
A Testing Framework for Multi-Sensor
Mobile Applications

Darian Frajberg, Piero Fraternali, Rocio Nahime Torres,
Carlo Bernaschina and Roman Fedorov

Dipartimento di Elettronica, Informazione e Bioingegneria
Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milan, Italy
E-mail: darian.frajberg@polimi.it, piero.fraternali@polimi.it,
rocionahime.torres@polimi.it, carlo.bernaschina@polimi.it,
roman.fedorov@polimi.it

Received 26 November 2018; Accepted 11 April 2019;
Publication 06 May 2019

Abstract

Outdoor mobile applications are becoming popular in many fields, such
as gaming, tourism and environment monitoring. They rely on the input
of multiple, possibly noisy sensors, such as the camera, Global Position-
ing System (GPS), compass, accelerometer and gyroscope. Testing such
applications requires the reproduction of the real conditions in which the
application works, which are hard to recreate without automated support.
This paper presents a capture & replay framework that automates the testing
of mobile outdoor applications; the framework records in real-time data
streams from multiple sensors acquired in field conditions, stores them, and let
developers replay recorded test sequences in lab conditions, also computing
quality metrics that help tracing soft errors.

Keywords: Mobile sensing, Regression testing, Mobile Augmented Reality,
Context simulation.

Journal of Mobile Multimedia, Vol. 15 1, 1–28.
doi: 10.13052/jmm1550-4646.1511
c© 2019 River Publishers

2 D. Frajberg et al.

1 Introduction

Outdoor mobile applications support the activity of users in field conditions,
where the task at hand requires the processing of inputs from multiple sensors.
Exemplary applications are maps (e.g., Google Maps1), touristic guides (e.g.,
mTrip2), activity tracking (e.g., Garmin Connect3) and augmented reality
(e.g., Pokemon Go4). The distinctive characteristics of such applications are
their dependency on multiple, heterogeneous, and often noisy sensors, in
addition to the need to process sensor data streams in real-time to deliver
a proper user experience. For example, a sightseeing Augmented Reality
(AR) app, such as PeakLens5 or PeakAR6, must support mountaineers during
their trips by processing data streams from the Global Positioning System
(GPS), compass, accelerometer, gyroscope, and even from the camera, if the
application supports the identification and overlay of objects of interest (e.g.,
mountain peaks) onto the camera view.

Testing an outdoor mobile application requires verifying its behavior, in
terms of failures, soft errors, or performance, in working conditions. Such
working conditions, also called context in [1–3] comprise the input values of
all the sensors on which the application relies for its functioning. Building a
test set that reproduces working conditions faithfully is challenging because
most sensors are extremely noisy and their accuracy varies greatly [4], not
only on different mobile devices, but also on the same device in different
operating conditions (e.g., GPS positioning can be affected by meteorological
conditions, compass orientation by the proximity of an electrical source).
Furthermore, it is also necessary to take into account the temporal correlation
of multiple sensor data streams; for example, in an application that overlays
information on the screen based on what the user is looking at, the usage
context is composed of the sequence of positions from the GPS sensor,
the sequence of orientations of the device from the compass sensor, the
sequence of pitch and roll values of the device from the accelerometer and
the gyroscope, and the sequence of view frames from the camera. Such
sequences are correlated, because the content of the camera frame at a given
time depends on the position, orientation, pitch and roll data. In particular,

1http://maps.google.com
2http://www.mtrip.com
3http://connect.garmin.com
4http://www.pokemongo.com
5http://www.peaklens.com
6http://peakar.salzburgresearch.at

A Testing Framework for Multi-Sensor Mobile Applications 3

the development of Mobile Augmented Reality (MAR) applications with
sophisticated Computer Vision modules, such as [5–8], exploit many of the
previously mentioned sensors and may benefit from a mechanism to assess
their performance realistically.

The goal of testing can be the identification of the insurgence of hard
errors, which cause the application to fail, the quantification of performance
properties, or the verification of soft errors, i.e., the occurrence of bugs that
do not cause the application to fail, but nonetheless degrade its behavior
with respect to some desirable characteristic that impacts user’s acceptance.
Investigating soft errors requires defining the property to observe, formalizing
quality metrics for its evaluation, extracting the values of the target prop-
erty from applications runs, and comparing the extracted values with some
reference, which acts as a gold standard (i.e., a representation of what is ideal
for the user).

Figure 1 portraits the process of testing for soft errors a mobile application
that relies on multiple sensors.

The Acquisition and correlation step collects input data from multiple data
sources and manages their dependencies and temporal correlation; it outputs
a test sequence, which is a temporal series of values, one per type of input.

The Feeding step prepares the ground for executing a test run of the
application on a test sequence. It encodes the test sequence in the format
required by the execution environment and submits it for processing.

The Execution step actually runs the test session, by executing the appli-
cation with the test sequence as input. In the case of a mobile application, the
execution can be performed on board the device or in a simulator.

The Property extraction step observes an execution run to fetch the values
of the property under examination. This can be normal termination, if the
testing goal is to uncover failures, resource usage or execution time, if the

Figure 1 Testing process of a multi-sensor mobile application.

4 D. Frajberg et al.

testing goal is to analyze performance, or an application dependent property,
if soft errors are the target.

The Evaluation step concludes the process by reporting the outcome of
execution runs. To assess performance and soft errors, the evaluation must
characterize the (un)desired behavior by metrics. Such metrics can be the
deviation of a directly observable variable from a target value (e.g., the
response time exceeding a threshold) or may require comparing some output
of the application with an example providing a quality bound (e.g., evaluating
the error in tracking the user’s location during motion can be done by
comparison with a correct sequence of positions; evaluating the misplacement
of information over objects on the screen can be done by comparison with a
correct sequence of 2D screen object coordinates).

The implementation of the testing process of Figure 1 poses several
challenges. The creation of test sequences in the Acquisition and correlation
step must cope with the heterogeneity and dependencies of input data. Albeit
model-driven data generators and databases of traces exist for several classes
of sensors (e.g., network connectivity [9], position [10], motion [11]). The
construction of multi-sensor test sequences by means of the temporal sampling
of independent data streams for the different sensors is inadequate for testing
applications that have interdependency of input values and for evaluating
properties for which sensors interdependency cannot be ignored; for example,
assessing the presence of soft errors in the screen position of geo-referenced
information during the user’s motion requires considering the interdependency
between camera content and compass position, orientation, pitch and roll.
In such a situation, a multi-sensor data capture approach, enabling the
simultaneous recording of sensor values in field conditions, may be the only
viable solution to obtain realistic test sequences and correctly reproduce the
usage context for testing purposes. However, the cost of building a multi-
sensor data capture tool may be nearly equivalent to that of building the
application itself.

The Feed step must be able to supply the Execution with the test sequence
in a way that faithfully reflects the reading of sensor in field conditions. If
execution is performed in the device, this requires interfacing the component
that implements the Feed step to the sensor management services of the mobile
operating system; if execution is emulated, the challenge is ensuring that the
emulator can be made to supply values to the application at the same rate that
would be experienced in the real device [1].

The implementation of the Property extraction step distinguishes the case
in which the observed property can be computed without access to the internal

A Testing Framework for Multi-Sensor Mobile Applications 5

structure of the application and the case in which such access is required.
Whereas failures and performance issues can be detected without access to the
source code, soft errors, being application dependent, may not be observable
unless the source code is instrumented to export the application status from
which the target property can be observed and the metrics computed.

Finally, the challenge of Evaluation is the encoding of the testing goal
into a computable metrics, whose evaluation may require the construction of
a gold standard. The gold standard is a mapping between each element of
the test sequence and the corresponding value of the observed property that
represents a correct or user acceptable output, given that context. The creation
of the gold standard is typically a manual procedure, either because it involves
human judgment (deciding what is acceptable) or because an algorithmic
solution would have the same complexity (and potentially suffer from the
same defects) of the system under test.

This paper further extends the work presented in [12] discussing the expe-
rience of building a testing framework for mobile multi-sensor applications,
evaluated on a considerable number of sequences for a case study consisting
of an outdoor Augmented Reality application for the real-time mountain peak
identification and on-screen labeling; the interface of such application is shown
in Figure 2.

Figure 3 gives an example of soft error in the positioning of the peaks. For
the same sensor input (position, orientation, pitch, roll and camera frame), a

Figure 2 User interface of the multi-sensor mobile application under test
(www.peaklens.com); the application uses multi-sensor input data to compute the position of
visible peaks and label them. The testing goal is to uncover soft errors that cause peak labels
to be misplaced.

6 D. Frajberg et al.

Figure 3 A soft error that cause peak labels to be misplaced.

defect in the application configuration causes the peak labels to be placed with
an horizontal offset with respect to the correct screen coordinates.

In the reported case study, the illustrated testing process and framework
are characterized by the following aspects:

• A test sequence for the application consists of a multi-sensor tem-
poral series, comprising the correlated values of the GPS, compass,
accelerometer, gyroscope (if available) and camera sensors.

• Test sequence acquisition and correlation are performed by a Capture
Module, implemented in the mobile device, which records test sequences
in field conditions.

• The feeding of the test sequence is implemented by a Replay Module,
which services (replays) the elements of a test sequence reproducing the
temporal layout and data correlation captured in the field.

• Application execution can be performed both in the mobile device and
on an emulator (in the case study, the Android device is used).

• The extracted property for evaluating soft errors is the mountain peak
position; a peak position is defined as the pair of 2D screen coordinates
of the camera frame at which the summit of a mountain appears and
is used to label the peak (as visible in Figure 2). Such property can be
computed in two ways: by instrumenting the source code and without
instrumentation, by capturing and analyzing the application’s screen.

• Evaluation is performed by means of metrics that compare the peak
positions extracted from the application and the “correct” peak positions.
The metrics employ a gold standard data set created with a crowdsourcing

A Testing Framework for Multi-Sensor Mobile Applications 7

system that let crowd workers manually specify the position of visible
peaks in a series of mountain images.

The contributions of the paper can be summarized as follows:

• We introduce the problem of multi-sensor mobile application testing,
along the line of previous works such as [1–3]; unlike prior works,
which focused on the fidelity of replaying composite sensor sequences
in emulated environments [1], on scalability of testing [3], or on the
simulation of usage context at different levels [2], we concentrate on
the specific scenario of assessing soft errors in multi-sensor mobile
applications, exploiting context traces captured in the field.

• We introduce the architecture of a framework for testing multi-sensor
mobile applications according to the process illustrated in Figure 1 and
discuss the essential design decisions and rationale.

• We report the evaluation of the proposed testing framework in a case
study addressing the evaluation of soft errors in a real word Augmented
Reality multi-sensor mobile application.

• We highlight the limitations of the realized framework and the possible
paths to its generalization.

The paper is organized as follows: Section 2 surveys the related work
on mobile application testing, context simulation, and multi-sensor mobile
application testing; Section 3 presents the architecture and components of
the proposed multi-sensor mobile testing framework; Section 4 reports on its
application to a case study of a mountain peak identification mobile applica-
tion; Section 5 discusses the framework limitations and how to generalize the
proposed approach; finally, Section 6 draws the conclusions and provides an
outlook on the future work.

2 Related Work

Developing and testing applications that operate in complex working condi-
tions has become a prominent research task, fueled by the widespread adoption
of mobile applications that employ multiple sensors [13–15].

In the software engineering literature, the general conditions in which an
application operates are abstracted into the concept of context [16,17], defined
as the information that characterizes any entity relevant to the interaction
between the user and an application. Context-aware development has been
specifically studied in the case of mobile applications [18], which provide a

8 D. Frajberg et al.

particularly rich notion of context that embraces the user’s state, the device
capability, the sensed environment, and the network connectivity state.

Testing context-aware applications is a special sub-topic of context-aware
software development, which recasts the classical methods of conventional
application testing to the specific case in which the system under test requires
the supply of context information.

The recent work [1] focuses on the generation of context information
for the purpose of testing mobile applications in an emulated environment.
The authors model the context as a set of modalities, each of which corre-
sponds to a facet of the contextual information, such as network connectivity,
position, motion sensors, and camera. They illustrate the design of a tool,
called ContextMonkey, which fetches data for each context modality from
heterogeneous sources, builds an integrated context stream and feeds such
stream to the emulation environment, where it is exploited for running a test
session. ContextMonkey is evaluated primarily with respect to its capacity
of supplying the context information to an application inside the emulator
with fidelity, i.e., at the same rate as in the real working conditions. An
interesting collateral finding of the assessment is that the synthetic, model-
driven construction of multi-sensor context streams, evaluated in a mobility
use case, could not fully reproduce the semantic complexity of the real context
streams recorded in the field; this observation is one of the motivations of our
capture-based approach. Our work shares with [1] the focus on multi-sensor
application testing; however, differently from ContextMonkey, our focus is
not the fidelity of the replay of context streams during emulation, but the use of
multi-sensors usage traces recorded in the field for the discovery of soft errors.

The VanarSena tool [19] instruments the binary code of the application
to perform testing in a way that achieves both coverage and speed. The tool
runs on a cloud and lets developers upload the application binary code and run
multiple test sessions in parallel to emulate user behavior, network conditions,
and sensor data, returning a failure report.

The dynamic testing of (non multi-sensor) mobile applications via con-
trolled execution has also been pursued in a number of works. For example,
Machiry et al. [20] describe a system, called Dynadroid, whereby developers
can observe, select, and execute Graphical User Interface (GUI) and system
events in a mobile device emulator, so as to drive black box analysis of test
runs. Other related studies mostly focused on capture and replay at the level
of GUI input-output events, without considering the specificity of mobile
devices [21,22]. Conversely, Gomez et al. [23] present an approach specifically
conceived for mobile devices, in which they record and replay Android apps

A Testing Framework for Multi-Sensor Mobile Applications 9

usage traces by replicating GUI gestures and sensor readings. However, their
tool cannot replay such services such as camera preview and GPS location,
which are critical signals for sensor- and location-based applications. Our
approach is similarly based on the observation of application runs, but focuses
on capturing and replaying multi-sensor data; it could be extended with a
system and GUI event capture, as in [20] and [23], to create test sessions that
span all categories of input events: sensor, UI and system.

The use of a capture and replay approach for testing of mobile applications
is reported in [24]; the authors present a tool for the dynamic analysis of
executions, the debugging of deployed applications, and regression testing. A
relevant finding is that the effectiveness of regression testing highly depends
on how well the tool reproduces the way the program is used in the field. The
accomplishment of such an objective in a multi-sensor mobile application
requires a non trivial capture and replay architecture, which is a main
contribution of our work.

3 Architecture of the Testing Framework

In this section, we illustrate the architecture of the framework that implements
the testing process of Figure 1. In the next section, we discuss its application
to the testing of PeakLens [7], a multi-sensor Augmented Reality mobile
application, that identifies mountain peaks and overlays them in real-time
on the camera view.

3.1 Framework Architecture

The proposed architecture relies on a capture and replay framework, which
enables the collection of correlated multi-sensor traces in field conditions and
produces test sequences that can be used for the controlled execution of the
system under test both in the mobile device and in an emulator. Figure 4 shows
the general system organization.

The Capture Module executes in the mobile device and orchestrates
the acquisition of multiple sensor data streams. It interfaces to the sensor
Application Programming Interface (API) of the mobile device: the Data
Acquisition Manager sub-module handles the parallel execution of the data
acquisition threads, one per sensor, and the buffering of the sensed values.
The Synchronization Manager is responsible for the temporal alignment of
the sensor readings. One sensor is registered as the master, and its callback
determines the synchronous reading of the other ones from the buffers. This

10 D. Frajberg et al.

Figure 4 Architecture of the capture and replay framework.

approach takes into account the fact that the camera sensor is normally the
bottleneck in sensor data acquisition. If the camera sensor is registered as
the master, the acquisition of each camera frame triggers the reading of the
remaining sensor values from the buffers at the time of the callback. The
Storage Manager formats the multi-sensor readings in the form of a test
sequence, encoded in JavaScript Object Notation (Json) format and archived
on the local storage of the device. It is worth to mention that the Capture
module is executed independently and not in parallel with the Application, as
otherwise the outcome would be a lower performance for both of them.

The Replay Module can be executed in the mobile device and in a
workstation, in conjunction with a mobile emulator. It comprises a Sequence
Manager, which de-serializes an input test sequence into main memory, and
a Sequence Streamer, which feeds the sensor data to the (emulated) sensor
API of the execution environment. The Sequence Streamer runs in a single
thread and handles the feeding of multiple sensor values; it synchronizes on the
timestamp of the master (i.e., the slowest) sensor: it fetches the next master
sensor reading, gets the correlated values of the other sensors and submits
them to the execution environment. The submission rate of the Sequence
Streamer is dictated by the acquisition timestamps recorded in the field by
the Capture Module. To reproduce the context as faithfully as possible, the
Sequence Streamer replays the sensor data series as it is, i.e., without checking
the ready status of the application. This mimics the fact that in slow devices
the processing rate of sensor values (typically the rate at which camera frames
can be analyzed) may be lower than the acquisition rate; this causes the loss

A Testing Framework for Multi-Sensor Mobile Applications 11

of some sensor readings during the live conditions, a situation that must be
reproduced also in the testing session.

As usual in context-based approaches that include the reproduction of
sensed values, the testing environment must support the replacement of the
real sensor APIs with mocked-up interfaces that can serve predetermined data.
In the case of emulated execution, the emulator makes the supply of archived
sensor data transparent to the application. Conversely, execution in the mobile
device requires the installation of a sensor emulation library, which exposes
its own interface. Therefore, the execution within the testing environment
requires an alternate version of the application, in which the native sensor API
calls are replaced with calls to the emulated APIs.

Figure 4 also shows the components for extracting the properties necessary
for the assessment of soft errors from the test sessions (Logger and Property
Observer). These modules are application-specific and are discussed in the
next section.

3.2 Implementation

The architecture of Figure 4 was implemented in Java and supports the testing
of Android applications (version 4.0 Ice Cream Sandwich and above). The
Capture Module has been interfaced with the following sensor APIs: the
Android CameraAPI7, the Google Location Services8, and theAndroid Sensor
API9. The latter provides callbacks for different sensors, including gyroscope,
accelerometer, and compass. Such information can be interpolated in order to
obtain the resulting rotation matrix and orientation vector.

The Storage Manager serializes sensor data into test sequences represented
in the Json format illustrated by the following fragment:

{"imageName":"20170430_115643_b52b96d9_1.jpg",
"rotation":1, "sensorAccuracy":3, "orVector":"[-2.373061,
-0.20468707, 3.1223032]", "rotMatrix":"[0.15508807,
0.71608853, 0.6805881, 0.0, 0.13268146, -0.6978047,
0.70394254, 0.0, 0.97896814, -0.018886, -0.20326078, 0.0,
0.0, 0.0, 0.0, 1.0]", "timestamp":1493546203647}

7https://developer.android.com/guide/topics/media/camera.html [accessed 10 April 2019]
8https://developers.google.com/android/reference/com/google/android/gms/location/Locati

onServices [accessed 10 April 2019]
9https://developers.android.com/guide/topics/sensors/sensors overview.html [accessed

10 April 2019]

12 D. Frajberg et al.

The value of the camera sensor (frames) are stored externally as files, so
that the captured frames can be reused more easily for other purposes (e.g., to
build the gold standard data set, see Section 4).

The Sequence Streamer of the Replay Module can be interfaced with
the Android Studio Emulator. For execution in the testing environment, the
alternate version of the application under test must replace the calls to the
Android native APIs with calls to the correspondent emulation library APIs.

The addition of another sensor API requires the following steps: 1) the
implementation of a SensorEventListener class that listens to the changes in
the sensor, computes the values and notifies this event to the application; 2) the
registration of the new SensorEventListener to the Data Acquisition Manager
of the Capture Module; 3) the addition of the sensor value representation in the
Json format of the test sequence; 4) the implementation of a sensor play-out
class and its registration in the Sequence Streamer of the Replay Module.

4 Evaluation in the Case Study

The testing framework described in Section 3 has been applied to the PeakLens
mobile application [7], whose interface is shown in Figure 2. The application
is designed to work in outdoor conditions; it acquires the user’s location, the
orientation of the device from the compass sensor, the motion of the device
from the gyroscope and accelerometer, and the current view from the camera
frames. It analyzes the incoming camera frames and, for each frame, detects
the mountain skyline, marks the peaks visible on the skyline with an icon,
and labels each identified peak with relevant metadata (name, altitude and/or
distance from the viewer). The skyline extraction relies on a computer vision
component that analyses the camera frame and detects the pixels in the image
that correspond to the skyline (Figure 5 shows an example of the skyline
detection).

The peak identification and labeling function exploits a Digital Elevation
Model (DEM) of the Earth and a repository of peak metadata and matches the
mountain summits of the DEM to the skyline peaks extracted from the camera
frame, to compute the correct 2D screen coordinates of the visible peaks.
The matching procedure is the core of the application: the user’s location, the
device orientation values, and the camera field of view are exploited to generate
a bidimensional virtual panorama from the DEM point cloud (Figure 6 shows
an example of the virtual panorama generated from the DEM). Then, the
DEM and the peaks metadata repository are queried to determine the list of

A Testing Framework for Multi-Sensor Mobile Applications 13

Figure 5 The skyline extracted from the computer vision module from the frame of Figure 2.

Figure 6 The virtual panorama computed from the DEM, queried with same location and
orientation of the device that produces the screen image of Figure 2.

visible peaks, given the position and orientation of the device; hidden peaks
masked by the terrain configuration are excluded; the artificial skyline from
the virtual panorama (shown in Figure 6) is aligned with the skyline extracted
from the frame (shown in Figure 5) and the visible peaks are projected from the
3D space to the 2D space, obtaining the screen coordinates. Based on the 2D
coordinates, the visible peaks are ranked by a visual relevance criterion, which
is applied in the cases in which more peaks are visible than could displayed on
the device small screen. Finally, a GUI component selects the peaks to show
based on the ranking and the size of the screen and overlays the peak positions

14 D. Frajberg et al.

and metadata, producing the visualization shown in Figure 210. The motion
sensors are used to trigger the recomputation of the 2D peak positions when
the user moves the device. For offline usage, the DEM and the peak metadata
repository have been segmented and compressed and can be downloaded and
queried in the mobile device, in absence of Internet connectivity.

The essential factor that impacts the quality of the users experience is the
accuracy of labeling the peaks framed by the camera. As Figure 3 shows,
an error in the computation of the screen coordinates of one or more peaks
deeply compromises the utility of the application, as clearly revealed by the
user’s reviews. In the ideal situation, the application must be able to precisely
identify the screen coordinates of the mountain summits that appear in the
framed scene and visualize the metadata in the correct places. Soft errors in
the computation of the coordinates of peaks can be revealed by comparing
the screens produced by the application with a sequence of artificial screens
created by a user who manually labels images, as explained in the Section 4.1.
Such a set of manually annotated images constitutes a gold standard, which
can be used to compute the value of metrics that quantify the quality of the
user’s experience, as explained in Section 4.2.

4.1 Test Sequence Acquisition and Gold Standard Creation

The gold standard for assessing the application is defined as a sequence of
camera frames, in which each frame portraits an outdoor scene with a mountain
skyline and is associated with the set of 2D screen coordinates of (some of)
the visible peaks on the skyline.

An effective way to build such a gold standard sequence is to employ the
same Capture Module that is used to record the multi-sensor test sequences;
from a such sequence it is possible to extract the individual camera frames,
and manually annotate them with the 2D coordinates of visible peaks. In the
case study, the Capture Module has been employed by a panel of beta testers
to gather sequences in diverse mountainous areas around the world.

To support the manual annotation of the peak coordinates in the camera
frames, the crowdsourcing Web application (called Peak Annotator) shown in
Figure 7 has been created.

This Web interface allows a crowd worker to upload a new sequence of
multiple frames or to annotate an already existing one. When a sequence
is opened, its first frame is displayed, as shown in Figure 7. To accelerate

10The GUI comprises a More peaks button (bottom in Figure 2) to show the peaks that could
not fit in the screen.

A Testing Framework for Multi-Sensor Mobile Applications 15

Figure 7 Crowdsourcing user interface for manually annotating the positions of peaks in a
sequence of frames. The user can: 1) drag into the correct position (shown in green) candidate
peaks suggested by the system; 2) mark candidate peaks as not visible in the frame (shown
in red).

the work and allow also non experts to annotate frames, a suggestion about
which peaks should be visible is computed and displayed. To this end, the
DEM is queried with the position and orientation extracted from the test
sequence, a virtual panorama with the candidate visible peaks is displayed in
the background of the current frame, as illustrated in Figure 7; the worker can
simply drag and drop the suggested peak icons to position them in the correct
place in the camera frame. Since the default size of a captured sequence is 500
frames, the manual creation of the gold sequences with the Peak Annotator
may be a labor-intensive task. To speed-up the process, the Peak Annotator
contains a Next button, which shows the successive frame in the sequence
with the peaks already pre-positioned on the skyline. The pre-positioning
of peaks is performed by exploiting the screen coordinates of the preceding
frame and applying a correction based on the projection of the current sensor
orientation. Since the frames in the sequence are recorded at a high rate
(typically close to 30 per second) and device movements during the capture
are slow and continuous, such a simple peak pre-positioning procedure is
extremely effective in placing peaks by default; with this simple technique,
the number of drag and drop interactions needed to annotate a full sequence
is dramatically reduced: down to less than 10% of the peak positions need
to be corrected after annotating the first frame. As a further aid to evaluate

16 D. Frajberg et al.

the quality of the gold standard, the Peak Annotator contains a Play button,
whereby the user can play out the annotate sequence.

In the case study, 56 sequences have been captured and manually anno-
tated, comprising from 100 to 500 frames. They were taken with different
devices, under very diverse conditions and locations around the world, and
comprise some extremely challenging scenarios. The annotation time of a
sequence ranges from less than 5 minutes to around 25 minutes, the longest
time being necessary for 500 frames sequences with a lot of fast and irregular
device motion during the capture. Afterwards, a cross-validation task to verify
the correctness of the annotations has been performed, preserving as a result
50 correctly annotated sequences.

Furthermore, it is worth to mention the fact that in order to apply
the presented testing framework to other use cases, they would require to
instantiate their own customized tool for the construction of the corresponding
gold standard. The gold standard definition highly depends on the underlying
problem and can not be completely abstracted and generalized. Nonetheless,
the components of the interface developed for PeakLens can be taken as
baseline and further adapted for other applications without considerable effort.

4.2 Defects and Output Quality Metrics

In complex multi-sensor outdoor applications, the success of the application
depends primarily on non-functional features such as the accuracy of the
outputs, while other functions, such as the user interface, storage and network
connectivity management are comparatively simpler to implement and con-
verge to stability more easily. In the case study, the following metrics have been
defined to quantify the defects in peak positioning that may lower the accuracy
of the application. Most of them are rather generic and their application may
be suitable for other use cases focused on the augmentation of other elements
of interest instead of mountain peaks.

The Accuracy measures the fraction of peaks correctly handled, which
takes into consideration both visible peaks in the gold standard that are
projected in the frame and not visible peaks in the gold standard that are
not projected in the frame. The sequence accuracy is the average of its frames.

The Precision indicator measures the fraction of peaks positioned in a
certain frame of a sequence that are relevant (i.e., appeared also in the same
frame of the gold sequence). The overall sequence precision is the average of
the precision of every frame. It measures the quantity of false peak positions
generated by the application.

A Testing Framework for Multi-Sensor Mobile Applications 17

The Recall metric measures the fraction of peaks present in the frame of
the gold sequence that appears also in the corresponding frame of the tested
sequence. It evaluates the erroneous omission of peaks from a frame in which
they should appear11. The sequence recall is the average of its frames.

The Average Angular Error (AAE) metric quantifies the positioning
errors of all the peaks w.r.t. to the position in the gold sequence. Given a frame,
for each visible peak i = 1, . . . , n let (xi, yi) be the on-screen coordinates
computed by the application under test, while (x̂i, ŷi) be the coordinates stored
in the gold sequence. The angular error in the position of the i-th peak is
defined as:

ε(x̂i, ŷi) =
√

dx(x̂i, xi)2 + dy(ŷi, yi)2,

where

dx(x̂, x) = min(360 − f

w
|x̂ − x|, f

w
|x̂ − x|)

the angular distance (in degrees) between the tested and gold coordinate along
the azimuth axis, given the circular symmetry, f is the horizontal Field Of
View (in degrees) of the camera and w is the width (in pixels) of the image.
The definition of the angular distance along the roll axis dy(ŷ, y) is similar.
The angular error of a whole sequence is defined as the average error over all
its frames.

Finally, the Perceived Quality (PQ) metric measures the percentage of the
frames of a sequence that are “good enough”. This indicator can be regarded as
the fraction of the entire sequence time during which the user experience was
satisfactory. The definition of “good” is based on the other metrics: a frame
is good if its average angular error is lower, while peak precision and recall
are higher than given thresholds. In the case study, after several experiments,
the thresholds have been fixed at 3deg, 0.75 and 0.75 for the three indicators,
respectively.

In general, Perceived Quality is the most representative metric at first sight,
because it summarizes all the other ones. However, low values of the other
indicators may be effective in directing the search for a defect.

Frames that do not contain annotated peaks were not considered for the
evaluation. Otherwise, metrics such as the Average Angular Error would be
computed as 0 for them, which would affect the metric computation rendering
it not so realistic.

11The erroneous omission of a peak may result by, e.g, the wrong computation of peaks
occluded by the terrain configuration.

18 D. Frajberg et al.

4.3 Evaluation Testing Results

The testing consist on applying the framework described in Section 3 to the
gold sequences built as explained in Section 4.1 to evaluate the application
quality. The detection of low values of the indicators signals the insurgence
of defects, and the worsening of a value after a software update highlights
potential regression errors. Note that regression errors are particularly relevant,
because the computer vision module at the base of the peak positioning meth-
ods contains various complex heuristics and a machine learning submodule,
which can be retrained with new data to try and achieve better accuracy, and
is configured with multiple parameters, which trade accuracy with respect to
memory footprint and execution speed. Often a software update aiming at one
objective may detriment a conflicting one.

We comment the evaluation of PeakLens for 50 gold sequences and
3 application releases, which has been executed on a Google Pixel device.
Furthermore, taking into account the fact that a replay is non deterministic
and that an intensive usage of a phone may affect its performance, we opted
for executing such replays with small pauses programmed in between. The
summarized evaluation results are displayed in Table 1, while the complete
evaluation results are reported in Table A.1 in Appendix A. Due to particularly
high sensor noise detected at the beginning of the sequences, the first 25 frames
of each of them were not considered for the evaluation.

The first application release (SENSOR) represents our baseline, provided
that it does not include any intelligent computer vision module analyzing
the frames captured by the camera, but just projects the peaks based on the
orientation sensor values of the device. The resulting mean and median values
of the Average Angular Error and Perceived Quality are rather low, which
would probably imply a non satisfactory user experience.

The second application release displayed in the tables reports the indicators
for RELEASE A. This version already features the sophisticated computer
vision module, which improves significantly the performance of the applica-
tion achieving an increment in all the overall metrics. Nonetheless, there are a
few sequences in which the baseline SENSOR version had a more acceptable
performance. By inspecting such sequences we were able to determine that
many of these cases are due to flat terrains and uncertain alignments between
frame skyline and terrain. Such cases could be improved by introducing
specific heuristics able to detect them and to proceed by using just the
orientation sensors.

A Testing Framework for Multi-Sensor Mobile Applications 19

Ta
bl

e
1

Su
m

m
ar

iz
ed

ev
al

ua
tio

n
te

st
in

g
re

su
lts

SE
N

SO
R

R
E

L
E

A
SE

A
R

E
L

E
A

SE
B

A
cc

ur
ac

y
Pr

ec
is

io
n

R
ec

al
l

A
A

E
PQ

A
cc

ur
ac

y
Pr

ec
is

io
n

R
ec

al
l

A
A

E
PQ

A
cc

ur
ac

y
Pr

ec
is

io
n

R
ec

al
l

A
A

E
PQ

(%
)

(%
)

(%
)

(◦
)

(%
)

(%
)

(%
)

(%
)

(◦
)

(%
)

(%
)

(%
)

(%
)

(◦
)

(%
)

M
ea

n
90

,5
3

81
,2

7
85

,0
7

10
,6

5
21

,9
0

92
,7

9
84

,4
1

88
,8

0
6,

97
55

,6
5

93
,4

8
86

,1
2

88
,8

2
5,

48
58

,4
3

M
ed

ia
n

94
,1

4
88

,8
3

94
,7

5
6,

00
0,

55
95

,5
4

93
,0

6
97

,7
8

2,
15

71
,1

7
96

,6
5

94
,0

9
97

,8
8

1,
95

72
,7

5

20 D. Frajberg et al.

Finally, the last column of the tables refer to RELEASE B, a version that
introduced some modifications regarding the machine learning submodule
that detects the mountain skyline for the frames, followed by a different post-
processing step that is subsequently aligned with respect to the terrain. Overall,
the testing framework gave an effective feedback on the new version; the
Perceived Quality has not been affected with respect to the previous version
and therefore the performance of the release was considered acceptable.

It is worth to mention that the batch replay evaluations can be immediately
aborted to save time in case of detecting the insurgence of obvious defects
in the first iterations. In the past, we have experienced such situation when
dealing with bugs due to scale factor issues, incorrect vertical offset projections
and the manifestation of diverse problems with the computer vision module.
PQ decreased strongly in such cases, with sensible angular error increase
and loss of both precision and recall. Sequence replay permitted us to locate
the wrongly positioned peaks and to remove the defect. The overall results
obtained by the testing framework are significantly informative, but so can be
the visual inspection of the simulations in order to identify and correct specific
bugs that may appear in under specific scenarios or conditions.

5 Discussion

In this section, we discuss the limits to generalization of the proposed
framework by covering the most challenging issues to tackle and we also
assess the fidelity of the multi-sensor context simulation by experimenting
with a set of mobile devices.

5.1 Limits to Generalization

The testing framework illustrated in Section 3 has been implemented with
both the general aim of supporting multi-sensor application testing and with
the specific objective of putting it to work in the development and maintenance
of a specific application. Retrospectively, the resulting architecture exhibits
dependencies on the mobile operating system, on the emulation environment
and on the application under test.

The Capture Module of Figure 4 is the most general component, depending
only on the native sensor APIs of the Operating System. It can be extended
to new types of sensors (e.g., temperature) simply by following the steps
presented in Section 3.2. The temporal correlation of the multiple sensor
streams is achieved by synchronizing on a master sensor. This policy is

A Testing Framework for Multi-Sensor Mobile Applications 21

normally applied to synchronize on the slowest sensor; however, it is also
possible to elect any sensor as the master and synchronize the other streams
on its callbacks; for example, one may define the GPS position sensor a the
master and read from the other sensors only when an update of the location
occurs.

The Replay Module has a dependency on the virtual sensor APIs, both in
the emulated and in-device execution environment. The Sequence Streamer
is coupled to the sensor emulation libraries.

5.2 Limits to Fidelity

As in the work of Rege et al. [1], we have evaluated the limits in the
reconstruction of realistic working conditions during the testing process. Also
in our case study, the most significant challenge is the faithful reproduction of
the functioning of the camera sensor, which is the most difficult to simulate.
Since the camera sensor is the slowest one, on which the readings of the
remaining sensors depend, a prominent goal of the testing process is to achieve
a frame replay rate in the testing framework as close as possible to the one
observed during the execution of the application in field conditions. This
entails that the Capture and Replay modules should be able to acquire frames
and replay them at the same rate as the real application.

Table 2 reports the camera frame acquisition rates observed in a set of
mobile devices, chosen to have a representative range going from medium-
end models (LG G5) to high-end (Google Pixel) models. The results may vary
depending on the adopted frame size; the size considered in the case study is
640x480 pixels, which is the one normally used in the case of study for the
image analysis in mobile devices.

In general, the Capture module achieves a slightly higher frame rate than
the camera preview in the normal execution of the application.This is due to the
fact that the application execution requires more system resources for running
the computer vision algorithms. Conversely, the Replay module achieves a
lower frame rate. The reason is that camera frames are read from secondary
storage, which is slower than the access to the frames from the camera sensor.
Despite these differences, the Replay module executed in the mobile device
still represents a sufficiently good approximation of the real functioning of the
application.

The execution in the Android Emulator with the default configuration
parameters yielded an extremely low frame rate for the camera preview
(6fps at maximum). The Android Emulator can be configured to exploit

22 D. Frajberg et al.

Table 2 Comparison of the frame processing rates in the application, in the Capture module
and in the Replay module executed in the mobile device

Phone Model App (fps) Capture (fps) Replay (fps)
Google Pixel 30 30 27
Motorola Nexus 6 28 29 22
LG Nexus 5x 27 28 20
LG G5 SE 24 30 17

hardware acceleration using the Graphics Processing Unit (GPU) of the host
workstation, thus achieving a frame rate close to the one observed in field
conditions. However, in a data-intensive application as the one presented in
the case study, such acceleration alters the computation power of the emulated
device, and thus results in a far less realistic simulation. To the best of our
knowledge, Android Emulators are still unable to replicate realistically the
performance of both camera sensors and processors of real devices, which
makes them not yet ideal for testing multi-sensor mobile applications with real-
time data processing requirements over camera frame data. For this reason,
we did not proceed with the implementation of the Replay module on top of
the Emulator environment.

6 Conclusions

We have presented a capture and replay framework for the testing of mobile
applications that depend on multiple correlated sensor streams. We have
reported a case study in which the framework has supported the development
of an outdoor mountain peak identification mobile application, where the input
stream is heterogeneous and contains noisy sensor data, and the output is the
sequence of 2D coordinates of relevant objects in the camera frames. Future
work will concentrate on generalizing the framework by instantiating it for
other use case; incorporating the capture and replay also of GUI events, so
to achieve the automated testing of application usage sequences including
user’s gestures; on the integration of the framework with cloud-enabled
mobile execution services, such as e.g., Amazon AWS Mobile Farm12; on the
experimentation with mobile emulation platforms to achieve a more realistic
reproduction of field conditions; and on the construction of a web version of
the testing framework whereby developers could execute the entire testing
process completely online.

12https://aws.amazon.com/device-farm/ [accessed 10 April 2019]

A Testing Framework for Multi-Sensor Mobile Applications 23

Appendix A

Table A.1 Complete evaluation testing results
SENSOR RELEASE A RELEASE B

Accuracy Precision Recall AAE PQ Accuracy Precision Recall AAE PQ Accuracy Precision Recall AAE PQ
(%) (%) (%) (◦) (%) (%) (%) (%) (◦) (%) (%) (%) (%) (◦) (%)
1 96,50 100,00 87,16 15,12 0,00 99,62 99,68 99,02 2,06 77,05 96,67 99,26 88,77 6,50 32,00
2 86,09 80,62 73,30 14,60 0,00 97,53 95,56 98,58 2,13 81,18 96,93 94,31 97,42 2,18 81,18
3 89,46 88,14 74,89 15,39 0,00 97,52 98,11 93,95 1,09 99,79 98,87 98,67 97,79 1,42 96,63
4 88,62 84,26 73,00 9,28 10,65 85,79 80,99 72,52 10,07 12,11 80,87 74,09 59,81 8,76 18,64
5 91,68 92,70 87,56 8,68 0,00 97,87 98,45 96,60 1,34 98,52 97,45 97,33 96,66 1,47 95,57
6 96,33 91,95 97,05 3,70 56,84 96,44 90,91 98,02 2,45 78,32 96,67 93,07 96,02 2,60 81,68
7 94,89 87,99 97,82 4,08 27,22 97,11 91,88 99,76 1,20 87,50 97,64 93,92 99,76 1,14 89,44
8 97,80 95,93 96,24 2,81 53,47 99,33 98,34 99,19 1,25 96,21 99,27 98,19 99,20 1,31 97,05
9 94,98 88,93 92,00 7,85 15,58 97,65 92,58 99,32 1,04 100,00 99,53 98,96 99,39 1,18 96,84
10 98,56 97,25 94,86 4,94 0,68 99,22 97,71 98,19 2,09 82,25 99,57 99,01 98,84 1,60 98,63
11 100,00 100,00 100,00 1,92 100,00 93,75 100,00 50,00 0,51 0,00 94,19 100,00 53,51 0,71 7,02
12 46,29 6,39 6,65 59,09 0,00 46,93 10,25 12,34 58,38 0,00 56,69 24,68 25,00 39,94 0,00
13 66,78 31,53 29,71 42,82 0,00 62,04 19,48 19,68 47,33 0,00 64,47 26,44 26,16 45,13 0,00
14 94,54 68,22 96,88 6,09 28,97 93,95 66,24 92,60 6,33 25,70 94,22 67,33 92,99 6,87 25,70
15 70,69 67,30 68,26 20,64 0,00 90,73 90,36 90,35 6,38 67,94 95,87 92,58 99,16 1,72 86,12
16 94,51 86,66 100,00 2,14 93,97 93,46 84,31 100,00 2,04 96,12 93,46 84,74 99,25 1,59 99,14
17 96,62 100,00 91,54 6,62 0,00 94,75 100,00 85,31 9,25 0,00 97,36 100,00 93,40 7,16 7,42
18 98,13 100,00 94,76 3,02 55,86 99,06 98,07 99,31 1,91 96,55 99,26 98,07 99,86 1,68 97,93
19 92,90 81,02 94,83 5,82 0,42 95,92 86,19 99,74 1,34 82,95 95,56 85,45 99,38 1,39 80,63
20 89,32 70,20 94,25 5,69 0,31 95,13 81,73 99,03 1,56 70,22 93,77 79,20 97,60 3,12 52,98
21 97,91 95,30 97,64 3,45 36,42 98,79 97,16 98,96 1,43 98,95 98,72 97,14 98,79 1,58 97,89
22 94,20 92,74 88,33 7,66 0,00 97,49 93,55 98,58 1,73 73,63 97,57 94,27 98,10 1,92 69,62
23 99,52 96,89 100,00 1,60 84,86 99,63 99,59 97,97 4,21 42,70 98,73 98,78 92,97 5,54 39,73
24 96,77 88,73 99,92 2,48 89,95 99,11 96,87 99,92 2,39 80,90 96,63 91,98 94,29 2,08 93,47
25 97,25 81,16 98,37 2,94 46,29 97,21 80,69 100,00 5,41 29,97 97,61 82,49 99,70 5,57 35,31
26 97,27 96,52 88,90 6,14 0,00 97,56 96,10 90,22 8,28 18,39 91,17 90,99 48,32 4,33 5,04
27 94,41 86,50 93,19 3,08 37,37 92,96 89,69 87,15 9,82 18,79 81,07 85,30 47,97 8,32 0,00
28 99,65 99,95 98,92 2,11 100,00 98,27 97,76 95,99 1,25 100,00 99,15 98,55 98,49 1,13 100,00
29 76,34 57,30 56,42 22,09 0,00 77,91 60,38 58,46 20,55 0,00 94,25 83,82 98,53 1,50 98,04
30 93,61 70,42 96,51 5,45 9,42 94,47 69,55 97,03 1,93 23,04 93,61 68,85 94,42 4,45 2,62
31 95,46 92,82 95,76 4,48 29,18 97,64 95,79 98,64 1,51 82,56 96,53 95,20 96,56 1,50 76,16
32 91,37 77,24 94,74 5,32 24,63 90,48 74,82 93,22 5,21 37,68 90,48 75,20 93,73 5,59 34,11
33 93,04 100,00 76,03 3,88 45,88 95,15 100,00 83,53 2,17 76,47 93,87 94,85 86,52 2,97 75,88
34 93,75 66,67 100,00 5,97 0,00 93,75 66,67 100,00 9,35 0,00 99,68 98,31 100,00 11,77 0,00
35 94,07 72,08 100,00 6,40 0,00 94,52 76,06 97,59 0,79 23,10 95,23 77,50 100,00 1,48 28,93
36 92,87 100,00 78,60 23,82 0,00 100,00 100,00 100,00 1,66 99,56 100,00 100,00 100,00 1,14 100,00
37 94,07 82,14 99,83 2,44 66,84 92,69 80,70 94,64 1,52 64,29 93,28 81,63 95,58 1,45 64,80
38 86,54 50,48 100,96 2,20 0,00 86,95 51,44 100,96 6,03 0,00 86,54 50,48 100,96 5,39 0,00
39 96,36 94,36 95,08 4,21 6,37 98,32 97,73 97,46 2,48 85,14 96,83 97,26 93,06 1,63 93,84
40 96,36 89,68 96,09 4,94 2,95 99,43 98,77 99,00 1,33 97,26 99,19 98,21 98,74 1,36 96,63
41 85,50 63,54 88,60 11,39 0,00 90,24 69,33 99,58 1,42 21,47 91,21 73,58 99,72 1,83 26,11
42 85,99 100,00 60,53 17,95 0,00 92,60 99,58 82,07 8,02 50,74 99,61 99,09 99,72 1,54 96,21
43 93,09 89,89 83,47 11,48 0,00 98,32 98,00 96,95 2,66 79,58 99,19 98,95 98,63 1,34 93,89
44 98,35 96,12 96,42 6,03 0,00 99,38 98,02 99,25 1,84 95,58 98,76 94,30 99,49 1,55 88,21
45 92,06 89,40 77,16 19,98 0,00 94,48 89,65 88,53 16,93 0,00 93,05 90,14 80,74 19,83 0,00
46 75,58 52,08 74,39 17,05 0,00 92,91 79,07 100,00 3,70 66,74 93,16 80,41 99,37 2,62 68,63
47 57,05 2,24 2,24 59,49 0,00 59,29 12,18 12,18 42,21 0,00 69,55 31,41 31,41 16,79 23,72
48 76,42 60,14 69,65 18,92 1,68 82,18 71,05 76,81 17,85 17,89 83,75 72,46 79,09 15,80 17,26
49 98,46 100,00 97,06 6,66 0,00 98,91 99,57 98,08 2,94 72,12 98,91 99,79 98,40 1,99 81,09
50 98,37 100,00 98,16 2,34 69,05 94,95 99,86 93,51 2,04 73,68 98,21 99,74 97,96 2,41 69,47
Mean 90,53 81,27 85,07 10,65 21,90 92,79 84,41 88,80 6,97 55,65 93,48 86,12 88,82 5,48 58,43
Median 94,14 88,83 94,75 6,00 0,55 95,54 93,06 97,78 2,15 71,17 96,65 94,09 97,88 1,95 72,75

References

[1] Manoj R Rege, Vlado Handziski, and Adam Wolisz. Realistic context
generation for mobile app testing and performance evaluation. In
Pervasive Computing and Communications (PerCom), 2017 IEEE
International Conference on, pages 297–308. IEEE, 2017.

24 D. Frajberg et al.

[2] Vaninha Vieira, Konstantin Holl, and Michael Hassel. A context
simulator as testing support for mobile apps. In Roger L. Wainwright,
Juan Manuel Corchado, Alessio Bechini, and Jiman Hong, editors,
Proceedings of the 30th Annual ACM Symposium on Applied Computing,
Salamanca, Spain, April 13-17, 2015, pages 535–541. ACM, 2015.

[3] Chieh-Jan Mike Liang, Nicholas D. Lane, Niels Brouwers, Li Zhang,
Börje Karlsson, Hao Liu, Yan Liu, Jun Tang, Xiang Shan, Ranveer
Chandra, and Feng Zhao. Caiipa: automated large-scale mobile app
testing through contextual fuzzing. In Sung-Ju Lee,Ashutosh Sabharwal,
and Prasun Sinha, editors, The 20th Annual International Conference
on Mobile Computing and Networking, MobiCom’14, Maui, HI, USA,
September 7-11, 2014, pages 519–530. ACM, 2014.

[4] Jeffrey R Blum, Daniel G Greencorn, and Jeremy R Cooperstock.
Smartphone sensor reliability for augmented reality applications.
In International Conference on Mobile and Ubiquitous Systems:
Computing, Networking, and Services, pages 127–138. Springer, 2012.

[5] Gustavo Maglhaes Moura and Rodrigo Luis De Souza Da Silva. Analysis
and evaluation of feature detection and tracking techniques using open
cv with focus on markerless augmented reality applications. J. Mobile
Multimedia, 12(3&4):291–302, 2017.

[6] Carlos GR Santos, Tiago Araújo, Paulo R Chagas, Nelson Neto, and
Bianchi S Meiguins. Recognizing and exploring azulejos on historic
buildings’ facades by combining computer vision and geolocation in
mobile augmented reality applications. Journal of Mobile Multimedia,
13(1-2):57–74, 2017.

[7] Roman Fedorov, Darian Frajberg, and Piero Fraternali. A framework for
outdoor mobile augmented reality and its application to mountain peak
detection. In International Conference on Augmented Reality, Virtual
Reality and Computer Graphics, pages 281–301. Springer, 2016.

[8] Giovanni Taverriti, Stefano Lombini, Lorenzo Seidenari, Marco Bertini,
and Alberto Del Bimbo. Real-time wearable computer vision system
for improved museum experience. In Proceedings of the 2016 ACM on
Multimedia Conference, pages 703–704. ACM, 2016.

[9] Roberta Calegari, Mirco Musolesi, Franco Raimondi, and Cecilia
Mascolo. Ctg: A connectivity trace generator for testing the performance
of opportunistic mobile systems. In Proceedings of the the 6th joint
meeting of the European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software engineering, pages
415–424. ACM, 2007.

A Testing Framework for Multi-Sensor Mobile Applications 25

[10] Arvind Thiagarajan, Lenin Ravindranath, Katrina LaCurts, Samuel
Madden, Hari Balakrishnan, Sivan Toledo, and Jakob Eriksson. Vtrack:
accurate, energy-aware road traffic delay estimation using mobile
phones. In Proceedings of the 7th ACM conference on embedded
networked sensor systems, pages 85–98. ACM, 2009.

[11] Nils Aschenbruck, Raphael Ernst, Elmar Gerhards-Padilla, and Matthias
Schwamborn. Bonnmotion: A mobility scenario generation and analysis
tool. In Proceedings of the 3rd International ICST Conference on
Simulation Tools and Techniques, SIMUTools ’10, pages 51:1–51:10,
ICST, Brussels, Belgium, Belgium, 2010. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering).

[12] Carlo Bernaschina, Roman Fedorov, Darian Frajberg, and Piero
Fraternali. A framework for regression testing of outdoor mobile
applications. In Proceedings of the 4th International Conference on
Mobile Software Engineering and Systems, pages 179–181. IEEE Press,
2017.

[13] Henry Muccini, Antonio Di Francesco, and Patrizio Esposito. Software
testing of mobile applications: Challenges and future research directions.
In Proceedings of the 7th International Workshop on Automation of
Software Test, pages 29–35. IEEE Press, 2012.

[14] Xing Su, Hanghang Tong, and Ping Ji. Activity recognition with
smartphone sensors. Tsinghua Science and Technology, 19(3):235–249,
2014.

[15] Ana Javornik. Augmented reality: Research agenda for studying the
impact of its media characteristics on consumer behaviour. Journal of
Retailing and Consumer Services, 30:252–261, 2016.

[16] Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel Davies, Mark
Smith, and Pete Steggles. Towards a better understanding of context
and context-awareness. In Hans-Werner Gellersen, editor, Handheld
and Ubiquitous Computing, First International Symposium, HUC’99,
Karlsruhe, Germany, September 27-29, 1999, Proceedings, volume 1707
of Lecture Notes in Computer Science, pages 304–307. Springer, 1999.

[17] Claudio Bettini, Oliver Brdiczka, Karen Henricksen, Jadwiga Indulska,
Daniela Nicklas, Anand Ranganathan, and Daniele Riboni. A survey
of context modelling and reasoning techniques. Pervasive and Mobile
Computing, 6(2):161–180, 2010.

[18] Guanling Chen and David Kotz. A survey of context-aware mobile
computing research. Technical report, Hanover, NH, USA, 2000.

26 D. Frajberg et al.

[19] Lenin Ravindranath, Suman Nath, Jitendra Padhye, and Hari
Balakrishnan. Automatic and scalable fault detection for mobile
applications. In Proceedings of the 12th Annual International Conference
on Mobile Systems, Applications, and Services, MobiSys ’14, pages
190–203, New York, NY, USA, 2014. ACM.

[20] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. Dynodroid: An
input generation system for android apps. In Proceedings of the 2013
9th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2013, pages 224–234, New York, NY, USA, 2013. ACM.

[21] Lee J White. Regression testing of gui event interactions. In Software
Maintenance 1996, Proceedings., International Conference on, pages
350–358. IEEE, 1996.

[22] Omar El Ariss, Dianxiang Xu, Santosh Dandey, Brad Vender, Phil
McClean, and Brian Slator. A systematic capture and replay strategy for
testing complex gui based java applications. In Information Technology:
New Generations (ITNG), 2010 Seventh International Conference on,
pages 1038–1043. IEEE, 2010.

[23] Lorenzo Gomez, Iulian Neamtiu, Tanzirul Azim, and Todd Millstein.
Reran: Timing-and touch-sensitive record and replay for android. In
2013 35th International Conference on Software Engineering (ICSE),
pages 72–81. IEEE, 2013.

[24] Shrinivas Joshi and Alessandro Orso. SCARPE: A technique and
tool for selective capture and replay of program executions. In 23rd
IEEE International Conference on Software Maintenance (ICSM 2007),
October 2-5, 2007, Paris, France, pages 234–243. IEEE, 2007.

Biographies

Darian Frajberg is a Ph.D. Candidate in Information Technology at DEIB,
Politecnico di Milano, Italy. His main research interests concern Artificial
Intelligence, Computer Vision and Augmented Reality, with a focus on

A Testing Framework for Multi-Sensor Mobile Applications 27

the creation and evaluation of novel entertainment solutions for outdoor
Augmented Reality applications efficiently executable on low-power mobile
devices.

Piero Fraternali is full professor of Web Technologies at DEIB, Politecnico
di Milano, Italy. His main research interests concern software engineering,
methodologies and tools for Web and mobile application development, with a
focus on code generation from software models, multimedia content process-
ing, and augmented reality mobile applications.

Rocio Nahime Torres is a Ph.D. Candidate in Information Technology at
DEIB, Politecnico di Milano, Italy. Her main research interests concern Arti-
ficial Intelligence, Computer Vision and Volunteer Geographic Information
Systems, with a focus on novel methods for open source geographic data
enrichment.

28 D. Frajberg et al.

Carlo Bernaschina is a Ph.D. Candidate of Web and Mobile Technologies
at DEIB, Politecnico di Milano, Italy. His main research interests concern
software engineering, methodologies and tools for Mobile and IoT application
development, with a focus on code generation from software models and agile
methodologies.

Roman Fedorov received the Ph.D. (cum laude) degree in Information Tech-
nology from Politecnico di Milano, Italy, in 2017 at DEIB. His research inter-
ests are in the areas of collective intelligence extraction from user-generated
content and social data mining and analysis.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

