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Abstract

This research develops a location-based predictive model for distribution
equipment failure for use in preventative maintenance scheduling and plan-
ning. This study focuses on equipment-related failures because they are one
of the main causes of outages in Thailand. Geographic Information Systems
(GIS) data was integrated with asset data to predict the equipment failure
of distribution equipment. Data on assets and outages from the Provincial
Electricity Authority (PEA) was merged with GIS data from multiple sources,
including elevation data, weather data, natural landmarks, and points of inter-
est (POIs). Data was split into four regional datasets, and Random Forests
(RF) feature selection and structural equation modeling was used to identify
and confirm the most important features in each region. Logistic regres-
sion and RF regression were then used to estimate failures. RF regression
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was more effective than logistic regression at estimating equipment failure.
The asset age and electrical load were significant predictors of outages.
There were also geographic features that were significant predictors in each
region, but which features affected outages varied by region. Thus, the study
concluded that the approach developed could be used in preventative mainte-
nance planning with some modification for regional characteristics, including
geographic location and patterns of urbanization and industrialization.

Keywords: Power outages, spatial predictive modeling, reliable electric
distribution. geographic information system (GIS), electricity preventive
maintenance, machine learning, spatial data analytic, geospatial artificial
intelligence.

1 Introduction

A reliable electricity supply is the foundation of modern life, enabling
domestic safety and well-being, community economic and social activities,
and large-scale industry [1]. Reliable electricity supplies enable poverty
reduction, economic growth and development, and positive health outcomes
around the world [2]. On the other hand, unreliable electricity supply both
stymies economic growth and development and can have a negative impact
on the environment as people turn to higher-pollution sources of energy [3].
The economic impact can be particularly high in developing countries.
Although these losses have not been estimated for Thailand, an estimate for
South Africa suggested that transmission and distribution losses (including
outages) depressed economic growth from a potential 3.79% to an actual
2.25% between 1971 and 2014 [4]. Therefore, ensuring a reliable electric-
ity supply is critical at both the local and national level, particularly in
developing countries where there may not yet be adequate infrastructure and
supply [3, 4].

Electricity reliability can be assessed using metrics like the System Aver-
age Interruption Duration Index (SAIDI) and System Average Interruption
Frequency Index (SAIFI) [5]. In general, these measures are lower for more
developed countries (with more resources to improve and support reliable
electricity grids) [6]. Thailand is classified as an upper middle income devel-
oping countries [7], and it has a relatively high level of both access and
reliability. More than 99% of Thailand population has access to electricity,
with the few remaining supply shortages being remote mountain communi-
ties [8]. The most recently reported SAIDI (0.38) and SAIFI (0.78) indices
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show that Thailand’s electricity grid is in general relatively highly reliable [9].
In fact, Thailand’s electricity grid is amongst the most reliable in the Asia
Pacific region [10].

Despite this overall high level of reliability, there are still shortages and
outages occur that do affect Thailand’s power supply. These outages are
frequently associated with equipment failures related to aging infrastructure
and deferred grid maintenance [11, 12]. In global studies, electrical faults and
other equipment failures have been associated with a significant proportion
of unplanned outages. One of these studies estimated that 32% of unplanned
outages were due to equipment failure [13], while a second study estimated
an even higher rate of 51.1% [14]. Thus, by improving the preventative
maintenance program [15] of Thailand’s grid operators to target equipment
before it fails, Thailand’s electricity supply could become even more reliable.
Even though Thailand is not yet equipped with a full smart grid [16], but
there is a base of asset data that can be used to estimate failures. Geographic
Information Systems (GIS) can also be used to provide locations, weather,
and other spatial data for electrical distribution sites [17]. This data can
be used to develop model for specific risks and predict the environmental
stresses that equipment will undergo.

2 Literature Review

2.1 Power Outages

A power outage refers to the disruption of electrical supply to end users,
whether planned or unplanned [18]. Power outages can occur at any point
in the electricity grid (generation, transmission, distribution and control)
[19, 20]. Power outages can be independent (occurring due to localized
failure of a single component), common mode dependent (with one failure
causing others), or cascading [19, 21]. The most commonly identified causes
of power outages include weather conditions (especially storms), equipment
failure, and environmental conditions such as vegetation [18, 22, 23]. Voltage
instability can also cause large-scale outages, which can be particularly
impactful in urban areas [24]. In some places, vandalism, such as pipeline
vandalism or power line theft, can also play a role in localized outages,
although this tends to occur in areas that are very economically precari-
ous [25]. This study focuses on equipment failure in the distribution system,
which commonly occurs due to problems like crossed or broken wires,
tripped circuit breakers, and/or fuse and transformer failures among others
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[18, 26], because it is a common problem both in Thailand and around the
world.

2.2 Preventative Maintenance

Preventative maintenance refers to the practice of maintaining and/or replac-
ing equipment in order to reduce or prevent unexpected failure [27]. There are
several different ways to coordinate planned maintenance, including using a
time-based approach such as scheduled maintenance [27], using sensors or
other data to monitor equipment and conduct maintenance as it undergoes
signs of wear [28], or based on probabilistic risk of failure [29]. In a fully
established smart grid, it is possible to use sensor data to monitor the distri-
bution network and identify components at risk of failure [13]. However, as
Thailand does not yet have a fully established smart grid, this study employs
a risk-based model of preventative maintenance.

2.3 Geographic Information System (GIS) and Predicting Power
Outages

A Geographic Information System (GIS) is “a computer system for capturing,
storing, querying, analyzing, and displaying geospatial data [30]”, or in other
words data about the geographic attributes of specific locations. Geospatial
data include locations (using standard coordinate systems), geographical fea-
tures, point of interest, and information about the location such as vegetation
or ground cover, water, and other features [30]. GIS can also be integrated
with other sources of data, such as energy asset data (or data about specific
pieces of equipment) [17, 31]. GIS is one source of data that can be used in
big data-driven techniques for energy management [31]. These techniques are
considered here, through investigation of how other authors have approached
the use of GIS and asset data to predict outages and equipment failures
previously.

Previous authors have used a variety of approaches to predicting power
outages, including fuzzy logic applications for predicting storm-related out-
ages [32], a time series approach [14], and cross-sectional techniques [26].
These studies identified a wide range of potential influences that could be
associated with power outages, although there were limits to the geospatial
data used within the analysis. Other authors have investigated equipment
failure and subsequent power outages, using adaptations such as energy
market data to estimate outage costs [33], supervised learning on datasets
from energy providers and grid operators [34], and the ArcGIS Notebooks
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visualization tool [35]. While each of these models did have their benefits,
none were a comprehensive model that included both asset and geospatial
data to predict outages. Thus, the objective of this study is to develop a
predictive model for power outages attributable to distribution equipment
failure in Thailand using both asset data and geospatial data.

3 Materials and Methods

3.1 Research Process

The research process (Figure 1) incorporated two stages: initial fea-
ture extraction and proving, and predictive model building. The initial feature
extraction is the process to identify the important features that caused the
equipment failure. The process began with outage records, asset data and
geospatial data, then employed a process of Spatial Feature Engineering
(SFE) (Figure 2) and Feature Selection (FS) [36] to identify an initial impor-
tant feature set. Following a prior study [37], Structural Equation Modeling
(SEM) was then used to validate the feature set. In the second stage, the sam-
ple data was subjected to a data normalization process, and RF classification
was then used iteratively to build the predictive model for equipment failure.

3.2 Tools

There were two main tools used for the analysis process. The majority of the
analysis was performed through the ArcGIS Desktop, which offers multiple
tools for geospatial analysis [38]. ArcGIS Pro was used for data import and
cleaning. Four tools were used for the SFE process, including Buffer (used
to create specified buffers around specific points, Near (used to calculate
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Figure 1 Process of the research.
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Figure 2 Spatial feature engineering (SFE) process.

distances between points), Summarize (used to summarize data within buffer
zones), and Overlay (used to coordinate data from several layers).

The predictive model was constructed in ArcGIS Notebooks. Thus, the
ArcGIS platform offered most of the functionality required for the project.
However, the SEM process could not be conducted in ArcGIS, which does not
offer this type of data visualization and modeling. Instead, the SPSS AMOS
tool was used, as it is specifically designed for this task [39].

3.3 Data Sources and Feature Selection

Data included asset data, outage data, and geospatial data. Basic geospa-
tial data was supplied from standard maps incorporated into the ArcGIS
platform Asset data and outage data were supplied by the Provincial
Electricity Authority (PEA) of Thailand, the body tasked with grid man-
agement and oversight for areas outside Thailand’s Central region. Ocean
data was incorporated from the ne_10m_ocean (World Oceans, 1:10 mil-
lion (2012)) data [40]. Elevation data was sourced from the NASA/SRTM
2007 dataset [41]. Finally, geographic information including landmarks,
rivers, canals, national parks, and other points of interest were sourced from
the NOSTRA database, which offers the highest level of geographic data
coverage for Thailand [42].

Figure 3 shows the process by which the large number of potential fea-
tures from the available datasets was reduced to the incorporated feature set.
The initial SFE process included enrichment (overlaying multiple layers or
interpolation of data from other points), geometry and context (extraction of
some data, such as elevation and distance from roads, using the map geometry
itself) [36, 43]. This resulted in 195 potential features. The FS process then
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Figure 3 Features incorporated into the dataset.

commenced. This process used RF to identify the features that would be most
effective for modeling the data itself [44]. A score was developed for each of
the features, and the highest-scoring features (at least one standard deviation
from mean score) were incorporated. SEM was then used to validate the
model.

3.4 Predictive Model Building

Following the SEM process, a data normalization approach [45] was used
to reduce outliers. The dataset was divided into two parts, with 80% of the
data randomly assigned to the training dataset and 20% to the testing dataset.
A supervised learning approach was then employed [46]. The approach used
was REF, a technique which performs several decision trees and then takes the
average of the decision trees [44, 47]. The RF approach was selected because
it can manage more complex structures compared to an approach like logistic
regression [47]. The final outcome was a predictive model which estimated
the failure probability of an asset at a given point of time. These results are
explained in the following section.

4 Results and Discussion

4.1 Outage Data Selection and Preparation

The first step in data preparation was selection of outages from the PEA
power distribution areas (Figure 4). The Outage dataset included 2,178,088
records, which related to outage events. This data represented four PEA
districts, which were:

* PEA Northern Region 1 (N1)
* PEA Northeastern Region 1 (NE1)
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Figure 4 Locations of equipment in the PEA’s power distribution in four representative
areas.

* PEA Central Region 2 (C2)
* PEA Southern Region 2 (S2)

The regions and their geographic locations are shown in Figure 5. This is
approximately one third of the PEA regions, as the North, Northeast, Central
and Southern areas of PEA’s control are each divided into three different
regions (resulting in a total of 12 regions). A summary of these regions and
their geographic coverage is provided in Table 1. In total, the data represented
25 provinces of Thailand.

This study only included outages that were caused by equipment failure.
The frequency of failures is summarized in Table 2. As this shows, there were
a total of 705,770 data outages recorded. Of these, faulty equipment was the
primary cause of 251,804 outages, or 35.7% of the total.

The data included four main sources of equipment-related failure, includ-
ing Distribution Transformer (called Transformer from here) and Disconnec-
tor (Circuit Breaker, Recloser and Switch). The disconnector equipment is
designed to cut off downstream power when overloads or faults are detected,
in order to prevent damage to the power distribution network [22]. Therefore,
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Figure 5 Regional distribution of power outages.

Table 1 The PEA Regions and their geographic scope

Region

Number of Provinces

Largest Provinces

Northern Region 1 (N1)

Northeastern Region 1 (NE1)

Central Region 2 (C2)

Southern Region 2 (S2)

Chiang Mai
Mae Hong Son
Chiang Rai
Udon Thani
Khon Kaen
Nong Bua Lamphu
Nong Khai
Chonburi
Rayong
Chanthaburi
Chachoengsao
Nakhon Si
Thammarat
Phuket

Surat Thani
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Table 2 Summary of power outages and their causes

Transformer  Circuit Breaker Recloser ~ Switch Total
Faulty Equipment 183,717 13,333 2,826 51,928 251,804
Maintenance 693 1,014 419 1,138 3,264
Other Sources 128,998 33,738 17,972 269,994 450,702
Total 313,408 48,085 21,217 323,060 705,770

these outages represent the grid working as designed. Therefore, the dataset
was narrowed to Transformer failures, which included 183,717 failures (26%
of the total sample).

4.2 Spatial Feature Engineering (SFE)

Following the preparation of the sub-sample, landmark data was selected
within a one-kilometer buffer of the outage locations. Elevations were added
from USGS and other data sources. Next, equipment data from the PEA
dataset was added for each failure point, including installation year and equip-
ment ID. Other factors were then encoded, including EventType, weather
data, and KnownCause. The data was sorted into four regions (C2, N1, NEI,
and S2), as depicted in Figure 5. In the next step, Outage data was joined with
Asset data using FACILITYID, and unmatched records were then dropped.
Remaining records were then grouped with year (of the event). Installation
dates (from the Asset data) were then used to calculate the age of the asset
at the time of the outage event (AGE). Following the SFE process, a total
of 91,211 records remained, including 28,046 in C1 (30.75%), 13,962 in N1
(15.31%), 26,907 in NE1 (29.5%), and 22,296 in S2 (24.44%).

4.3 Feature Selection (FS)

The second stage of analysis was Feature Selection (FS), used to select the
variables for use. The initial variable set was categorized into geographic
data (from the SFE process) and outage incident data (from the PEA dataset),
as shown in Figure 6. There were 197 variables prior to beginning FS.
Two variables were excluded immediately. The ‘cause of failure’ variable
was removed because only equipment failures were included in the dataset.
Therefore, there was no variance. The ‘frequency of failure’ variable was not
included because it was the output of FS process. Therefore, the FS process
began with 195 variables. The dataset was split into a training set (80%) and
test data (20%) and normalized. A Random Forest (RF) model was used to
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Figure 6 Variable inputs for feature selection (FS).

Table 3 The most important features in each region
Feature AllRegions C2 NI NE1 S2
Dist_IndustrialEstate 1st
Dist_FireStation 2nd
Dist_RaceCourse 3rd 2nd
Dist_Butcher 4th
Dist_SubDistrictOffice 5th
Dist_Coast 1st 4th
Dist_ThaiTouristOffice 2nd
Dist_DistrictOffice 3rd
LoadMW 4th st 3rd
Dist_Hotel 5th
Elevation 2nd
Dist_Buddhist 3rd Ist
Weather 4th
Dist_Ophanage Sth
Dist_VillageOffice 3rd
Dist_Store 4th
Dist_Shipyard 5th
Count_Condo 1st
Dist_National _Park 2nd

calculate a Feature Importance (FI) score for each of the variables, based on
the age at failure. Features were selected using the FI score (FI > SD).

The most important features are location-related, other than Load MW
(electrical load), as shown in Table 3. The FS process showed some inter-
esting variations between regions. In Region N1, equipment located near
schools and temples have shorter lifespans. This indicates that in this region,
equipment in urban areas has a shorter lifespan. In comparison, Region S2
equipment has a shorter lifespan when located near the ocean or national
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parks, as well as condominium density. This suggests that equipment in
tourism areas and areas with high environmental stress may be more prone to
failure. Therefore, the selection of most important features varied depending
on the area.

4.4 Structural Equation Modeling (SEM)

SEM was used to verify the FS process. The SEM process included asset data
(LoadMW of the asset at time of outage), equipment failure data (Age_Day,
representing duration from last maintenance to outage), GIS data (POI data
selected from the FS process), and weather conditions. Figure 7 shows the
SEM output of the model for all four areas. Table 4 summarizes the regression
weights for the four area model, as well as each individual model, showing
the variations between the regions in terms of the factors included and
their relative significance. As this shows, the effect of Asset (—0.617) and
GIS (0.874) is approximately equivalent in terms of influence on EquipFail.

@D
1
LoadMw
1 Distance @ - ]
a1 IndustrialEstate paze 1} Diewice .
ransmission Towe!
0.008 -0.034 .
g2 . Distance i - Distance 1
FireStation 2 “0.071
! 0.045 % GasTankDepot g7
1 0617
5 -
g3 Rgma";;e -0.079 -0.036 Distance 1
et Gis VillageOffice 3
-0.037 -0.021
2 1 DJ:STE_I'ICE Distance
SubDistrictOffice |  -0.003 ooss|  Buddhist 9
3 -0.059 -0.050 -0.030
B : Distance 1
o Elevation Christ g10
Distance Distance Distance
Store Butcher Lighthouse

Figure 7 Structural model: All regions.
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Table 4 Summary of the SEM regression weights for all five models

All Regions C2 N1 NE1 S2
GIS — EquipFail —0.617 0.780 0.743 —0.482 1.091
Asset — EquipFail 0.874 —0.569 —0.557 1.106 1.195
LoadMW — Asset —0.001 —0.003 —-0.002 —-0.001 —0.003
Elevation — GIS —0.003 —0.041 0.027
Weather — GIS —0.021 —0.003
Points of Interest
Dist_FireStation — GIS —0.045
Dist_IndustrialEstate — GIS 0.008 0.086
Dist_Racecourse — GIS —0.079 0.335
Dist_SubdistrictOffice — GIS 0.037 —0.035 0.030
Dist_Christ — GIS —0.056 0.187
Dist_Buddhist — GIS —0.021 —0.025 0.018
Dist_VillageOffice — GIS —0.036 0.100
Dist_GasTankDepot — GIS —0.071 0.303
Dist_TransmissionTower — GIS —0.034
Dist_Lighthouse — GIS 0.030
Dist_Store — GIS —0.059 0.156
Dist_Butcher — GIS —0.050
Dist_Coast — GIS —0.020 —0.081 0.073
Dist_ThaiTouristOffice — GIS —0.084
Dist_DistrictOffice — GIS —0.046
Dist_Hotel — GIS —0.059
Dist_Palace — GIS —0.008
Dist_DecoStore — GIS —0.098 0.368
Dist_Road — GIS 0.016 0.013
Dist_ChainRestaurant — GIS —0.095
Dist_GasStation — GIS —0.040
Dist_FishingPort — GIS —0.008
Dist_MunicipalOffice — GIS —0.058
Dist_Airport — GIS —0.057
Dist_School — GIS —0.021
Dist_Port — GIS 0.000
Dist_VillageOffice — GIS —0.031
Dist_Orphanage — GIS —0.024
Dist_EducationCenter — GIS —0.047 0.130
Dist_Shipyard — GIS 0.026
Dist_Market — GIS 0.149
Dist_University — GIS 0.331

(Continued)
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Table 4 Continued

All Regions C2 N1 NEI S2
Count_Inc — GIS —0.125
Dist_Village — GIS 0.333
Dist_Hindu — GIS 0.192
Dist_Harbour — GIS —0.097
Dist_Monument — GIS 0.230
Dist_Fastfood — GIS 0.027
Count_Condo — GIS —0.018
Dist_National_Park — GIS —0.027

Table 5 Summary of logistic regression and RF regression

All Regions C2 N1 NE1 S2
Logistic Regression (R-square) 0.0024 0.0032 0.0018 0.0046 0.0018
RF Regression (R-square) 0.2852 0.2414 03252 0.3239 0.2148

However, there are some variations in the regions in the strength and direction
of the relationships of these factors. Furthermore, while the Asset model
is fairly consistent between all regions, the POIs of significance vary a lot
between regions. This is due to the different natural and built environments
of each region. For example, C2 is an urban region, and most of its POIs of
importance reflect this. Similarly, the other regions reflect variations in the
importance of different POIs. This is consistent with the expected findings
from the FS process, which identified different features of interest in the
different regions.

4.5 Predictive Modeling

The final step of the analysis was the development of a predictive model
to predict Transformer-related power outages. This process was conducted
using RF and logistic regression, with the input variables including the
predictor variables identified previously and the output variable being
AGE_DAY, which represents the predicted time to failure from the last
maintenance period for the asset. The analysis was conducted five times, once
for all regions and once for each region (C2, N1, NE1 and S2). Once again,
the dataset was broken into separate training (80%) and test (20%) datasets,
and data was then normalized.

A summary of the logistic regression and RF regression outcomes is pro-
vided in Table 5. As this shows, in all cases the RF regression r-square value
was higher than the logistic regression r-square value. This indicates that
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RF regression is preferable to logistic regression for predicting outages by
equipment failure. Figure 8 shows the most important factors in All Regions
and in the individual regions. This shows that for all regions, Total_ Age_Day
(representing the equipment age at time of failure) and LoadMW (the equip-
ment electrical load at time of failure) are significant predictors. However,
other predictors vary by regions. Most notably, in Region S2, the Dist_Coast
was a significant predictor, which may be related to the level of precipitation.
This can be seen in Figure 9, which shows that early failures (red dots) are
concentrated along the coastline.

4.6 Discussion

The research outcomes showed that equipment-related power outages could
not be predicted in the exact same way in different regions of Thailand.
In all regions, the amount of time since the installation date to the last
maintenance date (Total_Age_Day) was a significant predictor of transformer
failure, as was the equipment’s electrical load (LoadMW) to a lesser extent.
However, there were different locational factors that were relevant in each
of the regions. In region N1, the POI predictors suggested that proximity
to an urban area was a factor in equipment failure, with POIs including
education centers and schools, village and municipal offices, airports and so
on being significant predictors of failure. This was also true in regions NE1
and CE2. However, region S2 was different, with POI-based predictors of
failure including distance from the coast and national parks, as well as the
number of condominiums, predicting equipment failure. This suggests that
in region S2, equipment in coastal regions (which are both the location of
national parks and areas of high condominium density due to tourist areas)
is more susceptible to failure. Therefore, it is likely that climate factors,
like daily humidity, precipitation, or wind, may play a significant role in
equipment failure in this region, but is less important in other regions.

The most obvious contribution of this study is that it confirms the
importance of location-related factors for reducing or preventing equipment-
related electricity outages. Preventative maintenance is specifically intended
to reduce the rate of equipment failure [27]. This study provides support
for a scheduled maintenance schedule, in which maintenance is conducted
routinely [27], but it also suggests that probabilistic maintenance [29] could
be used. Regardless of the maintenance structure used, it is clear that pre-
ventative maintenance is essential for reducing the potential transformer
failure.
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Figure 9 Map of predicted failures in Area S2, illustrating concentration of predicted
failures along the coastline.

This research also shows the usefulness of GIS data for the electrical grid.
There were many different GIS variables that were relevant to equipment
failure in all regions, but it was clear that near the coast (region S2), weather
and particularly precipitation may be a factor in failure, as has been found by
earlier researchers [11, 14, 26, 33, 34]. Similarly, in urban areas, proximity to
densely settled areas may be predictive of increased equipment stress. Thus,
GIS data can be a useful adjunct to equipment data for predicting equipment
failure.

5 Conclusion

This research set out to develop a statistical model to predict power out-
ages that were attributable to distribution equipment (transformer) failure in
Thailand. The study drew on outage data and asset data from the Provincial
Electricity Authority (PEA), which manages Thailand’s electric distribution
grid outside major urban areas. It also merged in GIS data from different
sources, including weather data, elevation data, and distance from vari-
ous POIs within both the built environment and the natural environment.
The analysis encompassed four different regions of Thailand, which have
different population distributions, levels of urbanization, and natural envi-
ronments. A predictive model was also built for the entire dataset. In all
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regions, there were some common predictors for transformer failure, includ-
ing the time since the last maintenance cycle and the electrical load on
the equipment at the time of failure. However, different regions had very
different geographic predictors. In the C2, N1 and NEI1 regions, POIs that
indicated urbanization and industrialization, such as schools, administrative
centers, roads, and ports, are predictive of equipment failure. Therefore, in
these regions it is more likely that equipment will fail in urban and industrial
areas. However, the S2 region is very different, with proximity to the coast
and national parks and the density of condominiums predicting failure. This
suggests that climate factors, such as exposure to high humidity, sea spray and
other coastal precipitation, and so on, is much more important in the largely
rural S2 region. In conclusion, therefore, it is not possible to really predict
equipment failure based only on equipment data itself. The inclusion of
regionally relevant GIS indicators can improve the predictive power of such
models and make them more useful for preventative maintenance planning.

There are some managerial implications from these findings. The most
important of these implications is that scheduled maintenance and predictive
maintenance are critical for grid reliability. The predictive model strongly
suggests that time since the most recent maintenance cycle is the most
important factor in predicting failure. Therefore, this research strongly sup-
ports implementing a preventative maintenance program for all equipment,
in order to reduce the risk of failure. Since most electric grid operators
can be expected to already be using preventative maintenance, the findings
also support improving the preventative maintenance scheduling process by
customizing the schedule for individual installations depending on local
conditions. For example, based on this study it may be more appropriate
to schedule installations in urban and industrial areas, as well as coastal
installations, to have an enhanced maintenance schedule. It may also be
appropriate to use additional information such as GIS data and weather
data to evaluate the preventative maintenance schedule for each installation.
In future, data from environmental sensors could also be used to collect
real-time weather and environment data, although these have not yet been
implemented in Thailand’s electricity grid.

There were some limitations to this study. First, the analysis covered
only certain areas of Thailand, which were some of those fully covered by
the PEA’s asset and outage datasets. These datasets are not complete, as
they have been collected over time in different formats. There were also
limitations to the study’s variables. For example, only a 4-year period of
outage data was available and used for the analysis. However, electrical
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distribution equipment is typically long-lived, with actual lifespans of some
kinds of equipment reaching decades. Therefore, this study may not reflect
failures in this longer-lived equipment, particularly in more lightly loaded
rural areas. The asset and outage data did not include broken or retired
assets. So, the analysis only includes assets that are still in operation or that
have not yet been removed from the database. It can create bias which can
reduce the effectiveness of the model. In addition, direct information about
climate conditions were not included, as they were excluded in the feature
selection process. Additionally, the study should consider other factors that
could contribute to this equipment failure such as maintenance history and
manufacturing quality of equipment. Models were also constructed in a large
region, which could be refined to smaller regions. These limitations mean
there is an opportunity to improve the predictive modeling process. For
example, future analysis could be conducted at smaller granularity, improving
knowledge of how urban and industrial areas and the natural environment
influence the time to failure for electricity distribution equipment. Further-
more, future study could explore the use of other machine learning algorithms
for estimating equipment failure, such as neural networks or support vector
machines.
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