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Abstract

To make a mobile device last longer, we need to limit computations to a
bare minimum. One way to do that, in complex control and decision making
problems, is to limit precision with which we do computations, i.e., limit the
number of bits in the numbers’ representation. A problem is that often, we do
not know with what precision should we do computations to get the desired
accuracy of the result. What we propose is to first do computations with very
low precision, then, based on these computations, estimate what precision is
needed to achieve the given accuracy, and then perform computations with
this precision.
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1 Formulation of the Problem

For mobile devices, an important restriction is energy. Mobile devices are
very convenient, but they need to be recharged ever so often – e.g., after a
certain number of hours. This need comes from the fact a mobile device can
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store only a limited amount of energy; see, e.g., [1, 2, 4, 10]. Every time we
perform a computation, we use some energy.

How to make mobile devices last longer. Since every bit operation requires
energy, the only way to make a mobile device last longer is to reduce the
number of bit operations needed to perform the corresponding computations.

The number B of bit operations can be estimated as the number A of
arithmetic operations times the number b of bit operations needed for each
arithmetic operation: B = A · b. How can we minimize this product?

Existing methods for limiting computations in mobile devices to increase
their autonomy. Most current computational devices use a fixed number of
bits to represent the corresponding values. In this arrangement, a natural
idea is to minimize the number of arithmetic operations A, i.e., to come
up with faster (fewer-operations) algorithms for performing user-required
computations.

This has been the main focus of designers of mobile devices. As a result,
most algorithms used in mobile devices have already been optimized from
this viewpoint – the corresponding number of arithmetic operations is as
small as possible. And still, users would like to have devices that last even
longer.

How can we make mobile devices last even longer? Since the number A of
arithmetic operations is, in many cases, already as small as we can make it,
the only way to further decrease the number of bit operations is to decrease
the number of bit operation needed to perform one arithmetic operation.

How can we decrease the number of bit operations. For each arithmetic
operation, the number of bit operations depends on the number n of bits used
to represent a number. The more bits we need to process to perform each
operation, the more bit operations we need. So, the only way to make a mobile
device last longer seems to be using fewer bits to represent the corresponding
numbers.

But can we do it? There is a reason why modern computers use a large
number of bits (usually, 64, sometimes 32) to perform arithmetic operations:
many computations require high precision, and computations with lower
precision result in lower accuracy than we want. For some computations,
even 64 bits are not enough, we need double precision (i.e., 128 bits) or even
higher.
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Because of such computations, we cannot simply reduce the number of
bits used to represent each number – that will make many computations
impossible.

Some computational tasks do not require high accuracy but some do:
examples. Some computations require high accuracy, but many computations
do not need such an accuracy. Let us take medical applications as an example.
When an app installed on a mobile device estimates the dosage of a medicine
needed for a patient – based on the patients age, weight, and disease severity –
two (or even one) decimal digits accuracy is usually sufficient, since the
weight is only known with this accuracy.

This does not mean, of course, that high accuracy computations are not
needed. For example, in apps for EEG processing, when we want to detect a
possible incoming heart attack based on relatively weak signals, we want to
extract as much information from the measurements as possible, even if this
would mean spending more energy on the corresponding computations.

So what can we do? So how can we decrease the overall amount of bit
operations and still be able to perform computations requiring high accuracy?

For some algorithms, we know what precision to use to achieve the
desired accuracy. For example, in most applications of deep learning, 8-bit
computations are sufficient; see, e.g., [9]. In such cases, this is exactly the
precision that we need to use for such computations – provided, of course,
that the CPU allows computations with different precision.

This knowledge is available for many existing algorithms. However, new
algorithms appear all the times, algorithms for which such a study of needed
precision has not yet been done. What can we do in this case – other than
compute all these algorithms with the highest precision?

What we do in this paper. In this paper, we provide a possible solution to
this problem: namely, we show how to decrease the overall number of bit
operations without sacrificing the desired accuracy.

2 What We Propose

Our main idea. If we have an algorithm for which we do not know what
precision we need to achieve the desired accuracy, then:

• first, we perform computations with low precision;
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• based on results of these computations, we determine what precision is
absolutely needed to achieve the desired accuracy; and then

• we perform computations with thus determined precision.

Terminological comment. In analogy with just-in-time delivery, when we save
on storage expenses by scheduling delivery for exactly the time at which the
delivered objects are needed, we call the proposed approach – in which we
exactly as many digits as needed to achieve the desired accuracy, no more, no
less – just-in-accuracy approach.

How we can implement this idea. In order to implement this idea, we need
to do the following three tasks:

• first, we need to find out how to estimate the accuracy of the result of
computations with low precision;

• second, we need to find out how to use this estimate to determine the
desired precision;

• finally, we need to make sure that we indeed decrease overall number of
bit operations.

Let us consider these tasks one by one.

Why do we need the third task? The first two tasks are clearly needed, but
why is the third task important? Because:

• on the one hand, when low-precision computations are already suf-
ficient, the proposed approach definitely decreases the number of bit
operations;

• on the other hand, for problems that really need high-precision com-
putations, we have to perform these computations anyway; so in our
approach, in addition to these high-precision computations, we also
perform additional low-precision computation – and thus, increase the
number of bit operations.

We need to make sure that decrease is larger than the increase – then the
overall number of bit operations will decrease.

How practical is it? At present, most computational devices use fixed
number of 8-bit bytes to store numbers. From this viewpoint, it may look
like we do not have much a choice: either we use 8 bits, or 16 bits, or 24 bits,
etc. However, from the viewpoint of computer design, there is nothing magic
about 8 buts: in the early days of computing, some computing – PDP-10 the
most well-known example – used variable numbers of from 1 to 36 to store
numbers [3], and a recent book [7] by John L. Gustafson, one of the world
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leaders in computer engineering – shows that a similar feature is possible
with the modern computer technology as well.

Historical comment. Dr. Gustafon is former Director at Intel Labs and for-
mer Chief Product Architect at AMD. He introduced cluster computing in
1985 and first demonstrated scalable massively parallel performance on real
applications in 1988. He won the inaugural ACM Gordon Bell Prize for
achievements in high performance computing. He is also a recipient of the
IEEE Computer Society’s Golden Core Award.

How to estimate the accuracy of the result of low-precision computations.
The relative inaccuracy caused by limited precision is relatively small: if we
use n-bit precision, then the relative round-off error is of order 2−n. Even if
we use a very low 8-bit precision, this error is about 2−8 ≈ 1.5%.

Thus, we can apply the idea typically used in physics: we expand the
dependence of the result of the round-off errors in Taylor series and keep
only the first few terms in this expansion; see, e.g., [6, 11]. For the relative
error of 1.5%, its square is about 0.02% – which is much smaller than the
error itself. Thus, to estimate the effect of these errors, we can safely ignore
terms which are quadratic (and of higher order) in terms of these errors, and
only keep linear terms. So, the accuracy of the resulting computations is a
linear function of these errors – i.e., it is proportional to 2−n.

How can we estimate this error? We can repeat the low-precision com-
putations with two different low precisions: n1 and n2 > n1; for example,
we can take n1 = 8 (enough to get at least a crude approximation in most
problems [9]) and n2 = n1 + 1. For n2 = n1 + 1, the result r1 of the
n1-precision computations differs from the unknown actual value a by some
value r1 − a ≈ c · 2−n1 , while the result r2 is the n2-precision computations
differs by the value

r2 − a ≈ c · 2−(n1+1) = 0.5 · c · 2−n1 .

Thus, we have

r1−r2 = (r1−a)−(r2−a) ≈ c·2−n1−0.5·c·2−n1 = 0.5·c·2−n1 ≈ r2−a.

Hence, the difference r1 − r2 between the results of these two computa-
tions can be used as an approximate estimate for the accuracy r2 − a of the
somewhat-more-precise computation result r2. The corresponding relative
accuracy is thus approximately equal to the ratio

|r1 − r2|
|r2|

.
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It is reasonable to gauge this relative accuracy by the number of correct
digits in the binary expansion of the computation result r2. Having d digits
means relative accuracy 2−d. Thus, this value d can be determined from the
approximate equality

2−d ≈ |r1 − r2|
|r2|

,

hence
d ≈ log2(|r2|)− log2(|r1 − r2|).

How to determine the desired precision. Let us denote the desired number
of correct bits in the computation result by k. This means that we want to
have the relative accuracy 2−k of the computation result. How many bits do
we need to use in our computations to reach this accuracy?

Due to our linearity assumption, in general, the relative accuracy resulting
from computations with n digits – for which the relative round-off error is
about 2−n – is approximately equal to c · 2−n for some constant c. To find
the value of this constant c, we need to take into account that, based on our
low-precision computations, we know that the relative round-off error 2−n2

leads to the accuracy 2−d in the computation result. Thus, 2−d = c · 2−n2 , so
c = 2n2−d.

We want to find out the value n for which the resulting accuracy is c ·
2−n = 2−k. Substituting the above formula for c into this expression, we
conclude that 2n2−d · 2−n = 2n2−d−n = 2−k. Taking binary logarithm of
both sides of this equality, we get n2 − d− n = −k, so n = k + n2 − d.

Let us summarize what we have found.

Resulting algorithm. Suppose that we want to get the result with k
significant digits. Let us select some small number n1.

• First, we perform the computations with n1 bits and with n2 = n1 + 1
bits, and get approximate results r1 and r2.

• Then, we find d ≈ log2(|r2|)− log2(|r1 − r2|).
• Finally, we perform computations again, this time with n = k + n2 − d

bits.

3 The Proposed Algorithm Does Decrease the Overall
Number of Bit Operations

How can we decide whether this algorithm decreases the overall number
of bit operations? To answer this question, we need to compare the overall
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number of bit operations in two settings:

• the traditional setting, when all the computations are performed with the
same high precision N , and

• the proposed setting, when we first perform two computations with low-
precision values n1 and n2, and then perform computations with the
needed precision n.

To compare these two setting, we need to know:

• how frequent are situations with different values n of needed precision,
and

• how the number of bit operations grows with n.

Let us try to answer these two questions.

How frequent are situations with different values n of needed precision?
As we have mentioned, for different problems, we need different precision,
i.e., different numbers n of bits-per-number, from n = 1 to n = N for some
large N (e.g., N = 64 or N = 128). We do not know the frequency with
which different values n appear, and we have no reason to believe that some
of these values are more frequent than other. Thus, it is reasonable to use
Laplace Indeterminacy Principle (see, e.g., [8]) and conclude that all these
N values are equally probable, i.e., that each of them occurs with the same
probability 1/N .

How does the number of bit operations needed for each arithmetic
operation change with n?

• For addition and subtraction, this number is proportional to n: we need
a constant number of operations per bit.

• For multiplication, we need order of n2 operations: indeed, the usual
multiplication algorithm means that for each digit in the second number,
we use n bit operations to multiply the first number by this digit, and
then we add n n-digit results.

Since n2 ≫ n, in the first approximation, we can simply take into account
n2-operations – e.g., multiplication – and ignore time needed for addition and
subtraction. Thus, we can conclude that the number of bit operations grows
with n as c · n2 for some constant c.

Now, we are ready to compare the two settings. Since we answered both
questions, we can now provide the desired comparison.

• In the traditional setting, for each problem, we need c·N2 bit operations.
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• In the proposed setting, for needed precision n, we need c ·n2
1+ c ·n2

2+
c · n2 bit operations. All values n from 1 to N are equally probable, so
the average number of bit operations is equal to

c · n2
1 + c · n2

2 + c · 1

N
·

N∑
n=1

n2. (1)

It is known that the last sum in the expression (1) is equal to

N∑
n=1

n2 =
N · (N + 1) · (2N + 1)

6
. (2)

For large N , this expression is approximately equal to N3/3, so the
expression (1) takes the form

c ·
(
n2
1 + n2

2 +
N2

3

)
. (2)

When n1 ≪ N and n2 ≪ N , the number of bit operations in the
proposed setting is approximately equal to c ·(N2/3) and is, thus, three times
smaller than in the traditional setting.

First conclusion. So indeed, the proposed setting decreases the number of bit
operations: it decreases this number by a factor of three.

Comment. From the viewpoint of algorithmic complexity, making compu-
tations three times faster is not a big deal: most algorithms provide must
more drastic speed-up; see, e.g., [5]. But let us recall that our goal is to
extend the between-charges time for mobile computational devices. From
this viewpoint, increasing the time-to-next-charging by a factor of three –
e.g., from 8 hours to 24 hours – is a significant increase.

A natural question: can we do even better? We decreased the number of
bit operations by a factor of three. A natural question is: is this the best we
can do? Or can we decrease the number of bit operations even more?

To answer this question, let us consider the ideal situation when we know
the exact precision n needed for each computational problem. In this ideal
case, for each value n, we need exactly c ·n2 bit operations. Thus, the average
number of bit operations is equal to

c · 1

N
·

N∑
n=1

n2.
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We already know that for large N , this expression is approximately equal
to c ·(N2/3) – which is exactly what our setting provides. Thus, we can make
the following conclusion.

Second conclusion. The proposed method is asymptotically optimal: it pro-
vides (asymptotically) the smallest possible number of bit operations – and
thus, the smallest possible energy consumption that we can achieve without
improving the algorithms.

Let us summarize our results.

4 Conclusions

While, in general, mobile devices are convenient to use, this convenience
comes at the expense of the need to recharge these devices every few hours.
To make their use more convenient, it is desirable to make sure that they last
as long as possible. Every bit operation requires some energy. So, to make
the mobile devices last longer, a natural idea is to minimize the number of
bit operations. In a computational device, the only hardware-supported oper-
ations are elementary arithmetic operations. Thus, whatever we compute, the
computational device performs a sequence of arithmetic operations. Because
of this, designers of mobile devices have been focused mostly on minimizing
the number of arithmetic operations needed to perform the user-required
tasks. As a result of these efforts, at present, this number is practically as
small as it can be.

How can we further decrease the devices’ energy consumption? A natural
idea is to take into account that the overall number of bit operations can be
obtained by multiplying the number of elementary arithmetic operations by
the number of bit operations needed for each arithmetic operation. The num-
ber of these bit operations depends on the number of bits used to represent
each number. Since the number of arithmetic operations is already close to its
minimum, it is therefore desirable to decrease the number of bits per number
to a bare minimum needed for the desired uncertainty of the computational
result.

The problem with this idea is that for many complex algorithms used in
modern mobile devices, it is difficult to estimate a priori how many bits are
needed to get the result with the desired accuracy. To solve this challenging
problem, we propose: (1) first, to perform the computations with two small
numbers of bits, and (2) then, to use extrapolation to estimate how many
bits are needed to reach the desired accuracy. While we spend extra time
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performing these preliminary low-bit computations, we, in general, save time
overall by avoiding the energy-consuming use of too many bits.

Specifically, we show: (1) that the proposed setting decreases the num-
ber of bit operations by the factor of three, and (2) that the proposed
method is asymptotically optimal: it provides (asymptotically) the smallest
possible number of bit operations – and thus, the smallest possible energy
consumption that we can achieve without improving the algorithms.
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