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Abstract

This communication describes the resistorless simulation of the floating loss-
less inductor using three voltage differencing buffered amplifiers (VDBAs)
and one grounded capacitor. The circuit employs only a grounded capacitor,
and no other extra resistor element is employed. Thus, it is suitable for further
communication integrated front-end circuit design in short-range wireless
and application. The realized equivalent inductance value of the simulated
inductor can be changed electronically via the external biasing currents of
the VDBAs. Sufficient simulation results with the PSPICE program are
provided to validate the functionality of the realized inductor. In addition to
establishing the practical operation of the simulator, the measured test results
obtained from hardware implementation using readily available integrated
chips (ICs) are also included.
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1 Introduction

In the last decades, LC filters are an important building block of modern
communication electronic architecture [1]. It is also well known that every
communication system and wireless application requires one or more filters
in their circuit structure. The LC filter in the communication front-end section
performs a significant part for controlling the selective frequency band of
wireless standard, and eliminating the unwanted frequency band. In addition,
discrete inductors find several applications in active filters, LC oscillators
and comparators for impedance matching, parasitic cancellation and phase
shifters [2]. For short range wireless communication, they are employed
to appropriately tune and couple the front-end module and power ampli-
fiers. They are also used to form the impedance matching in the near field
communication circuit. However, from the viewpoint of the communication
integrated circuit (IC) design, the major restrictions of the use of physical
spiral inductors are their bulky structure, and small and non-tuneable induc-
tance values. Therefore, it is highly preferable to simulate floating inductors
with modern electronic active building blocks. Over the years, several floating
lossless inductance simulator circuits have been designed using different
types of active building blocks [6–14]. However, some of the inductance
simulator circuits are realized with two kinds of active building blocks [4,
8–10]. The configurations reported in Refs. [5, 7, 11–13] require two active
and three passive components for realizing floating lossless inductance simu-
lators. In Refs. [3, 5–8, 10–14], many external passive resistors are employed
for their realizations. In addition, in Refs. [3, 5–7, 10, 11] a floating resistor is
used, which is not desirable for the IC fabrication. Furthermore, the floating
lossless inductor realizations reported in Refs. [3, 5–7, 10–12] do not possess
electronic tuning capability.

Recently, the novel reported active building block the so-called voltage
differencing buffered amplifier (VDBA) has been proved to be a useful and
versatile active element in realizing a class of analogue signal processing
circuits and applications [17–20]. In the following sections, we focus our
attention on the floating lossless inductor simulation realization based on the
VDBAs, designed with a single grounded capacitor. The circuit comprises
only three VDBAs and one grounded capacitor without using any external
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resistor component. The simulated equivalent inductance value can be regu-
lated electronically through the adjustment of the external bias currents of the
VDBAs. A detailed analysis of the VDBA non-ideal parameters and sensitiv-
ity performance are investigated. The functionality of the proposed simulator
is illustrated by the PSPICE simulation results based on complimentary
metal–oxide–semiconductor (CMOS) VDBA implementation using TSMC
0.25-µm CMOS technology process parameters. In addition to confirming
the claimed idea, the practical results using commercially available LT1228
IC chips are also incorporated.

2 Proposed Floating Lossless Inductance Simulator

The proposed floating lossless inductance simulator circuit using three
VDBAs and one grounded capacitor is shown in Figure 1(a). According to
the standard notation, the terminal relations of the VDBA element can be
defined as 
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where gm is an effective small signal transconductance gain of the VDBA.
The parameters α and β are the non-ideal transconductance gain and the non-
ideal transfer voltage gain, respectively. In an ideal case, the parameters α and
β are equal to unity. Based on the behaviour relation (1) of the VDBA and
an analysis of the circuit in Figure 1(a) with gm = gm1 = gm2 results in the
following input impedance

Zin =
v1 − v2
i1

=
v2 − v1
i2

= sLeq = s

(
C
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)
. (2)

This implies that the proposed circuit simulates a floating lossless
inductor with the equivalent inductance value expressed as

Leq =
C

gmgm3
. (3)

It is clear that the value of Leq is feasible by electronic means through the
gmgm3 product, and the equivalent model of this configuration is modelled in
Figure 1(b).
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Figure 1 Proposed floating lossless inductance simulator circuit.

3 Non-ideal Analysis and Sensitivity Performance

If the non-ideal transconductance gain α and the non-ideal transfer voltage
gain β of the VDBA are taken into consideration, then the expressions for the
non-ideal Zin of the circuit in Figure 1(a) are obtained as follows

Zin =
v1
i1
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, (4)

and
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)
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The relative sensitivities of Leq regarding active and passive components
are found as

S
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S
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C = 1. (9)

Since the absolute values of all sensitivity coefficients are no more than
unity, the circuit exhibits low sensitivity performance.
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4 Simulation Results

To reveal the performance of the proposed VDBA-based floating lossless
inductance simulator in Figure 1(a), the simulations based on the PSPICE
program have been carried out. In the simulations, the CMOS VDBA
depicted in Figure 2 [18, 20] was employed using the TSMC 0.25-µm CMOS
process model parameters. The bias voltage and the bias current were set as
+V = -V = 0.75 V and IA = 50 µA. The aspect ratios (W/L) of the transistors
in Figure 2 are the same as provided in Refs. [18, 20].

The proposed floating lossless inductance simulator in Figure 1(a) was
simulated with the following circuit component values: gm1 = gm2 = gm3 =
1.58 mA/V (IB1 = IB2 = IB3 = 100 µA) and C = 100 pF. Therefore, the
value of an equivalent inductance equal to Leq

∼= 40 µH is obtained. Figure 3
shows the simulated transient waveforms for the input voltage (vin=v1 − v2)
and the input current (iin = i1 = −i2) of the simulator with 50 mV (peak)
input voltage at 10 MHz. The simulation result shows the phase difference
between vin and iin of about 89◦, which is nearly close to the predicted value
equal to 90◦.

With the same component values, the simulated frequency responses of
the input impedance (Zin) of the proposed inductance simulator, which are
compared with the predicted responses, are also plotted in Figure 4. From
these results, it can be noticed that, for the frequency range between 50 kHz
and 30 MHz, the maximum errors in magnitude and phase are found to be
approximated as 22% and 15%, respectively. Additionally, the total power
consumption of the simulator is measured as 1.13 mW.

In order to further testify the electronic tuning capability of the circuit,
the plots of |Zin| against frequency characteristics are given in Figure 5 for
gm1 = gm2 = 1.58 mA/V and C = 100 pF and three different values of

Figure 2 CMOS internal structure of the VDBA used in simulations [18, 20].



326 P. Moonmuang et al.

Figure 3 Transient response analysis of the proposed lossless inductor in Figure 1(a) for
10-MHz sinusoidal input voltage of 50 mV (peak).

Figure 4 Frequency response analysis of the proposed lossless inductor in Figure 1(a).

gm3, i.e., gm3 = 1.12 mA/V, 1.58 mA/V and 2.24 mA/V (IB3 = 50 µA,
100 µA and 200 µA). These designed component values are in accordance
with the simulated equivalent inductance values of Leq = 56 µH, 40 µH and
28 µH, respectively. It is clearly demonstrated that, for different values of
transconductance gm3, the value of Leq can be changed electronically.

5 Experimental Test Results

To affirm the earlier given theoretical predictions, the experimental test results
have been also performed through the hardware implementation of the VDBA
using the commercially available IC LT1228 [21]. It may be further noted that
the LT1228 only based implementation of the VDBA provides the possibility
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Figure 5 Magnitude frequency responses of the proposed lossless inductor in Figure 1(a)
with tuning gm3 (IB3).

Figure 6 Fabricated PCB of the proposed floating lossless inductor in Figure 1(a).

of tuning gm with the external bias current IB , namely gm = 10IB . The
printed circuit board (PCB) used in the experimental measurements of the
proposed floating lossless inductor is pictured in Figure 6. The symmetrical
supply voltages used were ±5 V. For all real measurements, the element val-
ues of the synthetic inductance simulator were set to gm1 = gm2 = 1 mA/V
(IB1 = IB2 = 100 µA), and C = 1 nF. The measured waveforms of
vin and iin through the proposed simulator are given in Figure 7 with 200-
kHz sine wave input voltage of 50 mV (peak). In this measurement, the
transconductance gm3 = 1 mA/V is chosen to obtain the synthetic inductor
with Leq = 1 mH. As expected, it can be recorded from the graphs that
the phase of iin lags that of vin by 88.1◦, where the theoretical value is
equal to 90◦.

Likewise, the measurement data of the impedance-frequency characteris-
tics of the proposed floating lossless inductor for gm3 = 0.5 mA/V, 1 mA/V,
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Figure 7 Measured results for the waveforms vin and iin of the proposed lossless inductor
with 200-kHz sinusoidal input voltage of 50 mV (peak).

2 mA/V and 5 mA/V (IB3 = 50 µA, 100 µA, 200 µA and 500 µA) are
respectively given in Figures 8–11. For the given component values using
Equation (3), the corresponding equivalent inductance values are obtained
as Leq = 2 mH, 1 mH, 0.5 mH and 0.2 mH, respectively. It is noticeable
that the experimental test results given in Figures 8–11 actualize the practical
behaviour of the proposed floating synthetic lossless inductor.

6 Applications to Filter Realization

To demonstrate the behaviour of the proposed floating lossless inductance
simulator circuit of Figure 1, the same is employed to replace the passive
inductors of the lowpass (LP) and bandpass (BP) filters given in Figures 12(a)
and 12(b), respectively. In the circuit realization, the following passive
components have been selected as RLP = RBP = 632 Ω and CLP =
CBP = 100 pF. Further, an effective inductance of Leq

∼= 40 µH was
implemented with the proposed inductor of Figure 1(a). Its component values
are the same as that mentioned in Section 4. In this setting, the important
frequency characteristics are obtained as fo = ωo/2π = 1/(LeqCLP )1/2 =

1/(LeqCBP )1/2 ∼= 2.52 MHz and Q = (1/RLP )(Leq/CLP )1/2 =

(1/RBP )(Leq/CBP )1/2 = 1. Figure 13 shows the simulated frequency
responses of both filters of Figure 12, compared with that of ideal floating
inductors. It can be observed that the simulated values exhibit excellent
agreement with theoretical results over a wide range.
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Figure 8 Experimental results of the impedance-frequency responses for gm3 = 0.5 mA/V.
(a) magnitude response and (b) phase response.
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Figure 9 Experimental results of the impedance-frequency responses for gm3 = 1 mA/V.
(a) magnitude response and (b) phase response.
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Figure 10 Experimental results of the impedance-frequency responses for gm3 = 2 mA/V.
(a) magnitude response and (b) phase response.
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Figure 11 Experimental results of the impedance-frequency responses for gm3 = 5 mA/V.
(a) magnitude response and (b) phase response.
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Figure 12 RLC filter realizations using the proposed inductor in Figure 1. (a) lowpass filter
and (b) bandpass filter.

Figure 13 Theoretical and simulated frequency responses of the filters in Figure 12.
(a) lowpass filter and (b) bandpass filter.
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Figure 13 Continued.

7 Concluding Remarks

In this work, the floating lossless inductance simulator consisting of three
VDBAs and one grounded capacitor is developed. The proposed synthetic
lossless inductor provides the following advantages: (i) no employment of
any external resistor element, (ii) the use of only grounded capacitor as
preferred for integration, (iii) simulated equivalent inductance can be scaled
electronically through transconductance gains of the VDBAs and (iv) low
active and passive sensitivity indexes. Applications of the proposed floating
inductance simulator circuit in the RLC LP and BP filter realizations have
also been outlined. A number of PSPICE simulation and experimental test
results has been performed to validate the behaviour of the proposed induc-
tance simulator. Therefore, the proposed circuit may be used to the design
of highly integrated communication systems, since several filtering functions
had to be performed off-ship. In the future, as the number of smart mobile
phone and other miniature multimedia device products would have been
dramatically increasing, the proposed active inductor circuit is expected to
be useful in short range wireless communication and application.
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