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Abstract

Machine learning has many challenges, and one of them is to deal with
large datasets, because the size of them grows continuously year by year.
One solution to this problem is data parallelism. This paper investigates the
expansion of data parallelism to mobile, which became the most popular
platform. Special client-server architecture was created for this purpose.
The software implementation of this problem measures the mobile devices
training capabilities and the efficiency of the whole system. The results show
that doing distributed training on mobile cluster is possible and safe, but its
performance depends on the algorithm’s implementation.

Keywords: Machine learning, distribution, data parallelism, mobile, client-
server architecture, web service.

1 Introduction

Machine learning is a very popular area in the informatics, because most
of the applications and services use it directly or indirectly. The application
of machine learning techniques can be found in nearly every discipline, for
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example they are used in healthcare, cars, politics, and commerce. In health-
care, it can be used to predict diseases or medical parameters based on the
collected data. To be more concrete, researchers use machine learning to
predict cancer [1], to improve the diagnosis of ischemic heart disease [2],
for hippocampal shape analysis [3], general disease prediction [4]. In other
fields, there are many special applications, like facial expression recognition
[5] or automated traffic classification [6]. There is a need for machine learning
techniques’ evolution, because the size of the datasets is growing continu-
ously year by year. Traditional machine learning has its limits, especially in
handling big data, because the complexity and size of datasets grow more than
the hardware’s computing capacity. Of course, there are several methods for
handling large datasets with traditional machine learning techniques, like the
clouds decision tree [7], Bayesian networks [8], support vector machines [9].

Mobile phones became the most popular devices, and because of this
popularity, the hardware of them evolves quite fast. Each year, the flagship
mobile’s computing capacity grows significantly [10, 11], and most of them
are even capable of using machine learning models. There is no doubt that
the popularity of these devices will grow more in 10 years [12–14]. The
problem with the increasing number of mobile devices is that most of time,
their processors and GPU-s are idle, so their users use only a fragment of the
computing capacity.

This paper focuses on the utilization of mobile processors for machine
learning purposes, especially with large datasets. My aim was to create
an architecture, which is capable of processing machine learning models
trained on phones. There is a reference implementation of this architecture,
so the performance and other properties are measured. This paper deals
with challenges from multiple areas such as transferring models between
devices, verifying the received models and reconstructing them, and training
neural networks on mobiles. One of the most important parts of this system
is the web service, which can handle incoming machine learning models,
persist them in the database, construct ensemble models, and slice datasets.
The other important part is the mobile application, which can train simple
neural networks, use trained models, and communicate with the web service.
Constructing ensemble models is an advantage of this system because with
them, the accuracy can be increased [15]. For handling large datasets, this
system uses data parallelism, so each device can train a model on a part of the
data. For the challenge of transferring these models to the server, I used byte
array serialization, because in this form, the received model can be verified
and then deserialized into the same model.
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2 Related Works

The present work can be placed in many topics, like distributed machine
learning, mobile machine learning, and machine learning model exchange
formats.

There are many model exchange formats, and each of them approaches
the problem differently. Predictive Model Markup Language (PMML) is
an XML format for predictive models [16]. In this language the model is
defined by a header, a data dictionary, data transformations, the model itself,
the mining schema, the targets and the outputs. It supports multiple model
types, like neural networks, Gaussian processes, Bayesian networks, support
vector machines. ONNX is another project to share machine learning models
between frameworks. It defines a computation graph model, built-in operator
and standard data types. The supported frameworks are Caffe2, Chainer,
Cognitive Toolkit, MXNet, PyTorch, PaddlePaddle, Matlab, SAS, NNL by
Sony. It defines converters for Keras, Tensorflow, scikit-learn, Apple Core
ML, Spark ML, LightGBM, libsvm, XGBoost [17, 18].

There are many projects for machine learning on mobile too. A popular
usage of neural networks on android is image recognition and manipulation,
but these models can be used for detecting malware too [19–21].

Using machine learning models through web services is quite popular
nowadays, because there are many devices, which can’t train a model by
themselves, so they must access pretrained ones [22].

The distributed machine learning is a very popular topic, and there are
many unique ways achieve it. There are implementations with parameter
servers, where the distributed computations update the model parameters on
a defined server [23], and there are special systems like MLBase [24], what
defines an own architecture for distribution, or MLI [25], what defines an
API, or more widely used solutions, like Apache Spark’s MLlib [26].

3 Fundamentals of the System

The created software distributed machine learning on mobile is shown in
Figure 1. The center of this application is a Spring framework [27] based
web service, which manages the datasets and the trained models too. It com-
municates with a database, which will contain the datasets and the models.
The mobile devices can communicate with this service, so they can get data
slice, trained models, and ensemble models from it and they can send their
trained neural networks back.
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Figure 1 The relationship of the system’s components.

3.1 Web Service

The web service is the most complicated part of this system, because it
includes methods for managing datasets, processing data, converting data,
persisting trained models, retrieving trained models, creating ensemble mod-
els and handling Hypertext Transfer Protocol (HTTP) requests. It is important
that this part of the system was written in Java using the Spring framework.
Of course, this software can be implemented in any programming language,
which can handle HTTP requests and responses and has a common data
exchange format with the Android system. In our software, the data on both
server and client is represented by java byte array.

The data access layer of the web service uses Spring Data to run SQL
command in the database. In this layer, there are two sublayers, named enti-
ties and repositories. Entities are the Java side representation of the database
objects, so the Spring framework will know what kind of data it can access
in the database. The repositories define interfaces containing operations like
create, read, update and delete, so the framework will use these for generating
a complete query with the given entity types.

The service layer is in the middle of the web service software, so it
communicates with the data access layer and with the endpoints’ layer. It
contains the business logic of the software, which includes many functions,
like converting database entities to other data types, slicing bigger dataset
into smaller ones, creating ensemble models and forwarding database related
requests to the data access layer. The conversion of database entities is
necessary, because the structure of the objects in the database differs from
the object structure needed by the mobile clients. The slicing of the dataset
can be managed in many ways, for example the user can request an n large
slice of the dataset containing random records from it. In this layer there is a
domain sublayer that defines the classes from the android application, so the
database entity can be converted to objects from the domain.

The top layer of the web service contains the endpoints and some of the
functionalities. Classes defined here have similar tasks like handling HTTP
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requests, generating HTTP responses, validating the given JSON web token
and beside that they have unique tasks too. The architecture of the web service
is shown in Figure 2.

Figure 2 The layer structure of the web service.

For example, with the ensemble endpoint, the user creates an ensemble
model with the given type and the given models, or it can query persisted
ensemble models from the database, so it can use these models on the client
side. This layer has one of the core functionalities that are the conversion of
the models to byte array, so it will be easier to send through the network and
it can be converted back to a model object on the client side. The list of the
defined endpoint is shown in Table 1.

Table 1 Endpoints of the web service
Prefix Endpoint Method Description
/data /slice GET Retrieve an n size dataset slice

/data /get-dataset GET Retrieve the whole dataset

/data /get-dataset-attributes GET Retrieve the attributes of the given dataset

/data /list-dataset GET Retrieve the list of available datasets

/data /remove-dataset DELETE Remove the selected dataset

/model /list-model GET Retrieve model list for given dataset

/model /get-model GET Retrieve a single model by identifier

/model /save-model POST Save the model specified in the body

/model /remove-model DELETE Remove the selected model
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The functions of the web service software includes dataset managing,
data processing, data conversion, dataset slicing, persisting trained models,
retrieving trained models and creating ensemble models. The dataset man-
aging function is about accessing the datasets, which are persisted in the
database. Because the variety of parameters the models can have, they must
be persisted in a common form, which can be the byte array of them. The data
model in Figure 3 shows that the database can work with multiple datasets by
having a table for the attributes and the data-types of them and each record
of this table references to the related record of the dataset table. With this
solution, the web service can query the database for dataset files and the
information for reading it can be accessed with a query to the attribute table.

Figure 3 Database structure.

The data processing function is about preparing the queried dataset to
be in the proper state for training. The transformation of the dataset can be
customized, so the user can access the Deeplearning4J library’s functions.
The user can apply data reduction or can change the scale of the data; it
can use sampling, dimensionality reduction, feature extraction, discretization
or binarization. These features are using the Deeplearning4J’s corresponding
functions, like Principal Component Analysis (PCA). The data slicing func-
tion is about getting an n size random sample from the preprocessed dataset,
so it relies on the data processing package.

Model handling is the most important function of the web service,
because the created software’s main feature is the usage of trained models
from the network. The first model handling operation was persisting, so the
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service can persist the models trained on mobile devices. Here, when a model
arrives to the server, it will try to deserialize it from byte array to simple Java
object. If this process is successful, then the software knows that the sent byte
array is a valid model, so it can be converted into database entity and then it
can be persisted too. The flow of the model data is shown in Figure 4.

Figure 4 Flow of the model data from mobile to database.

The second model handling operation is retrieving, where the user can
query for models from the database. When a specific HTTP request arrives
to the server with the number of the model, it will query the database for
it; then it will be serialized into byte array and then sent back to the client,
where the byte array can be deserialized into simple Java object what will be a
trained model. The serialization is a quite simple process to create a compact
form of a Java object. The initial state is when there is a trained model on the
server, and this model has attributes for hyper-parameters and for the state
of the model. These values will form a JSON object, which can be handled
as a simple text. This Java text object can be transformed into byte array, so
it will be in a more compact and verifiable format, which can be used for
model data exchange. The deserialization includes the same steps, just in the
opposite way. The flow of the model data is shown in Figure 5.

Figure 5 Flow of the model data when retrieving a model.

The last model handling operation is creating the ensemble models based
on the earlier persisted models. The mobile client can send HTTP request
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to get earlier persisted models for a dataset. From this list the user can
select models and then send another HTTP request with the models’ id as
parameters. With this data, the web service queries the models from the
database, then creates a selected type of ensemble model with it. This model
can be persisted in the database and will be sent back to the mobile client.
The sending works the same as sending regular models, so the ensemble
model will be serialized into byte array and the mobile client can use it after
a deserialization.

3.2 Database

This part of the software consists of a simple relational MySQL database,
which is created for managing trained models and datasets along with infor-
mation about their data structure. The database model is shown in Figure 3.
The most important table is the model, which contains the machine learning
model’s generated id, the byte array of it, the dataset’s id and the type of the
model. In this representation, the user can select models by types or datasets.
The related table is the dataset, which includes the name, source, file and the
description of it. The dataset consists of attributes, which are represented in
the attribute table. It has an identifier, a name, a type and a comment, so the
user can search datasets by attributes. The relation between the attribute and
the dataset table is represented in the dataset attribute joining table.

3.3 Mobile Client

This part of the software consists of two layers and it has the most important
functionalities like training and evaluating models. The main used technolo-
gies here are Retrofit for HTTP communication, Room database for a local
database on Android, and Deeplearning4j for machine learning.

The first layer of the mobile client is created for the services. It is
connected with the web service’s endpoint layer and the client’s presentation
layer. The classes in the service layer define the core functionalities of the
application, so the user can send http requests and process responses from
here and it can process the given dataset and train models on them. When the
user of the application wants to use a trained model, it will call a function
from the service layer to send a request to the web service, what will send
back the byte array of the model. This byte array will be deserialized and
then can be used as a trained model.

The presentation layer communicates with the user itself and the service
layer, so it will react to the user’s interactions and forward them to the service
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layer. Here there are only files that define the user interface and the logic
behind it.

The mobile client’s main task is to train models and then send them back
to the web service. For this task, each layer in the web service and the client
will be used, so the data goes through the whole system. The first operation
needed for training is retrieving the dataset, for what the client will use the
web service’s slice endpoint, which is created for sending dataset slices.
When the client has the subdataset, the user can start training the chosen
model from Deeplearning4j. The model can be customized with a given seed
number, optimization algorithm, learning rate, regularization, and of course
custom layers can be added too. After the model training process, the trained
model will be converted into byte array and will be sent to the server where
it will be persisted.

Of course, there are a lot of limits for this mobile client because by default
Deeplearning4J was not created for mobiles, so it does not support many
Android features. A fine example for this is that Deeplearning4J’s model
training and other operations are not thread safe so it cannot utilize all of the
mobile’s resources, mostly the processor. The other problem with the mobile
platform is the lack of memory, because machine learning often needs a lot of
memory, especially with bigger datasets. That is why the slice operation was
introduced, so the mobile devices can do training on smaller datasets, and the
result can be synchronized to the server.

The trained models are not sent to the server automatically, it is a user
choice. There is an evaluation process on the mobile client, so the user
can check the created model. The scores of accuracy, precision, recall and
F1 can be written to the screen. With the evaluation, the user can see the
confusion matrix, false positive/negative rate, true positive/negative, class
counts, F-beta, G-measure, Matthews correlation coefficient.

The last function of the mobile client is to reuse the trained models
from the database to create ensemble models. This can be achieved from
the user interface, where the user can retrieve the list of the models for
the selected dataset. For communication with the web service, the mobile
application’s service layer uses the list-model endpoint. Here the user can
select some models and then an ensemble method. When the ensemble
model is created, it can be evaluated with the evaluation service. If the user
finds the model good enough, it can be sent to the web service to persist
it in the database. For saving, the mobile will use the web service’s save-
model endpoint. The persisted model can be reused later by other mobile
devices.
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4 Learning on Mobile with Data Parallelism

Most machine learning systems use some kind of parallelism when they have
to deal with bigger datasets. They can be separated into model and data
parallelism. In this work, model parallelism was not used, so this software is
about utilizing mobile processors with a fully data parallel machine learning
system.

4.1 Data Parallelism

Data parallelism is a popular way to introduce parallelism to software because
it is fairly easy to implement, and it is independent from the chosen machine
learning model. Data parallelism is not only for machine learning, although
it is obvious to use it for handling big data or reducing computation need
[28, 29]. Basically, this method is about having one bigger dataset, what
will be used for machine learning and from it multiple subdatasets can be
created. It is important to note that if the size of the subdataset is too small,
it possibly contains too few information for a machine learning system, but
the current system does not warn the user about the dataset size. These
smaller datasets are easier to process, so they can be processed on separate
processors or devices. The result of the training on the subdataset will be a
smaller model; it can be named as a submodel, which contains information
about the subdataset. These submodels can be synchronized to a server for
aggregation. The output of the synchronization process will be a bigger model
combined from the submodels, so it will contain information about each
smaller subdatasets. The basic data parallelism can be seen in Figure 6.

Figure 6 The simplified data parallelism.
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4.2 Data Parallelism with Mobile

Using data parallelism with mobile is only an extension of the basic data
parallelism, so the main steps are the same. The problem here is handling
bigger datasets too, but the computing capacity here is in the mobile devices,
not simple processors. The first step is the slicing of the data, what will
be resulted in multiple smaller dataset. While creating smaller datasets, it
is more important to care about the size of the resulted datasets, because
beside the lower size limit, the mobile devices have upper size limit too. If
the subdataset is too large, the mobile device cannot process it because of the
lack of memory in these devices. With the introduction of the mobile devices,
the subdatasets will be sent to the mobiles through the network. The training
process will start here on these devices and when the training is over, the
model can be sent back to the server with the synchronization process, where
they can be aggregated. The output here will be a bigger model combined
from the submodels, just as in simple data parallelism. So basically, this
method involves the new synchronization process to the mobile, but with it,
the summed computing capacity will be bigger, because mobile processors
can run training processes on each cores. The mobile extension of data
parallelism is shown in Figure 7.

Figure 7 Extension of data parallelism to mobile.

5 Synchronization

The synchronization had many problems, which had to be solved. The biggest
one was that to use the trained model on the server, the client and the server
should use the same machine learning library. This compatibility problem
was solved with Deeplearning4J, because it is written in Java, so Android
devices and web services can use it too. The other problem was that sending
complex model through the network can be problematic. The solution for
this was the serialization of models to byte array, so they act like compressed
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messages which can be deserialized on the other size. The serialization pro-
cess starts with the trained model, what is a Java object that can be converted
into JSON object. This object includes the hyperparameters and the state of
the model in a special text format. This text object will be converted into byte
array, because it is more compact and easier to verify. When software uses
network to send and retrieve data, it has to prepare for data loss. The message
can arrive malformed, partially missing or it’s possible that it does not even
arrive. The byte array serialization is a solution for this problem too, because
if the byte array is malformed or partially missing, it cannot be deserialized on
the other side, so the software will know about the error. The last discovered
problem of the serialization is that its performance depends on the network
speed, so sending models and data will be slower on slower networks.

6 Measurements

An implementation was created for the mentioned software architecture, so
measurements can be made with it. The web service used Spring Boot, Hiber-
nate and Deeplearning4J to implement the endpoints and the mobile client
used Room database, Retrofit and Deeplearning4J. For comparing the train-
ing time on a simple computer and on this software, the dataset was ‘Record
Linkage Comparison Patterns Data Set’ from the Epidemiological Cancer
Registry of North Rhine-Westphalia and the UCI Machine learning repository
[30, 31]. This is a simple dataset for classification with 12 attributes and
5749132 records. The reason for choosing this is because the number of
records is large, and it was sure that it cannot be processed on mobile devices
without the slicing. The dataset is about comparing two records based on
the agreement of first name, family name, sex, and the date of birth’s day,
month, and year components separately. The same Deeplearning4J code ran
on the desktop and on mobile too, so they trained the network with the same
parameters. The evaluation of the desktop and mobile models shows that both
of them had nearly the same results as seen on Table 2. This accuracy was
computed for a 10000 large subdataset.

Table 2 Accuracy and best score on mobile and computer
Environment Accuracy Score at Best Epoch
Mobile 0.7907 4.81924921875

Computer 0.7907 4.81931338500

The accuracy of the submodels is lower than the bigger model, which was
trained on the entire dataset; however ensemble models constructed from the
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smaller ones have as good accuracy as the bigger model. In numbers, the
accuracies were about 0.79 for submodels, 0.99 for ensemble and the model
trained on the full dataset.

The creators of Deeplearning4J noted that this library can show weak
performance on Android and that was confirmed by my measurements too.
The concrete runtime of 1 epoch based on the size of the dataset can be seen
in Figure 8. The X-axis shows the number of records in the dataset slice and

Figure 8 Runtime of 1 epoch based on the size of the dataset on (a) mobile and (b) desktop.
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the Y-axis shows the runtime of 1 epoch in seconds. The figure shows that
these mobile processors can handle datasets containing smaller than 70000
records. In Figure 8(a) it can be seen that the training speed is quite slow on
the mobile platform with the given Deeplearning4J version, so it can process
only smaller datasets effectively. Figure 8(b) shows that the training speed is
quite faster on a desktop environment.

7 Possible Improvements and Conclusion

The measurements showed that the training speed with Deeplearning4J on
mobile as of 1.0.0-beta5 is quite slow and is limited by the not thread safe
machine learning library, however the created models’ accuracy, precision
and recall values were similar to the simple models. The android machine
learning support mainly focuses on running pretrained models rather than
training on mobile processors, so the support of it is very limited. Over-
all, it can be seen that the data parallelism on mobile can work well, so
these devices can be part of a cluster environment for training models. The
architecture is easy to implement and it was created to be extendible.

It is important to note that because of the web service that handles all of
the models and the data, additional methods should be added to ensure the
security of the system. It could be extended with some kind of role based
access control.

The implementation could be improved in many ways, for example the
slow training process can be solved with another machine learning library,
which is available on mobile too, so it should be changed, maybe for
Tensorflow.

The architecture itself can improve to support the multiplatform distribu-
tion, so training could be done either on mobile or a simple processor, the
results can be aggregated. This may increase the computing capacity, but it
can generate a massive load on the server. This load could be handled with
redesigning the architecture to support microservices with multiple servers.

For future work, I would like to involve more platforms and models from
different environments, so the system won’t depend that much from the Java
language.
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