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Abstract

The main limitation of mobile computing in comparison with regular com-
puting is the need to make sure that the battery lasts as long as possible – and
thus, the number of computational steps should be as small as possible. In
this paper, we analyze how this affects fuzzy computations. We show that the
need for the fastest computations leads to triangular membership functions
and simplest “and”- and “or”-operations: min and max. It also leads to the
need to limit ourselves to a few-bit description of fuzzy degrees – which leads
to 3-bit descriptions similar to optical implementation of fuzzy computing.
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1 Formulation of the Problem

Need for fuzzy techniques. Often, we rely on experts to make good deci-
sions. For example, in medicine, in spite of numerous successes of automatic
systems, we still rely on human doctors to make decisions.
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In each application area, some experts are very good, others are not that
experienced. It would be great if the best experts could serve everyone, but
there are usually only a few experts of a kind, and they cannot help many. So,
a natural idea is to add top expert’s knowledge into a computer system – that
helps other experts.

Usually, experts are eager to share knowledge, but there is problem: they
often describe this knowledge by using imprecise (“fuzzy”) natural-language
words like “small”, and it is not easy to translate these words into computer-
understandable terms.

For example, in the US, most people know how to drive. However, when
you ask a person what to do if you are driving on a freeway at a speed of 65
miles per hour and a car 30 feet in front of you slows down to 60 – a typical
answer is “brake a little bit”. Computers do not understand what “a little bit”
means, they need to with what exactly force and for how many milliseconds
to apply the brakes.

Techniques for translating from “fuzzy” natural language into precise
terms are called fuzzy techniques; see, e.g., [1, 3–7, 9, 10, 12, 16]. These
techniques have been successfully applied in many areas.

Specifics of mobile computing and the resulting general problem. The
main limitation of mobile computing in comparison with regular computing
is the need to make sure that the battery lasts as long as possible. So, we
should make as few computational steps as possible; see, e.g., [2].

What we do. We analyze how the mobile-computing-related limitation
affects fuzzy computations.

Structure of the paper. In Section 2, we remind the readers of the main
computational steps related to fuzzy computations. In a short Section 3,
we remind the readers that there are two ways to decreases the number of
computational steps: to decrease the number of arithmetic operations and
to decrease the number of bits in the representation of the corresponding
numbers. In Sections 4 and 5, we show how we can do this for fuzzy
computations. Conclusions form Section 6.

2 Fuzzy Techniques: A Brief Reminder

General idea. How to describe terms like “little” in precise terms? For
quantities like “positive”, their meaning is very clear:
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• if a number x is negative or zero, i.e., if x ≤ 0, then this number is
positive; but

• if a number x is larger than 9, then this number is positive.

As we go from small negative numbers to 0, our opinion about the statement
“x is positive” drastically changes from “false” to “true”. In contrast, for
fuzzy properties like “x is small”, there is no such abrupt transition:

• values x close to 0 are absolutely small,
• values x which are much larger than 0 are absolutely not small, and
• intermediate values are small to some extent.

In a computer, “true” is usually represented as 1, and “false”as 0. Thus, it is
reasonable to represent degrees of certainty intermediate between “absolutely
true” and “absolutely false” by numbers intermediate between 0 and 1.

The notion of a membership function – or, equivalently, a fuzzy set. In
line with the above general idea, to describe a natural-language property like
“large”, we assign, to each possible value x of the corresponding quantity, a
degree m(x) ∈ [0, 1] to which this value x has the given property – e.g., the
degree to which x is large.

Informally, this function m(x) describes to what extent the value x
belongs to the set of all small numbers. Because of this informal description,
the function m(x) is called a membership function. It is also called a fuzzy
set.

Fuzzy logic: general description. In practice, expert-provided rules often
use logical connectives: “and”, “or”, and “or”. For example, in the car case,
the condition was that the speed is 65, and that the other car is at 30 ft, and
this other car slows down to 60. Medical recommendations are also full of
such rules.

These logical connectives are easy to apply if we are dealing with precise
statements. In this case, the truth values of two statements A and B uniquely
determine the truth values of the corresponding logical combinations A&B,
A ∨B, and ¬A.

The situation is different in the fuzzy case. If we know that the statement
A holds with degree of confidence 0.8, and the statement B holds with degree
of confidence 0.9, what is the degree of confidence in A&B?

Fuzzy “and”-operations. In the ideal world, we should ask the same expert –
whom we asked to gauge his/her degree of certainty in two statements A
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and B – to also gauge his/her degree of certainty in the combined statement
A&B. We can do it for one or two combined statements, but for n basic
statements, there are exponentially many such combined statements, and it is
not possible to ask the expert about all of them.

We cannot always get the degree of confidence in a combined statement
A&B from the expert. So, we must estimate this degree by using the
information we have – i.e., based on our degrees of confidence a = d(A) and
b = d(B) in statements A and B. For this estimation, we need a function that
would input the degrees of certainty a and b in statements A and B and return
the estimate for the expert’s degree of certainty in A&B. Such a function
is usually denoted by f&(a, b) and is known as an “and”-operation, or, for
historical reasons, a t-norm.

“And”-operations need to satisfy several natural conditions.

• First, for the cases when both degrees are 0s and 1s, they must coincide
with the “and”-operation in the usual 2-valued (“yes”-“no”) logic.

• Second, since usually, “A and B” means the same as “B and A”,
the estimates f&(a, b) and f&(b, a) for these two statements should
coincide, i.e., we should have f&(a, b) = f&(b, a). In mathematical
terms, this means that the operation f&(a, b) must be commutative.

• Similarly, since the statements “A and (B and C)” and “(A and B) and
C” mean the same thing, the corresponding estimate f&(a, f&(b, c)) and
f&(f&(a, b), c) must also be equal. Thus, the operation f&(a, b) must be
associative.

Fuzzy “or”-operations. Similarly, we need a function f∨(a, b) that estimates
the degree of certainty in a combined statement A∨B. This function is known
as “or”-operation, or, for historical reason, a t-conorm.

“Or”-operations also need to satisfy several natural conditions.

• First, for the cases when both degrees are 0s and 1s, they must coincide
with the “or”-operation in the usual 2-valued (“yes”-“no”) logic.

• Second, since usually, “A or B” means the same as “B or A”, the
estimates f∨(a, b) and f∨(b, a) for these two statements should coincide,
i.e., we should have f∨(a, b) = f∨(b, a). In mathematical terms, this
means that the operation f∨(a, b) must be commutative.

• Similarly, since the statements “A or (B or C)” and “(A or B) or C”
mean the same thing, the corresponding estimate f∨(a, f∨(b, c)) and
f∨(f∨(a, b), c) must also be equal. Thus, the operation f∨(a, b) must
be associative.
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Fuzzy negation operations. To describe negation, we similarly need a nega-
tion operation f¬(a). A natural condition is that for the cases when the input
a is 0 or 1, the negation operation must coincide with the negation in the usual
2-valued (“yes”-“no”) logic.

So what is fuzzy logic. The above logical operations with fuzzy degrees –
as well as similar operations corresponding to implication and other logical
connectives – form what is known as fuzzy logic.

3 How to Decrease the Number of Computational Steps:
A General Reminder

Every computation consists of elementary steps. In a computer, the only
directly hardware-supported operations are arithmetic operations: addition,
subtraction, and multiplications. Computers also support min and max of two
numbers. All other computations, whether we are computing the value of
sin(x) or a solution of a complex partial differential equation, consist of a
sequence of arithmetic operations.

For example, computation of sin(x) is usually done by computing the
sum of several first terms in the corresponding Taylor series

sin(x) ≈ x− x3

3!
+

x5

5!
+ · · ·+ (−1)k · x2k+1

(2k + 1)!
.

Out of all elementary operations:

• the fastest are min and max,
• next fastest are addition and subtraction, and
• multiplication is the slowest: this makes sense since multiplication

requires several additions.

Each elementary operation consists of several bit operations. Each arith-
metic operation, in its turn, consists of several bit operations. The more bits
we use to represent each number, the more bit operations we need to preform
a single arithmetic operation.

So how can we decrease energy consumption related to computations?
Each bit operation requires some energy. Thus, to decrease energy consump-
tion and to make mobile devices last longer, we need to decrease the overall
number of bit operations. In line what we discussed, this means:

• decreasing the number of arithmetic operations – and selecting the
fastest operations, and/or
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• decreasing the number of bit operations needed for a single arithmetic
operation, i.e., decreasing the number of bits used to represent each
number.

In the following two sections, we will analyze how each of this ideas will
affect fuzzy computations.

4 How to Minimize the Number of Arithmetic Operations in
Fuzzy Computations

4.1 Let us Start with Fuzzy Logical Operations

How do we minimize energy consumption. To minimize energy consump-
tion, we need to select an algorithm consisting of the smallest possible
number of elementary operations, and these operations must be the fastest
possible.

The smallest number of arithmetic operations that we can use is one, and
the fastest operations are – as we have mentioned – min and max; next in
speed are addition and subtraction.

Based on this, which “and”- and “or”-operations should we choose? The
fastest possible arithmetic operations are min and max. Interestingly:

• min satisfies all the above-described properties of the “and”-operation,
and

• max satisfies all the above-described properties of the “or”-operation.

Thus, in the mobile implementation of fuzzy computations, it is reasonable
to use “and”-operation f&(a, b) = min(a, b) and “or”-operation f∨(a, b) =
max(a, b).

Comment. These operations are indeed successfully used in many applica-
tions of fuzzy techniques, where they lead to reasonable results.

Which negation operation should we choose? For negation operation, we
cannot use min or max – neither of related operations min(a, c) or max(a, c)
for some c coincides with the classical negation for both a = 0 and a = 1.

Next in speed are addition and multiplication. Among corresponding
operations a+c, a−c, and c−a the only one that coincides with the classical
negation for both a = 0 and a = 1 is the operation f&(a) = 1− a.

So this what we should use in mobile fuzzy computations. This operation
is indeed actively and effectively used in fuzzy applications.
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4.2 What About Membership Functions?

What we want. We want to describe a function m(x) that assigns a number
from the interval [0, 1] to any possible value x of the corresponding physical
quantity.

What we need to take into account. It is important to take into account
that the numerical value of a physical quantity depends on the choice of the
measuring unit and on the choice of the starting point.

If we replace the original measuring unit with a new unit which is a times
smaller, then all numerical value of the corresponding quantity get multiplied
by a: x 7→ a · x. For example, if we replace meters with centimeters, all
numerical values get multiplied by 100: e.g., 1.7 m becomes 170 cm.

Changing a measuring unit leads to transformation x 7→ a · x for positive
a. Sometimes, the change of sign also makes sense: for example, which
direction of current shall we call positive and which negative is just a question
of convenience. If we change the sign, then all numerical values change sign:
x 7→ −x.

Similarly, if we replace the original starting point with a new point which
is b units lower, then this value b is added to all numerical value x 7→ x + b.
For example, if instead of the French Revolution calendar – that started in
year 1789 – we use the usual calendar that started b = 1789 years earlier,
then, e.g., French-calendar Year x = 2 becomes year x+ b = 1791.

If we change both the measuring unit and the starting point, then we get
a generic linear transformation x 7→ a · x+ b.

How does this affect membership functions. We want to come up with
a general expression for a membership function, an expression that would
be useful even if we change the measuring unit and/or the starting point for
measuring the corresponding physical quantity. So, with each function m(x)
this family of functions should also contain all the functions of the type
m(a · x+ b) for different values a and b. We will say that this family is
invariant under re-scaling.

Even if we start with the easiest-to-compute function m(x) = x – that
does not require any computations at all – we will still need to consider all
linear functions m(x) = a · x+ b.

In general, computing a linear function requires two elementary opera-
tions: multiplication and addition. If we only use one arithmetic operation,
i.e., use expressions of the type x + b, 2x, a · x, or x · x, we do not get any
re-scaling-invariant family. Thus, to get such a family, we need at least two
arithmetic operations.
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The fastest operations are addition and multiplication. However, if we use
two additions or subtractions, we will get either x + c or c − x or 2x + c or
3x – so again, we do not get any re-scaling-invariant family.

Thus, we need at least one operation of next computation speed – i.e.,
multiplication. If we use one addition and one multiplication, then we get
either x2 + c – which is not invariant – or a · x+ b.

Thus, locally, the simplest-to-compute membership functions should be
linear.

Resulting recommendation. So, we should use piecewise-linear member-
ship functions in fuzzy mobile computing.

Comment. Piecewise-linear membership functions – with triangular and
trapezoid shape – are indeed used frequently and effectively in applications
of fuzzy techniques.

5 How to Minimize the Number of Bits Per Number in
Fuzzy Computations

What numbers are currently used to represent degrees of confidence.
As we have mentioned, a usual way to represent a fuzzy degree is by using
numbers from the interval [0, 1]. In general, modern computers use 64 bits to
represent real numbers.

But do we really need all these bits? Using 64 bit makes sense if we are
talking about values of physical quantities – we want to preserve the accu-
racy with which these values are known. However, for degrees provided by
experts this does not make much sense. Probably an expert can meaningfully
distinguish between degrees 0.6 and 0.8, but realistically, we cannot expect
anyone to meaningfully distinguish, e.g., between degrees 0.80 and 0.81.

How many different degrees of confidence do we actually need? It is
known that people can meaningfully divide objects into no more that 7 plus
minus two categories (see, e.g., [8,11]). This means that to adequately capture
human opinions, it is sufficient to use between 7 − 2 = 5 and 7 + 2 = 9
different degrees of confidence.

In general, absolutely true and absolutely false are also degree of con-
fidence – so they are among these ≤ 9 degrees. However, experts are
practically never absolutely 100% sure that the statement is true, and prac-
tically never absolutely sure that the statement is false. If we exclude these
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two degrees – absolutely true and absolutely false – we end up with no more
than 7 different possible expert’s degrees of certainty.

So how many bits per number do we need? To represent these degrees, we
only need 3 bits, since using 3 bits allows us to represent 23 = 8 different
degrees of confidence.

Thus, to process each fuzzy degree on a mobile device, it is sufficient to
use only 3 bits.

Comment. It it worth mentioning that the number of different distinguishable
degrees is equal to the number of different basic colors. This is not a coinci-
dence, since both numbers come from the same general seven plus minus two
law. It is therefore possible to place different degrees of confidence in 1-to-1
correspondence with colors.

This is not just a purely mathematical possibility: such a correspondence
enables us to effectively use optical computing – namely, a special color
version of it – to speed up fuzzy computations; see, e.g., [13–15].

6 General Conclusions

To minimize energy consumption when performing fuzzy computations on a
mobile device, we need:

• to use piecewise-linear membership functions (e.g., triangular and
trapezoidal),

• to use min as “and”-operation, max as “or”-operation, and 1 − a as
negation operation, and

• to use 3-bit representations of all fuzzy degrees.

Good news is that many effective applications of fuzzy techniques already use
these membership functions and these logic operations, so their use should
not lead to a drastic decrease in the quality of the results.
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