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Abstract

Retrieval of Total Precipitable Water (TPW) from ground-based Global Nav-
igation Satellite System (GNSS) observations is a challenging task due to
its real-time and high temporal resolution nature. In this paper, we present
a method for establishing an analytical model for retrieving the TPW based
on the GNSS observations over 1-year period from 12 stations distributed
across Thailand. The derived Zenith Total Delay (ZTD) at all stations agrees
well with the TPW data available from the Global Data Assimilation Sys-
tem (GDAS) Numerical Weather Prediction (NWP) model. First, a unique
relationship between the ZTD and the TPW was established by taking into
account the variations in station altitudes. Then, a bias correction tech-
nique with Probability Distribution Function (PDF) matching was applied
to improve the final model. The inversion model of the TPW from ZTD was
then easily obtained by using a numerical technique. The performance of our
method has been successfully evaluated on an independent test data. This
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model can be useful for near real-time TPW measurements from globally
available GNSS receivers.

Keywords: GNSS Remote Sensing, Zenith Total Delay, Total Precipitable
Water, PDF Matching.

1 Introduction

Total precipitable water (TPW) is the total amount of water in the Earth’s
atmosphere derived by integrating all the water vapor in columns of atmo-
sphere from the surface to the top of the atmosphere, measured in kilograms
per square meter (kg/m2) or equivalently in millimeter (mm) of condensate
units. Further, TPW is one of many geophysical variables that can help
us better understand our complex Earth systems that play essential roles
in climate change. There are several methods to derive atmospheric TPW,
for example, direct measurements using the vertical profile of atmospheric
temperature, humidity and other related atmospheric parameters, and indirect
measurements from passive satellite microwave radiometers [1].

Measurement of the TPW field from microwave radiometers can be used
to determine the precipitation potential in an operational weather forecast.
Observations from an Advanced Microwave Scanning Radiometer—Earth
Observing System (AMSR-E) [2] and a Tropical Rainfall Measuring Mission
(TRMM) Microwave Imager (TMI) [3] have been assimilated in a Meso-scale
Analysis by the Japan Meteorological Agency (JMA) [4].

Zenith total delay (ZTD) measures the delay of a signal received from
a Global Navigation Satellite System (GNSS) satellite at zenith direction,
caused by the presence of neutral atmosphere and expressed as excess path
length. The ZTD has two components: a delay due to hydrostatic pressure
and one due to the amount of water vapor along the ray path. The ZTD
depends on the surface pressure and the TPW content above the GNSS
receiving station [5]. Signals broadcast by the Global Positioning System
(GPS) satellites have been used since 1992 to monitor the atmosphere from
ground-based stations. This type of sensor was first used by Bevis et al [6].
Generally, slow variation in the ZTD is due to hydrostatic component,
whereas more rapid change is due to variation in water vapor [7]. The ZTD
observations in numerical weather prediction (NWP) models have previously
been studied [8–10]. Faccani et al. investigated the impact of the ZTD data
collected by 15 GPS stations at a LAM center in the Basilicata region in
Italy for the winter of 2003 and spring of 2004. They used the 3-Dimensional



Empirical Model for Total Precipitable Water Retrieval 163

VARiational (3DVAR) assimilation scheme. They improved mean and Root
Mean Square (RMS) errors in rainfall forecasts, using the ZTD data compared
to rain gauges [11].
The TPW data have been derived from the ZTD data collected by a vast
network of ground-based GPS stations covering the continental United States.
The TPW retrievals were assimilated in a rapid update cycle. With this
approach, Gutman et al. [12] demonstrated a clear positive impact when they
assimilated the GPS TPW into the 3-hour predictions of humidity. Holben
et al. [13] estimated the TPW using the Japanese Geostationary Meteorology
Satellite (GMS) over a tropical ocean surface and concluded that the GMS
data were appropriate in mapping water vapor content. It is clear that estima-
tion of water vapor over oceans is easy, because emissivity and temperature of
the ocean surface are relatively constant [14]. For effective use of atmospheric
moisture information, sensed from the ground-based GNSS stations, data
processing and delivery must be timely, preferably available in less than
one hour [15]. An approximately 15-minute latency of the TPW data input
into the NWP models was the target for the GNSS Meteorological products.
The TPW has been derived from the ZTD using Wang et al.’s physical-based
technique [16].

We developed an empirical relationship between the ground based GNSS
ZTD observations and TPW data, available from an NWP model. We col-
lected the ZTD data from existing the GNSS receiving stations in Thailand
and the TPW data from the NWP model of the Global Data Assimilation
System (GDAS). Collocation from these two data sources is described in
Section 2. A preliminary relationship between the ZTD and TPW is presented
in Section 3, followed by a refined and final model in Section 4. Section
5 presents the implementation of the final model, derived in Section 4, in
which the TPWs were retrieved and validated. We present our conclusions in
Section 6.

2 Collocating ZTD with TPW

We used two datasets to train our empirical model. The first was the GNSS
ZTD data from July 2017 to August 2018. The ZTD data was obtained from
GNSS receivers controlled by the Thai GNSS and Space Weather Informa-
tion Data Center at King Mongkut’s Institute of Technology Ladkrabang
(KMITL), Thailand [17], and from the Department of Public Works and
Town and Country Planning, Ministry of Interior, Thailand. We used 12 GPS
receivers from different locations across Thailand, namely, NKNY, SPBR,
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Figure 1 Positions and altitudes of GPS receiver stations used (left) and a map of Thailand
(right).

PJRK, CHAN, CPN, SOKA, NKSW, KMT1, KMT2, DPT9, NKNI, and
CMU. The locations and their altitudes are shown in Figure 1.

2.1 ZTD Data

To train the model, raw GPS data needed to be processed first. We used
RTKLIB (RTKPOST, postprocessing analysis) software to produce a file
that contained the ZTD data in millimeters. Data from the KMITL GNSS
base stations and the Department of Public Works and Town & Country
Planning stations were in a Receiver Independent Exchange (RINEX) format.
A RINEX Navigation message file, with precise satellite ephemeris and
satellite clock was used to compute the ZTD. The RTKPOST settings are
shown in Table 1. The estimated ZTD output was at 60-second intervals. Each
hourly interval was then averaged to produce one hour resolution data.

Bad data from the ZTD signal collection were excluded. The NNKI
station was the source of most missing and noisy data. A time series of
the ZTD signals over a 1-year period (July 2017 and August 2018) showed
similar characteristics (Figure 2). In the winter months, the amount of water
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Table 1 RTKPOST Settings
Positioning Mode PPP Fixed
Frequency/Filter Type L1+L2, Combined
Elevation Mask (◦) 15
Earth Tide Correction Solid
Ionosphere Correction Estimate TEC
Troposphere Correction Estimate ZTD
Satellite Ephemeris/Clock Precise
Datum/Height WGS84/Ellipsoidal
Rover X/Y/Z-ECEF(m)

vapor in the atmosphere was low, resulting in lower ZTD values (Figure 2).
In the next step, we used these ZTD signals to collocate with the TPW data
from each station.

2.2 TPW Data

The TPW is one of many meteorological parameters in gridded output fields
in an NWP model, which are used to collocate with ZTD. Here, the TPW
was obtained from the GDAS NWP model. The GDAS that we used had a
resolution of 0.25◦ in both latitude and longitude. The GDAS model output
data was produced four times a day, at 00, 06, 12, and 18 UTC. To map the
TWP to the GNSS receiver locations, we needed to interpolate the TPW to the
exact location and time of each station. Since the TPW value from the GDAS
was gridded at approximately 25 km × 25 km, to find a TPW value at the
location of the GNSS station location, we temporally interpolated the TPW
values between the GDAS cycles to match the ZTD values. The relationship
between the interpolated TPW value and the ZTD value at each station was
then determined, as discussed in the next section.

2.3 ZTD and TPW Relationship

After the ZTD and TPW values were obtained for all the 12 GNSS receiver
stations, we established an empirical relationship between the ZTD and
TPW. The time series of the ZTD and TPW for every station is shown in
Figure 2. Since these ZTD data were still very noisy, we averaged them over
3,600-second intervals to reduce noise. Figure 2 shows that the ZTD obser-
vations correlated very well with the TPW values calculated for all stations,
except the NNKI station, where there was a large number of missing data,
where poor quality data had been rejected by quality control. Over a 1-year
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Figure 2 TPW collocated with ZTD observed at 12 GNSS stations in Thailand.

period (July 2017–August 2018), a seasonal fluctuation of the ZTD, caused
by the TPW, especially a decrease in the TPW, during the winter months
(˜December–February), can be seen clearly. The seasonal ZTD fluctuation
was due to the fluctuation in relative humidity.
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Figure 3 Relationships between TPW and ZTD for each station.

We then bin-averaged the TPW at 2-mm bins, so that they correlated well
with the ZTD. The ZTD, as a function of the TPW, was then plotted (Figure 3
[dash line]), with the graph showing an almost linear relationship. However,
there appeared to be a different offset for each station. This was largely caused
by the difference in signal delay to stations, located at different altitudes. The
linear regression equations for the ZTD vs TPW for each station are presented
in (1) and shown as solid lines in Figure 3:

ZTDNNKY = 5.7699 ∗ TPWNNKY + 2344.5981

ZTDSPBR = 5.4733 ∗ TPWSPBR + 2347.5062

ZTDPJRK = 5.5909 ∗ TPWPJRK + 2364.9656

ZTDCHAN = 5.7592 ∗ TPWCHAN + 2351.0948

ZTDCPN = 5.8509 ∗ TPWCPN + 2331.1833

ZTDSOKA = 5.8077 ∗ TPWSOKA + 2349.7293

ZTDNKSW = 5.2141 ∗ TPWNKSW + 2356.6251

ZTDKMT1 = 5.5506 ∗ TPWKMT1 + 2322.0873

ZTDKMT2 = 5.5841 ∗ TPWKMT2 + 2327.3091

ZTDDPT9 = 5.3745 ∗ TPWDPT9 + 2342.7058

ZTDNNKI = 5.4509 ∗ TPWNNKI + 2300.7617

ZTDCMU = 6.0648 ∗ TPWCMU + 2252.4613

(1)

where ZTDs was the ZTD at station s and TPWs was the collocated TPW
at the same station. The slope of the ZTD (mm) per TPW (mm) for every
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station was close to the mean slope of 5̃.6 mm/mm. However, the offsets
differed between stations, because of altitude differences, that we will address
in Section 3.

3 Modeling of ZTD

We have seen that the ZTD depended on both the TPW and GNSS receiver
station altitudes. To simplify the problem, we derived a relationship between
the ZTD and the TPW for all stations in a generic form, by first considering
only the effect of altitude and then finding the effect of the TPW. Finally, we
combined the two effects together into a final form.

3.1 Ellipsoidal Height Dependency

Based on 1-year GNSS data and Thailand’s geophysical area, the most
frequently occurring of TPW was in the range of 50–52 mm. We then decided
to use the TPW value at this bin to find the relationship between the ZTD and
altitude. The mean ZTDs associated with the TPW in the 50–52 mm bin for
every station were plotted against station altitude in Figure 4: this showed
that the ZTD decreased logarithmically with altitude, i.e., fitted a model in
the form of a∗log(b∗h+ 1) + c. The coefficients in this model that best fitted
the data are shown in (2):

W (h) = −48.64∗log (0.0128∗h + 1) + 2640, (2)

where W is the ZTD in the TPW 50–52 bin and h represents the ellipsoidal
height in meters. This equation is valid for h ≥ –1/0.0128, about –78 m.

Figure 4 Relationship between the ZTD and ellipsoidal height for TPW bin at 50–52 mm.
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3.2 TPW Dependency

We removed the ZTD altitude dependency for each station at their respective
altitudes by subtracting (2) from (1). This aligned the ZTDs for all the 12
stations. The results are shown in Figure 5. The ZTDs for all the 12 stations
were then close to linearly dependent on the TPW.

A linear regression analysis showed that the relationship between the
ZTD and TPW can be modeled as:

ZTD0 = 5.682 ∗ TPW − 294.7, (3)

where ZTD0 is the ZTD with no height dependency.

3.3 Combining the Model

As mentioned earlier, the ZTD was dependent on both the TPW and ellip-
soidal station height. By combining (2) and (3) we obtained a preliminary
model for the ZTD at any station as

M (tpw, h) = 5.682 ∗ tpw − 48.64 ∗ log (0.0128 ∗ h + 1) + 2345.3 (4)

where M is the preliminary model of the ZTD given the tpw and h. This
shows that the ZTD signals decreased logarithmically with height and linearly
increased with TPW with a slope of 5.682 mm/mm. This means that for every
1 mm change in the TPW, there was a change of 5.682 mm in the ZTD delay
signal.

To validate the accuracy of this model, we plotted M(tpw,h) as a function
of the TPW for every station by substituting h for the actual altitude in (4).

Figure 5 ZTD vs TPW after removal of altitude dependency.
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Figure 6 Preliminary model with observation data from 12 stations.

Table 2 Differences between calculated and observed ZTDs
Ellipsoidal Error (mm)

No. Station Id. Height (m) Mean S.D.
1 NKNY -13.80 -2.94 18.80

2 SPBR -13.18 -15.79 19.90
3 PJRK -11.83 13.54 18.38
4 CHAN 7.86 19.62 18.49
5 CPN 9.15 6.31 18.74
6 SOKA 18.81 23.91 17.41
7 NKSW 21.32 0.29 20.29
8 KMT1 25.39 -13.70 17.55
9 KMT2 28.49 -5.12 18.11
10 DPT9 38.08 2.60 16.85
11 NNKI 150.48 -1.02 30.75
12 CMU 309.02 2.13 20.60

The resulting 12 solid curves for each site (in Figure 3) were overlaid with
obtained measurement data (dash line). The results are shown in Figure 6. It
is clear that the preliminary ZTD model obtained in (4) was consistent with
the observation data.

The differences between the ZTD calculated from the model and the
observed ZTD data at each station were reported as mean errors and standard
deviation (Table 2). The overall bias and standard deviation calculated from
all the 12 stations data were 2.42 mm and 22.81 mm.
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4 Fine-Tuning the Model

4.1 ZTD Residual Errors

In Figure 7, the mean difference (bias) between the measured data and data
calculated from the ZTD model is shown as a function of the TPW. The
error bars indicate the standard deviation of the difference at each TPW bin.
We did not consider differences for TPW < 10 mm and TPW > 70 mm
to be statistically significant, because of small number of the data points.
Therefore, we decided to quality control the mean difference within the TPW
range between 10 and 70 mm as shown in Figure 7. The mean bias for the
TPW between 60 and 70 mm had a negative slope, indicating that the model
was overestimated linearly over the ZTD. We believe that the residual errors
in this TPW range were either because the simple linear model was not able
to capture the GNSS ZTD signal accurately or because the GNSS ZTD had
become saturated beyond TPW > 60 mm. The situation for TPW > 60 mm is
beyond the scope of this paper; therefore, here, we focused only on correcting
the residual errors of the ZTD model for the 10–60 mm range of the TPW.
Nevertheless, we believe that the model is practically valid for the entire range
of possible TPW even though some residual error may still remain.

4.2 Bias Correction with PDF Matching

One way to correct the residual error in the ZTD model is by using a Proba-
bility Distribution Function (PDF) matching technique described hereunder.
This technique aims to compute a correction to a variable, in this case a

Figure 7 Mean differences between the observed and calculated ZTD as a function of TPW.
Error bars were derived from measured and model.
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ZTD model, so that the resulting corrected values “matched” underlining
reference values. In our case, we computed the ZTD correction (∆ZTD) to
the preliminary ZTD model so that the corrected ZTD model “matched”
the observed ZTD. Instead of “matching” the PDF directly, we derived the
correction through a Cumulative Distribution Function (CDF), since the PDF
is the derivative of the CDF and the CDF correction is more easily imple-
mented. Figure 8(a) shows the CDF of the observed ZTD and the preliminary
ZTD model. The ZTD correction (∆ZTD) to the preliminary ZTD model that
results in a “match” between the PDF of the corrected model and the PDF of
the observed ZTD is shown as the red curve in Figure 8(b). In order to cover
the full ZTD range, we implemented a third-order polynomial fit to the data

∆ZTD (x) = −3.409 ∗ x3 + 1.788∗x2 − 4.634 ∗ x + 1.842 (5)

where x is the preliminary model and M (tpw,h) was calculated by (4). Finally,
we combined (4) and (5) to form the final ZTD model:

ZTD (tpw, h) = 5.682∗tpw−48.64∗log (0.0128∗h + 1)+2345.3−∆ZTD
(6)

To verify the validity of the residual error correction, we drew density scatter
plots between the measured ZTD and the model (Figure 9), showing the
residual error before and after correction. The average error of the means
for the final model decreased from 2.42 to −0.37 with a comparable standard
deviation with respect to the preliminary model. However, the final residual
error for TPW > 60 mm remained underestimated relative to the observed
signal as described in Section 4.1.

Figure 8 (a) CDF of the preliminary ZTD model and the observed ZTD. (b) ZTD correction
function for the preliminary ZTD model.
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Figure 9 Density scatter plots and mean error bars of the preliminary model (left) and the
final model (right).

5 TPW Retrieval

5.1 TPW Inversion Method

We can solve for the TPW using the ZTD model derived in (6). We used
maximum likelihood estimation to search for the TPW solutions. Given a
GNSS receiver station altitude, we searched through all possible TPW values
within a [0, 80] mm range in 0.1 mm step resolution and found the TPW that
minimized the cost function:

Cost function =
(ZTD −M(tpw, h))2

std
, (7)

where std is the standard deviation of the M(tpw,h). The value for the std
was 23.18 mm (Figure 10b) which was the standard deviation of the entire
observation data from all the GNSS receiver stations in the period between
July 2017 and August 2018.

The resulting TPW retrieval values for the whole observation period
are shown in Figure 10. Figure 10a shows the histogram of the differences
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Figure 10 TPW retrieval from ZTD model. (a) TPW difference histogram. (b) ZTD
difference histogram. (c) TPW PDF comparison and (d) TPW scatter plots.

between retrieved TPW and TPW trained by the GDAS, with a mean bias
of 0.059 mm and a standard deviation of 3.83 mm. Figure 10c compares the
TPW PDFs from the retrieval and the GDAS. Figure 10d shows the TPW
scatter plots.

5.2 Validation Result

To validate our TPW retrieval results, we selected an independent ZTD
dataset from the KMT2 station over a 1-month period in January 2019 and ran
the model on it. The resulting TPW time series is shown as the blue curve in
Figure 11a, and the corresponding TPW from the GDAS is shown as the red
curve. Although there was some noise in the retrieval, one can see that the
retrieved TPW tracked that of the GDAS TPW very well. This noise could
be easily reduced by using a sample average running window. Figure 11b
shows the histogram of the TPW difference. The mean bias was 1.8337, and
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Figure 11 TPW retrieval from KMT2 station.

the standard deviation was 2.8. The TPW accuracy of 2.8 was comparable
to the radiometer retrieval and the GPS retrieval from Mears et al. [1]. The
statistics would be significantly improved with a sample average running
window.

6 Conclusion

The Zeneith Total Delay (ZTD) is a measurement of the delay in receiving
signals from Global Navigation Satellite System (GNSS) satellites which
are caused mainly by the presence of the atmospheric water along its path
to the surface. The ZTD delay signal provided us with an opportunity to
measure the TPW indirectly. We processed the ZTD signals from the 12
GNSS ground base stations located at different altitudes in Thailand and
then collocated the ZTD with the TPW variables in the GDAS NWP model
to develop a forward model empirically. We found that the ZTD signals
decreased logarithmically with height and linearly increased with the TPW
with a sensitivity of 5.682 mm/mm. The residual errors were further corrected
by using a PDF matching technique. The final model exhibited a standard
deviation of 23 mm. The resulting model was tested for the TPW retrieval
using an independent dataset from a single GNSS station over a month of
data: the TPW retrieval showed a standard deviation of 2.8 mm. This model
is very straightforward to implement and can produce the TPW measurements
within an acceptable accuracy from the ZTD observations; making it suitable
to be used in the existing ground-based GNSS receivers to generate the TPW
measurements in near real-time.
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