4. It is noted that for this particular prototype
data, Lopt is 24 since the minimal RMSE is attained at that point. This value
of Lopt coincides with the suggested values of Lopt < T/2 of Ref. [13],
Lopt = T/4 of Ref. [12], Lopt = log(T )c of Ref. [14] and Lopt> 2

√
T of

Ref. [15]. In finding the value of B, we fixed Lopt = 24 and varied B from
3 to 23. However, as shown in Figure 5, the sensitivity of the RMSE of the
estimation RUL to B is low. This means that we can choose from a wide
degree of freedom.

In Figures 6 and 7, the estimation of the basis functions of the
x
(pro,RUL)
p (t) and the estimation of true RUL x(pro,RUL)(t) of the prototype

are shown respectively using Lopt = 24 and B = 9.

In Figure 6, the thin lines are the true RUL basis functions x(pro,RUL)
p (t)

and the thick lines are the estimated true RUL outputs from the LSTM net-
works y(pro,RUL)

p (t). As shown in Figure 6(a), the estimated RUL for p= 1,

i.e., y(pro,RUL)
1 (t) is able to track the true RUL x

(pro,RUL)
1 (t). However,

for the second and third estimated basis functions, i.e., y(pro,RUL)
2 (t) and

y
(pro,RUL)
3 (t), respectively, the tracking errors are higher than the first.

Figure 4 The RMSE of estimated RUL for prototype data for 3 ≤ L ≤ 57.

Figure 5 RMSE of the estimated RUL for various values of B.
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Figure 6 Estimated RULs of three sub-components for the prototype data, y(pro,RUL)
p (t),

are provided in (a) y(pro,RUL)
1 (t), (b) y(pro,RUL)

2 (t) and (c) y(pro,RUL)
3 (t).

Figure 7 Estimated RUL of prototype data by SSA-LSTM using the optimal windows length
Lopt = 24 and B = 9.

Nevertheless, after all the estimated RULs for the sub-components
y
(pro,RUL)
p (t) are combined to form y(pro,RUL)(t) to the estimated true RUL

as described in (11), the RMSE in tracking RUL of the proposed SSA-LSTM
algorithm was 2.285, whereas that of the LSTM [24] was 23.24.
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4.3 Testing on the Target Datasets

In order to test the concept of the proposed similarity based RUL predic-
tion system, we then tested whether the remaining datasets respond to the
choice of window lengths in similar ways to the prototype. We selected 20
datasets from the remaining 199 datasets and measured the RUL estimation
performance of each dataset at various choices of the window length, L.

In Figure 8, the normalized RMSE plots of the selected 20 datasets are
illustrated. It is interesting to observe that the window lengths associating
with low RMSE of all 20 datasets are approximately in the range of 10 to
30. The regions coincide with the suggested window lengths as stated in
Refs. [11–15]. As the optimal window length obtained from the prototype
data, Lopt was 24, it is legitimate for using Lopt as a representative for the
window length for all the target datasets selected from the remaining datasets.

Proceeding to the evaluation of the SSA-LSTM algorithm, we tested the
performance for 200 datasets as compared to the existing LSTM algorithm.
We used the optimal window lengthLopt = 24 for the SSA-LSTM algorithm.
The additional parameter to be set for the SSA-LSTM was B which was set
to nine. The performance metrics were the MAEs and the RMSEs of the

Figure 8 The ensemble of the normalized RMSEs in RUL estimations of 20 target datasets
performed by the proposed SSA-LSTM algorithm.
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RUL estimation of the SSA-LSTM and LSTM algorithms, and are shown
in Figures 9(a) and 9(b), respectively. The black circles denote the results
from using the SSA-LSTM, whereas those from the LSTM are represented
by the white ones. As shown in Figures 9(a) and 9(b), both the MAE and
RMSE levels of the SSA-LSTM are lower in average across the 200 datasets
as compared to those of the LSTM. The numerical results of the averaged
MAEs and RMSEs for the 200 datasets of both the algorithms are shown in
Table 1. The numerical results indicate that those of the SSA-LSTM are lower
than those of the LSTM nearly by half.

We then investigated in detail regarding how the SSA-LSTM and LSTM
perform comparatively in estimation of the RUL in each record. We selected
three target datasets from 199 datasets and labeled them tar1 to tar3. Similar
to Figure 8, the RMSEs of three target datasets were tested against the
window lengths as shown in Figures 10(a)–(c). It is shown that the window
length associated with the minimum RMSEs of all tar1 to tar3 datasets are

Figure 9 Performance plots of RUL estimation of 200 datasets by SSA-LSTM, (black
circles) and LSTM (white circles) as measured by (a) the mean absolute errors (MAEs) and
(b) the root mean squared errors (RMSEs).
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Table 1 Averaged MAE and averaged RMSE for 200 datasets
Algorithms MAE RMSE

LSTM 23.828 35.284
SSA-LSTM 12.750 19.783

Figure 10 The RMSE at various window lengths of (a) tar1, (b) tar2 and (c) tar3

located in the vicinity of Lopt obtained from the prototype datasets, i.e.,
Lopt = 24.

Also, the parameter B was set to nine. In Figures 11(a)–11(i), the three
sub-components of the true RUL, x(RUL)

p (t), i.e., p= 1, 2, 3 are estimated
by the SSA-LSTM. Figures 11(a)–11(c) illustrate the estimation results for
the first target datasets tar1 of x(RUL)

p (t) and y
(RUL)
p (t) where p= 1 to 3,

respectively. In a similar fashion, Figures 11(d)–11(f) are the results p= 1 to
3 for the second target tar2 and Figures 11(g)–11(i) are for the third target
tar3.

For all the three sub-component RUL data, the SSA-LSTM performs
the best in the estimation of y

(RUL)
1 (t) for the first sub-component RUL

x
(RUL)
1 (t), and the same are shown in Figures 11(a), (d) and (g). This is
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Figure 11 The estimated sub-components RULs of three target datasets by SSA-LSTM with
Lopt = 24 and B = 9 for (a,b,c) tar1, (d,e,f) tar2 and (g,h,i) tar3.

true for all the three targets, tar1−3, even though the performance of tar3
is not as good as those of the other two. For the sub-component x(RUL)

2 (t)

and x
(RUL)
3 (t), the estimation y

(RUL)
2 (t) and y

(RUL)
3 (t) witness the degra-

dations in performance. However, after combining all the sub-components to
produce the estimated RUL, y(RUL)

(SSA−LSTM)(t), the SSA-LSTM shows a more
promising result in the RUL estimation than the LSTM. The results are shown
in Figures 12(a)–12(c).

By inspection, it is apparent that for all the three target datasets, the SSA-
LSTM algorithm is capable of estimating the RULs, whereas the LSTM has a
difficulty in performing the task. For numerical results the MAEs and RMSEs
of the RUL prediction of the SSA-LSTM and LSTM are compared in Tables 2
and 3, respectively.

It is apparent from the results of the MAE and RMSE for all the three
target datasets that the SSA-LSTM has achieved a significant improvement
over the LSTM.
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Figure 12 The estimated RUL of three target datasets by SSA-LSTM and LSTM for (a)
tar1, (b) tar2 and (c) tar3.

Table 2 MAE of RUL estimation by LSTM and SSA-LSTM for the three target datasets

Algorithm y
(tar1,RUL)

(Algorithm)(t) y
(tar2,RUL)

(Algorithm)(t) y
(tar3,RUL)

(Algorithm)(t)

LSTM 24.4638 26.8894 12.7456
SSA-LSTM 6.9426 9.7874 4.7874

Table 3 RMSE of RUL estimation by LSTM and SSA-LSTM for the three target data sets

Algorithm y
(tar1,RUL)

(Algorithm)(t) y
(tar2,RUL)

(Algorithm)(t) y
(tar3,RUL)

(Algorithm)(t)

LSTM 26.8622 28.5992 14.2143
SSA-LSTM 8.1145 10.8742 5.8742

5 Conclusion

In this paper, we have proposed the SSA-LSTM for the estimation of the
RUL of turbofan engines’ datasets of Ref. [18]. The proposed system offers
the advantage of determining the optimal parameters for a large number
of datasets using only those determined from one representative dataset
called the prototype. The algorithm is a two-step approach. First, the optimal
window length of the trajectory matrix of the data is empirically determined
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from a prototype dataset. This involves the analysis and synthesis operations
of the SSA algorithm and the estimation part of the LSTM networks. Second,
the target datasets are selected for the RUL estimation with the SSA-LSTM
algorithm using the optimal window length obtained from the first part.

The experimental results show how the performance in RUL estimation
of the proposed system has improved significantly over the existing LSTM.
The validity of this concept is verified by testing on 200 datasets of features
and true RULs of the turbofan engines.
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