
A MultiStack Parallel (MSP) Partition
Algorithm Applied to Sorting

Apisit Rattanatranurak and Surin Kittitornkun∗

Dept. of Computer Engineering, Faculty of Engineering, King Mongkut’s Institute
of Technology Ladkrabang, Bangkok, Thailand 10520
E-mail: apisit.ra@ssru.ac.th; surin.ki@kmitl.ac.th
∗Corresponding Author

Received 19 May 2020; Accepted 24 June 2020;
Publication 08 September 2020

Abstract

The CPUs of smartphones are becoming multicore with huge RAM and
storage to support a variety of multimedia applications in the near future. A
MultiStack Parallel (MSP) sorting algorithm is proposed and named MSPSort
to support manycore systems. It can be regarded as many threads of single-
pivot interleaving block-based Hoare’s algorithm. Each thread performs
compare-swap operations between left and right (stacked and interleaved)
data blocks. A number of multithreading features of OpenMP and our own
optimization strategies have been utilized. To simulate those smartphones,
MSPSort is fine tuned and tested on four Linux systems, e.g. Intel i7-2600,
Xeon X5670, AMD R7-1700 and R9-2920. Their memory configurations can
be classified as either uniform or non-uniform memory access. The statistical
results are satisfied compared to parallel-mode sorting algorithms of Standard
Template Library, namely Balanced QuickSort and MultiWay MergeSort.
Moreover, MSPSort looks promising to be developed further to improve both
run time and stability.
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1 Introduction

Manycore CPUs are prevalent in both servers and high-end desktop personal
computers as uniform/non-uniform memory access (UMA/NUMA) systems.
In the near future, smartphones’ CPUs are becoming multicore towards
manycore to support a variety of multimedia applications. Therefore, basic
computing algorithms shall be adapted to exploit that. Sorting and data par-
titioning are mostly based on the well known single-pivot Hoare’s algorithm.
It is known as QuickSort divide and conquer (D&Q) behavior. The first level
partition is the bottleneck of D&Q Hoare’s algorithm This paper intends
to tackle this problem with multithreading techniques while minimizing the
unnecessary memory accesses.

In this paper, we propose a single-pivot block-based data partition algo-
rithm named MultiStack Parallel Partition (MSPPartition). As an application
of MSPPartition, MSPSort is proposed to recursively divide the data array
into shorter subarrays and to sort them in parallel. Unlike other block-based
partitioning algorithms, MSPSort is based on stacks rather than queues and
deques. Our contributions can be listed here. Firstly, the MSPSort is in-place
and requires zero extra memory to buffer the partitioned data. Secondly,
the parallel multistack compare-swap operation is similar to the sequential
Hoare’s algorithm thus demanding low memory bandwidth. Thirdly, a hybrid
breadth-first depth-first task scheduling is proposed to support cache locality
while maximizing parallelism.

This paper is organized as follows. Section 2 reviews related background
and previous work of parallel D&Q sorting algorithms. The MSPPartition
and MSPSort are elaborated in Section 3. Later on, experiment results are
discussed in detail. The last section is Conclusions and Furture Work.

2 Background and Related Work

This section consists of the following subsections, Parallel Sorting Algo-
rithms and STLSort: Sequential and Parallel Modes.

2.1 Parallel D&Q Sorting Algorithms

In 1990, Heidelberger et al. [4] first presented simulation results of parallel
QuickSort based on three parallel partitioning algorithms using Fetch-and-
Add (F&A) operations and two scheduling algorithms. Speedup of 400×
can be obtained from sorting 220 data with upto 500 processors, low-cost
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F&A operations and other ideal assumptions. In 2003, Tsigas and Zhang [14]
proposed a block-based parallel partitioning QuickSort algorithm. The block
size is as small the L1 cache which we consider it as fine-grained parallelism.
Its speedup of 11× can be achieved with 32 processors of SUN-T1 architec-
ture. Süß and Leopold [12] presented several alternative algorithms of parallel
QuickSort based on Pthread and OpenMP 2.0 in 2004. It can achieve 3.24×
on a 4-core AMD Opteron 848. In 2007, Singler et al.[11] developed Multi-
Core Standard Template Library (MCSTL) based on C++ Standard Template
Library. This parallel sorting algorithm is similar to Tsigas and Zhang’s [14]
with a double-ended queue (deque). Its Speedup of 21× can be achieved on
an 8-core 32-thread SUN-T1.

In 2008, Traoré et al. [13] described work-optimal parallelizations of
STL sort based on work-stealing technique. However, their Introspective sort
based on parallel block-based partition [8], [15] is deque-free. Speedup of
8.1× with 16 processors can be obtained. One year later in 2009, Ayguadé
et al.[2] proposed MultiSort based on MergeSort which splits the input data
equally, sorts them using QuickSort in parallel and then merges them using
OpenMP 3.0 Task construct. A maximum Speedup of 13.6× on 32 cores can
be achieved with Intel’s C++ Compiler version 9.1 and Cilk compiler version
5.4.3 using last in first out software thread queue. Meanwhile, Man et al. [6, 7]
developed psort(), a hybrid QuickSort and MergeSort algorithm. Their work
can achieve 11×-Speedup on a 24-core Intel Xeon 7460 system.

In 2013, Mahafzah [5] split the input array with multi-pivot/threads into
partitions using extra space and then sort them in parallel with 8 software
threads. Speedup of 3.8× is achieved on a dual-core HyperThread processor.
Later on, Ranokpanuwat and Kittitornkun [9] proposed Parallel Partition
and Merge QuickSort (PPMQSort). They can achieve Speedup of 12.29×
relative to qsort() on an 8-core HyperThread Xeon E5520 in 2016. More
recently in 2017, Axtmann et al. [1] presented an IPS4o sorting algorithm. It
is a recursive multithread in-place bucket sort. Each thread is responsible for
classifying a number of data blocks into local k buckets based on multipivot
values. The local buckets are merged to replace the input array. Once the
merged subarrays are shorter and then sorted independently. Speedup can
be as high as 29× over its sequential version on a 32-core Intel Xeon E5-
2683 v4. In 2018, Rattanatranurak [10] proposed parallel sorting named Dual
Parallel Partition sorting (DPPSort). Speedups of 5.95× and 4.70× can be
achieved relative to qsort(), and STLSort, respectively on 4-core Hyper-
Thread Intel i7-3770. In summary, Table 1 compares some parallel sorting
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Table 1 Comparison of Sorting Algorithms in terms of Partition Granularity, Merge Algo-
rithm, Time Complexity and Library in chronological order (BQSort: Balanced QuickSort,
MWSort: MultiW Merge Sort, DFWSort: Deque-Free Work-Optimal Parallel STLSort,
PMQSort: Parallel Multithreaded QuickSort, PPMQSort: Parallel Partition and Merge
QuickSort, IPS4o: In-Place Parallel Super Scalar Sample Sort, DPPSort: Dual Parallel
Partition Sort (B-neck: Bottleneck, Seq: Sequential, NA: Not Available, N : Array Size, c:
CPU cores)

Algorithm [14](2003) [11](2007)
Name PQuicksort BQSort
Granularity Fine: L1 Cache Fine: L1 Cache
B-neck Seq Swap to Middle Swap to Middle
Recursive Yes Yes
Time O(N

c
log N

c
+ N

c
) O(N

c
logN + c log c)

Library Pthread OpenMP
Algorithm [11](2007) [13](2008)
Name MWSort DFWSort
Granularity NA Fine: L1 Cache
B-neck pW merging Swap to Middle
Recursive Yes Yes
Time O(N

c
logN + (c log c)(log N

c
)) O(N

c
+ log3N)

Library OpenMP OpenMP
Algorithm [6](2009) [9](2016)
Name psort PPMQSort
Granularity Coarse: N/c Coarse: N/2
B-neck Seq Merge then qsort Seq Swap
Recursive No Yes
Time O(N

c
log N

c
+N) O(N

c
log N

2c
+N)

Library OpenMP OpenMP
Algorithm [1](2017) [10] (2018)
Name IPS4o DPPSort
Granularity Fine: block-based Coarse: N/2
B-neck In-place buckets Partition then Swap
Recursive Yes Yes
Time NA O(N

c
log N

2c
+N)

Library OpenMP OpenMP

algorithms in chronological order such as partition granularity, bottleneck,
recursion, Big-O time complexity and parallel library.

2.2 STLSort: Sequential and Parallel Modes

The Standard Template Library (STL)Sort is a sequential sorting function
for any data type. It is available in almost C++ compilers and prototyped as
follow.
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std::sort(RandomAccessIterator first, RandomAccessIterator

last);

Parameters first and last are pointers to the first and the last positions,
respectively. On the other hand, GNU libstdc++ parallel mode [11] provides
two parallel sorting functions based on OpenMP. Namely, Balanced Quick-
Sort and Multiway Merge Sort, are subject to evaluation in our experiments.
Its function is declared in < parallel/algorithm > directive as follow.

__gnu_parallel::sort(RandomAccessIterator first,

RandomAccessIterator last);

2.2.1 Balanced QuickSort (BQSort)
BQSort is block based similar to Tsigas and Zhang’s [14] partition method.
It compares/swaps data between pairs of left and right blocks in parallel until
either side is finished. The unfinished (leftover) data blocks are pushed to a
double ended queue (deque) to process later. As a result, a pair of blocks can
be stolen to any free processor core. The unfinished blocks are swapped to
the middle of the input array so that the array can be eventually partitioned.
Sequential STLSort is executed locally after it is partitioned successfully.
It is claimed to be an in-place algorithm which can be load-balanced using
Work Stealing method. Run time of this algorithm is varied depending on
data distribution.

2.2.2 MultiW Merge Sort (MWSort)
MWSort divides data into several subarrays equally and STLSort them
in parallel. Each subarray is sorted independently with small overheads.
MWSort relies on parallel multiway merging algorithm to obtain the final
data array. Subsequently, the sorted temporary array is copied to the input
array. As a result, this MWSort requires at least twice the space of input
data size. Its run time is stable compared with quicksort algorithm.

3 MultiStack Parallel Sort (MSPSort)

This section begins with the overview of our algorithm consisting of the
Recursive MultiStack Parallel Partition and Sorting Phases. Consecutively,
a number of BF-DF Scheduling algorithms are proposed and compared.

In the MSPSort() function, Median of Five function MO5() (Alg. 1,
line 5) selects a pivot index p and moves it to the middle of array A. The
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Algorithm 1: MSPSort Algorithm
1 Function Main()

2 MSPSort(A, 0, N − 1, τmax) // MSPSort array A with τmax threads

3 EndFunction
4 Function MSPSort(A, iL, jR, τ)
5 p←MO5(A, iL, jR) // p=Median of Five

6 if jR − iL > ustl then
7 p←MSPPartition(A, iL, jR, p, τ) // with τ threads

8 if τ > τmax/r then
9 τ ← τ/2 // Reduce τ threads by 2

10 end
11 if jR − iL > udf then
12 BFMSPSort(A, iL, jR, p, τ) // Breadth First with τ threads

13 end
14 else
15 DFMSPSort(A, iL, jR, p, τ) // Depth First with τ threads

16 end
17 end
18 else
19 OpenMP Task
20 STLSort(A+ iL, A+ jR) // Call STLSort as a task

21 OpenMP nowait
22 end
23 EndFunction
24 Function BFMSPSort(A, iL, jR, p, τ)
25 OpenMP Task
26 MSPSort(A, iL, p− 1, τ) // left subarray τ threads

27 OpenMP Task
28 MSPSort(A, p+ 1, jR, τ) // right subarray τ threads

29 EndFunction
30 Function DFMSPSort(A, iL, jR, p, τ)
31 Ps.push(iL, jR) // Push the partition’s boundary

32 while Ps not empty do
33 iL, jR ← Ps.pop() // Pop the partition’s boundary

34 if jR − iL > ustl then
35 p←MO5(A, , iL, jR) // p=Median of Five

36 p←MSPPartition(A, iL, jR, p, τ) // with τ threads

37 Ps.push(iL, p− 1) // Push the left boundary

38 Ps.push(p+ 1, jR) // Push the right boundary

39 end
40 else
41 OpenMP Task
42 STLSort(A+ iL, A+ jR) // Call STLSort as a thread

43 OpenMP nowait
44 end
45 end
46 EndFunction
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Algorithm 2: Parallel Stacked Blocks Partition
1 Function MSPPartition(A, iL, jR, p, τ)
2 halfB ← (jR − iL)/(2b) // Number of blocks on each side

3 for i← 0 to halfB − 1 do
4 Ls[i mod τ ].push(iL + i, iL + i+ b) // Push left blocks

5 Rs[i mod τ ].push(jR − i− b, jR − i) // Push right blocks

6 i← i+ 1

7 end
8 begin OpenMP parallel for private(i, j, lb, rb)
9 for t← 0 to τ − 1 do
10 while Ls[t] not empty && Rs[t] not empty do
11 (i, lb)← Ls[t].pop() // Pop left top block boundary

12 (rb, j)← Rs[t].pop() // Pop right top block boundary

13 do
14 while A[i] ≤ A[p] && i ≤ lb do
15 i← i+ 1 // Increase i index

16 end
17 while A[j] > A[p] && j ≥ rb do
18 j ← j − 1 // Decrease j index

19 end
20 if i ≤ lb && j ≥ rb then
21 SWAP (A[i], A[j]) // Swap A[i] and A[j]
22 i← i+ 1, // Increase i index

23 j ← j − 1 // Decrease j index

24 end
25 while i ≤ lb && j ≥ rb
26 if i > lb then
27 Rs[t].push(rb, j) // Push the right block boundary

back

28 end
29 else if j < rb then
30 Ls[t].push(i, lb) // Push the left block boundary back

31 end
32 end
33 end
34 lmin ← min(Ls[t], ∀t) // Find the left most index

35 rmax ← max(Rs[t], ∀t) // Find the right most index

36 µ← (rmax − lmin)/ustl // Threads to deal with the middle one

37 if rmax − lmin > ustl then
38 return MSPPartition(A, lmin, rmax, p, µ) // With µ threads

39 end
40 else
41 return LomutoPartition(A, lmin, rmax, p) // Lomuto’s Partition

42 end
43 EndFunction
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Recursive MSPPartition partititions the input array A according to the pivot
and finally returns the position of pivot p (Alg. 1, line 7). MSPSort continues
according to our proposed scheduling (Alg. 1, lines 12 and 15). The resulting
shorter than ustl subarray is sorted as an independent thread (Task) (Alg.
1, line 20) using STLSort where ustl = Ustl × κl3/sizeof(Type), Ustl is
Sorting Cutoff parameter, κl3 represents the Level 3 cache size and Type
corresponds to the data type to be sorted. Note that, the number of software
threads τ is reduced to τ/2 (Alg. 1, line 9) and remained at τ = τmax/r
in order to balance the workload and achieve parallelism where τmax is the
maximum number of threads and r is called Reduction factor.

3.1 Recursive MultiStack Parallel Partition Phase

The Recursive MultiStack Parallel Partition Phase consists of 2 steps:
Parallel Stacked Blocks Partition Step and Middle Blocks Partition Step.

The Parallel Stacked Blocks Partition Step begins with dividing A =
A[0], A[1], . . . , A[N − 1], an unsorted array into left and right halves. Each
half is divided into blocks of b = B × κl3/sizeof(Type) elements from
both ends (Alg. 2, line 4) where B is a block size parameter. Both left and
right block boundaries on the both halves are assigned in round robin to
τ threads and pushed from the middle towards both ends (Alg.2, lines 4
and 5). Therefore, each thread is assigned with about the same number of
blocks to manipulate and balance the workload while achieving parallelism
simultaneously.

When the stacks are ready, OpenMP parallel for is applied to fork τ
threads (Alg. 2, line 8) with private (local to each thread) variables i, j, lb, rb.
Subsequently, these block boundaries are popped off so that data within the
left and right blocks can be compared with A[p] and swapped from both ends
to the middle until either local left or right stack is empty (Alg. 2, lines 10).
Each thread has its own private variables i and j that are left and right indices
of the current left and right blocks, respectively. In addition, variables, lb and
rb are the current boundaries of left and right blocks, respectively. Eventually,
the boundaries of the unfinished block are pushed back to their corresponding
stacks (Alg.2, lines 27 and 30). This step stops when all τ threads finish.

After that, two indices, lmin = min(Ls[t],∀t) and rmax =
max(Rs[t],∀t) of all τ threads, must be determined to compute rmax− lmin

whether the leftover part is longer than ustl (Alg. 2, line 37). In Middle Blocks
Partition Step, the length of the leftover can indicate the number of µ threads
to call MSPPartition() (Alg. 2, line 38) just in case. Otherwise, the Lomuto’s
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Partition [3] eventually returns the pivot index p (Alg. 2, line 41). That is
because Lomuto’s algorithm requires fewer memory accesses than Hoare’s.

3.2 Sorting Phase

In the earlier phase, the data subarray is partitioned into smaller subarrays
recursively. Any shorter subarray up to ustl elements can be sorted using
STLSort as a independent task (Alg. 1, lines 20 and 42) without any
synchronization (OpenMP nowait).

3.3 BF-DF Scheduling Algorithms

The Recursive MSPPartition Phase initially employs default scheduling of
OpenMP and thus called BF (Breadth First) method to achieve high paral-
lelism. The problem of BF scheduling is due to its random order of executions
depending on the partition sizes and branch/memory stalls. This may cause
unnecessary page faults and cache misses. To avoid this problem, we have
proposed and implemented DF (Depth First) sorting algorithm in DFMSP-
Sort() function. Once enough number of tasks are queued up in the thread
pool by BF algorithm, the partitioning process is continued in DF order.

Initially, if the subarray (jR−iL) is still greater than udf elements (Alg. 1,
line 11), BFMSPSort() is called recursively (Alg. 1, line 12) as two OpenMP
tasks. In other words, BFMSPSort() is executed recursively and continued
until the resulting subarray is smaller than udf elements where udf = Udf ×
κl3/sizeof(Type) and Udf is Scheduling Cutoff. Otherwise, the alternative
DFMSPSort() function is invoked instead (Alg. 1, line 15).

On line 32 of Alg. 1, a local stack Ps is instantiated to keep the subarray
boundaries and enforce the execution order so that last-level cache misses
can be minimized. Programmers can easily implement the DF scheduling
by themselves without worrying about OpenMP supports. It makes use of
a local stack Ps to keep the subarray boundaries. This stack can order the
execution with one of these scheduling algorithms, RAL, LAL, SPF and LPF,
to improve cache locality.

3.3.1 RAL vs. LAL
First of all, the first partition is pushed onto the stack Ps (Alg. 1, line 31).
The popped off indices iL, jR are passed to Recursive MSPPartition Phase
(Alg. 1, line 36). Once the left and right subarrays are obtained, the bound-
aries of the left one are pushed prior to the right one resulting to depth first
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traversal to the right hand side (Right Always: RAL). The Recursive MSPP
Phase continues until the subarray is shorter than ustl. Note that STLSort
is executed independently with OpenMP nowait compiler directive (Alg. 1,
line 43). The traversal continues until Ps is empty (Alg. 1, line 32). The LAL
(Left Always) algorithm is the opposite of RAL.

3.3.2 SPF vs. LPF
Both RAL and LAL algorithms make the decisions based on the direc-
tion only regardless of the subarray size. It can be more beneficial to our
MSPPartition if cache replacement policy is taken into consideration. The
shorter partition first (SPF) and longer partition first (LPF) decide longer
or shorter subarray to push onto the stack first, respectively. As such, the
SPF decision may exploit more recently accessed data inside the caches.
On the other hand, the LPF one may prefer longer workload to sustain
parallelism.

4 Experiments, Results and Discussions

This section presents how to set up the experiments on four different Linux
systems. Experiment parameters are listed and rationalized. Consecutively,
the obtained results are elaborated and discussed.

4.1 Experiment Setup

The proposed MSPSort algorithm is evaluated on four different systems
as listed in Table 2. They all run the same Ubuntu 18.04 LTS and G++
version 7.4.0. Both Intel and AMD processors are provided equally and
subject to our resource constraints. The number of cores c is reported by
Linux System Monitor. Moreover, these systems widely differ in terms of
memory size, technology and configuration. Nonetheless, their caches are
quite similar. Most of their L3 caches are multiples of 8MB that we use
κl3 to denote. Note that NUMA stands for non-uniform memory access
time. R7-1700 consists of two memory controllers, one on each die and
interconnected with the Infinity Fabric. That results in non-uniform memory
latency [www.tomshardware.com].

The experiments are parameterized as shown in Table 3. The data types
to be evaluated include Unsigned 32-bit integer (Uint32), Unsigned 64-bit
integer (Uint64) and 64-bit double precision floating point numbers (Double).
They are randomized with uniform distribution. All algorithms are optimized

https://www.tomshardware.com/reviews/amd-ryzen-5-1600x-cpu-review,5014-2.html
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Table 2 Specifications of multicore CPUs in experiments, KB: Kilobytes, MB: Megabytes
Series Core i7 Xeon Ryzen ThreadRipper

Number i7-2600 X5670 R7-1700 R9-2920
Clock (GHz) 3.40 2.93 3.00 3.50

c (cores) 8 24 16 24
Sockets 1 2 1 1

RAM 32GB 24GB 32GB 64GB
Configuration 4×8GB 12×2GB 4×8GB 8×8GB

Technology DDR3 DDR3 DDR4 DDR4
NUMA No Yes Almost Yes

Memory 2 ch 4 ch 2 ch 4 ch
L1 I-Cache 4×32KB 8W 2×6x32KB 4W 8×64KB 4W 12×64KB 4W

L1 D-Cache 4×32KB 8W 2×6x32KB 8W 8×32KB 8W 12×32KB 8W
L2 Cache 4×256KB 8W 2×6x256KB 8W 8×512KB 8W 12×512KB 8W
L3 Cache 8MB 16W 2×12MB 16W 2×8MB 16W 4×8MB 16W

Table 3 Experiment parameters of MSPSort, BF: Bread-First, DF: Depth-First,M=106

Parameters Values

Algorithms MSPSort, BQSort, MWSort
Data Types Uint32, Uint64, Double

Random Dist Uniform
GCC Optimization O2

Data size N 200M, 500M, 1000M, 2000M
Scheduling RAL, LAL, LPF, SPF

L3 Cache size κl3 8MB
Block size B(×κl3) 10−4, 10−3, 10−2, 10−1, 1

Cutoff Ustl(×κl3) 0.5, 1, 2, 4, 8
Cutoff Udf (×κl3) 0.5, 1, 2, 4, 8, 16

Multiplier m 1, 2, 4
Reduction r c, c/2, c/3, c/4

with -O2 compiler flag. The data size N ranges from 200M to 2000M
elements due to system RAM limit. Our proposed BF-DF scheduling can
be chosen among these algorithms, LPF, SPF, RAL and LAL.

As mentioned earlier, the block size B, Sorting Cutoff Ustl and Schedul-
ing Cutoff Udf are functions of L3 Cache size κl3=8MB. The block size
B=10−4, 0.001, 0.01, 0.1, 1. Sorting Cutoff Ustl = 0.5, 1, 2, 4. Scheduling
Cutoff Udf = 1, 2, 4, 8, 16. The Multiplier m is set to be power of two, m =
1, 2, 4 as such the MSPSort can fork as many τmax = c × m threads. The
Reduction r can be formulated as a function of c cores reported by the OS, r
= c, c/2, c/3, c/4.
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4.2 Key Performance Indicators (KPIs)

In this paper, some experiment results shall be normalized and compared
based on these KPIs. They all represent time domain aspects of each sorting
algorithm.

4.2.1 Average Run Time (T̄ ) and Run Time per 100M (T̄100M )
The Average Run Time (T̄ ) is averaged over a number of trials as specified
in each experiment. The proposed Run Time per 100M (T̄100M ) is easy to
visualize and compare at any data size for certain experiments. In addition,
this normalized run time can enable comparison between systems.

4.2.2 Standard Deviation of T (σT ) and T100M (σ100M )
Run Time Standard of Deviation (σT ) represents the stability of each algo-
rithm due to the randomness of generated data set. In addition, the normalized
standard deviation (σ100M ) can justify some parameters specially Block size
B and Ustl.

4.2.3 Run Time Statistics
In addition to arithmetic mean and standard deviation of of Run Time T ,
the first, second and third quartiles are TQ1, TQ2 and TQ3, respectively.
In addition, InterQuartile Range can be determined as TIQR=TQ3-TQ1 for
stability analyses. These statistics can specify how the Run Time T distributes
over 1,000 trials.

4.3 Single-Round MSPPartition

This single round MSPPartition is a prerequisite experiment as a guidance to
the main ones. In order to fine tune block size B, a simple partition is tested
at various block sizes as listed in Table 3. This experiment is intended to
investigate Block size B effects of MSPPartition (Alg. 2, Line 1). Within this
experiment, data within left and right blocks are always swapped to get rid of
branch prediction (comparison) effects, Given a data array size N , Function
MSPPartition is executed for just one round without further recursive calls.
The Block size B in this experiment spans a wide range, {10−4, 0.001, 0.01,
0.1, and 1}×κl3 cache size. The maximum number of threads τmax = c× 1.
Note that OpenMP nested parallelism flag is turned off, omp set nested(0).

The resulting T̄100M (bar) and ±σ100M (error bar) in seconds are plotted
in Figure 1 at different data sizes after 100 trials. All systems show the same
behavior of T̄100M vs B. It can also be observed that the larger the data size
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Figure 1 T̄100M (Bargraph) and ±σ100M (Error bar) of Single-Round MSPPartition at
B={10−4, 0.001, 0.01, 0.1, 1}×κl3, m=1 (a) i7-2600, (b) X5670, (c) R7-1700, (d) R9-2920
for Uint32 data and 100 trials

N , the higher the T̄100M . This can be due to poor cache locality accessing
data from both ends. The smallest B=10−4×κl3 ≈800 Bytes yields the worst
performance. The best T̄100M can be found as B ranges between 0.001 to 0.1
×κl3 that is between the size of L1 and L2 caches. As a result, B = 0.01×κl3
is chosen as a representative.

Note that all graphs are plotted on the same scale of Y axis. With m=1,
each system gets different number of threads c to execute. That means i7-
2600 can achieve lower T̄100M on the same N than X5670 despite much
lower core count. Similarly, R7-1700 yields faster T̄100M than R9-2920
despite lower clock frequency and lower core count. This phenomenon could
be due to non-uniform (longer) memory access of large data arrays on X5670
and R9-2920 as listed in Table 2.

4.4 Parallel Sorting of Independent Data Blocks

To investigate how Sorting Cutoff Ustl affects the Run Time, a data array of
N elements is divided with equal chunks of ustl elements and assigned to a
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Figure 2 T̄100M (Bargraph) and ±σ100M (Error bar) of Independent Parallel Sort at
Ustl={10−4, 0.001, 0.01, 0.1, 1}×κl3,m=1 (a) i7-2600, (b) X5670, (c) R7-1700, (d) R9-2920
for Uint32 data and 100 trials

thread to sort in parallel. Divided subarrays are independently STLsorted with
c × 1 threads as m=1. Note that OpenMP nested parallelism flag is turned
off just like the previous experiment. This experiment can be beneficial to
any D&Q sorting algorithm in general because the partitioning overhead is
neglected. The random data array of a given size N is divided equally to
Ustl={10−4, 0.001, 0.01, 0.1, 1}×κl3.

The experiment is repeated for 100 trials to obtain T̄100M (bar) and σ100M
(error bar) as plotted in Figure 2. In general, the same behavior can be
observed for all systems. It can be noticed that given the same data sizeN the
smaller cutoff Ustl the lower T̄100M . This can be concluded that smaller Ustl

is better provided that there is no dependency between these data chunks.

4.5 MSPSort with BF Scheduling

The current and later experiments are different from the preliminary ones
where OpenMP Nested Parallelism is switched ON and MSPPartition is
recursively invoked. MSPSort with BF scheduling corresponds to line 12
of Alg. 1 and line 11 is always true. Due to an extremely large number of
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Table 4 Top-three (m,r) pairs with BF Scheduling for all N ’s, B=0.01, Ustl=0.5,1,2,4 after
20 Trials

System i7-2600 X5670 R7-1700 R9-2920
Uint32 (2,8) (1,6) (2,16) (2,12)

(1,8) (2,12) (2,8) (1,8)
(2,4) (1,8) (1,16) (1,6)

Uint64 (2,8) (1,6) (2,16) (1,8)
(1,4) (2,12) (1,8) (1,6)
(2,4) (1,8) (2,8) (2,12)

Double (2,8) (1,6) (2,16) (1,8)
(1,4) (2,12) (1,8) (1,6)
(2,4) (1,8) (2,8) (2,12)

parameter combinations, this experiment is intended to obtain and pick (m, r)
pair with the most consistent performance for each system. Run Time T ’s are
collected according with BF Scheduling for all N ’s, B=0.01, Ustl=0.5, 1, 2,
4 after 20 Trials. The (m, r) pairs with most appearances in Top-10 minimum
T̄ of all data sizeN are listed in Table 4. The most consistent (m,r) pairs (top
row of each data type) in Table 4 are selected for each system/data type as
representatives for the next experiment.

4.6 MSPSort with BF-DF Scheduling

This experiment is intended to obtain the most consistent performance of
(Ustl, Udf ) pair and BF-DF scheduling algorithm given each data size N as
listed in Table 5 for each system after 100 trials. For all data types, it can be
observed that the (m,r) pairs are almost the same on many systems except
R9-2920. It is not guaranteed that these parameters can yield consistent
performance. Therefore, extensive run time statistics should be collected and
compared against BQSort and MWSort.

Table 6 to Table 9 tabulates the run time statistics of all sorting algorithms
after 1000 trials. According to the chosen parameters in Table tb:para:chosen,
the time-domain KPIs of MSPSort can be investigated analyzed thoroughly.
Although lower T̄ and σT are better in terms of run time and stability, other
statistics play important roles as well. We shall discuss the experiment results
with respect to the following aspects.

4.6.1 Sorting vs Scheduling Cutoffs
There are two different approaches of BF-DF scheduling, direction versus
size oriented. Both RAL and LAL are direction oriented. On the contrary,
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Table 5 Chosen parameters Ustl:Udf :m:r, B=0.01 after 100 trials
System i7-2600 X5670 R7-1700 R9-2920
Uint32
BFDF LPF SPF SPF SPF

N=200M 0.5:2:2:8 0.5:1:1:6 0.5:1:2:16 0.5:1:2:12
N=500M 0.5:2:2:8 1:4:1:6 1:2:2:16 1:2:2:12
N=1000M 0.5:2:2:8 1:8:1:6 2:4:2:16 1:4:2:12
N=2000M 4:8:2:8 2:16:1:6 2:4:2:16 2:4:2:12

Uint64
Double
BFDF RAL RAL LAL LAL

N=200M 1:8:2:8 2:4:1:6 1:2:2:16 0.5:2:1:8
N=500M 1:8:2:8 2:4:1:6 1:2:2:16 1:4:1:8
N=1000M 2:8:2:8 4:8:1:6 2:2:2:16 2:8:1:8
N=2000M 2:8:2:8 4:8:1:6 2:2:2:16 2:8:1:8

LPF and SPF are size oriented. SPF and LPF are good for small data type
such as Uint32. It can be also noticed that they mostly are characterized by
smaller (Ustl,Udf ) pairs. On the other hand, LAL and RAL are beneficial to
MSPSort on larger data types such as both Uint64 and Double. The (Ustl,Udf )
pairs are generally larger than those of Uint32.

As shown in Figures 1 and 2, all systems behave in the same fashion. It
can be noticed in Figure 1 that T̄100M significantly increases asN doubles up
for all systems. Unlike partitioning T̄100M , sorting T̄100M is almost constant
for all data sizes N given the same Ustl. That means sorting can be traded off
with partitioning at larger N as the subarrays become shorter.

In order to minimize the Run Time T , BD-DF CutoffUdf grows according
to N to reduce the recursion levels. We have showed in Figure 1 that
partitioning T̄100M is significantly higher as N doubles. Sorting cutoff Ustl

is quite similar to Udf . It can be observed that Ustl is proportional to Udf as
well. That is because sorting T̄100M grows slowly as Ustl is ten fold longer in
Figure 2. Therefore, sorting a longer subarray can take the same amount of
time as partitioning it and sorting two resulting shorter subarrays.

4.6.2 Memory Architecture
Compared to BQSort only, MSPSort can achieve better run time statistics on
all data types on every system except X5670. This can be due to the fact that
BQSort can steal the workloads to distribute to available CPU cores. Thus,
BQSort is more tolerant to multi-socket NUMA effects than MSPSort.
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Table 6 Statistics of Run Time T of MSPSort vs BQSort vs MWSort for all data types at
various sizes N on i7-2600 system after 1000 trials

Alg. KPI (Sec.) 200M 500M 1000M 2000M
Uint32

MSPSort TQ1 3.042 8.113 17.832 37.880
TQ2 3.073 8.179 17.963 38.340
T̄ 3.182 8.342 17.928 38.332
TQ3 3.318 8.283 18.039 38.797
σT 0.196 0.436 0.171 0.536

BQSort TQ1 3.212 8.578 18.285 38.670
TQ2 3.247 8.665 18.447 39.105
T̄ 3.348 8.856 18.484 39.503
TQ3 3.491 8.804 18.663 40.130
σT 0.198 0.503 0.270 1.111

MWSort TQ1 3.649 9.550 20.132 40.920
TQ2 3.700 9.675 20.382 41.588
T̄ 3.812 9.710 20.385 41.764
TQ3 4.016 9.812 20.633 42.470
σT 0.231 0.266 0.383 1.105

Uint64
MSPSort TQ1 3.648 9.855 21.540 44.592

TQ2 3.772 9.909 21.725 44.813
T̄ 3.813 9.956 21.712 44.887
TQ3 4.065 9.973 21.893 45.104
σT 0.205 0.234 0.243 0.454

BQSort TQ1 3.702 10.023 21.780 45.898
TQ2 3.767 10.104 21.976 46.332
T̄ 3.877 10.254 21.977 46.511
TQ3 4.151 10.233 22.144 47.073
σT 0.227 0.442 0.270 0.776

MWSort TQ1 4.194 11.202 23.721 49.292
TQ2 4.253 11.312 23.947 49.633
T̄ 4.326 11.338 23.975 49.703
TQ3 4.360 11.449 24.218 50.044
σT 0.209 0.233 0.391 0.709

Double
MSPSort TQ1 3.851 10.521 22.908 48.058

TQ2 3.917 10.595 23.048 48.684
T̄ 4.013 10.725 23.050 49.038
TQ3 4.110 10.693 23.187 50.166
σT 0.222 0.422 0.202 1.151

BQSort TQ1 3.937 10.754 23.399 49.553
TQ2 4.093 10.962 23.711 50.771

(Continued)
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Table 6 Continued
Alg. KPI (Sec.) 200M 500M 1000M 2000M

T̄ 4.197 11.235 23.769 50.883
TQ3 4.413 11.283 24.183 52.384
σT 0.266 0.706 0.458 1.484

MWSort TQ1 4.247 11.361 24.243 50.250
TQ2 4.522 11.873 25.080 51.807
T̄ 4.522 11.857 25.122 52.190
TQ3 4.696 12.213 25.966 54.108
σT 0.312 0.607 0.939 2.212

Table 7 Statistics of Run Time T of MSPSort vs BQSort vs MWSort for all data types at
various sizes N on R7-1700 system after 1000 trials

Alg. KPI (Sec.) 200M 500M 1000M 2000M
Uint32

MSPSort TQ1 1.722 4.416 9.382 19.238
TQ2 1.735 4.438 9.413 19.294
T̄ 1.746 4.476 9.418 19.307
TQ3 1.773 4.561 9.445 19.353
σT 0.032 0.083 0.063 0.120

BQSort TQ1 1.780 4.643 9.897 20.358
TQ2 1.811 4.722 10.051 20.695
T̄ 1.807 4.725 10.026 20.635
TQ3 1.827 4.778 10.125 20.845
σT 0.032 0.101 0.160 0.316

MWSort TQ1 1.973 5.096 10.436 21.290
TQ2 2.145 5.470 11.114 22.498
T̄ 2.109 5.389 10.959 22.214
TQ3 2.187 5.549 11.241 22.696
σT 0.041 0.086 0.146 0.236

Uint64
MSPSort TQ1 2.149 5.723 12.046 25.406

TQ2 2.161 5.744 12.091 25.494
T̄ 2.163 5.752 12.104 25.514
TQ3 2.174 5.772 12.144 25.584
σT 0.022 0.048 0.092 0.168

BQSort TQ1 2.137 5.706 11.990 25.231
TQ2 2.153 5.746 12.077 25.423
T̄ 2.160 5.762 12.102 25.487
TQ3 2.177 5.805 12.196 25.671
σT 0.033 0.083 0.158 0.348

MWSort TQ1 2.216 5.845 12.184 25.469
TQ2 2.225 5.864 12.223 25.625
T̄ 2.227 5.868 12.228 26.223
TQ3 2.236 5.887 12.268 27.148

(Continued)
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Table 7 Continued
Alg. KPI (Sec.) 200M 500M 1000M 2000M

σT 0.015 0.033 0.063 0.890
Double

MSPSort TQ1 2.312 6.094 12.699 26.616
TQ2 2.324 6.120 12.749 26.720
T̄ 2.327 6.125 12.757 26.745
TQ3 2.338 6.146 12.805 26.829
σT 0.026 0.046 0.090 0.210

BQSort TQ1 2.312 6.097 12.721 26.568
TQ2 2.327 6.134 12.799 26.751
T̄ 2.333 6.147 12.830 26.810
TQ3 2.347 6.188 12.906 26.942
σT 0.030 0.074 0.159 0.631

MWSort TQ1 2.735 7.037 14.366 29.394
TQ2 2.774 7.106 14.485 29.608
T̄ 2.778 7.121 14.505 29.628
TQ3 2.818 7.196 14.626 29.838
σT 0.051 0.120 0.191 0.333

Table 8 Statistics of Run Time T of MSPSort vs BQSort vs MWSort for all data types at
various sizes N on X5670 system after 1000 trials

Alg. KPI (Sec.) 200M 500M 1000M 2000M
Uint32

MSPSort TQ1 1.587 4.139 8.334 16.708
TQ2 1.601 4.177 8.408 16.845
T̄ 1.605 4.184 8.440 16.907
TQ3 1.618 4.216 8.500 17.000
σT 0.027 0.072 0.171 0.334

BQSort TQ1 1.684 4.039 8.145 16.576
TQ2 1.692 4.057 8.176 16.662
T̄ 1.691 4.073 8.215 16.757
TQ3 1.699 4.088 8.209 16.788
σT 0.011 0.063 0.155 0.304

MWSort TQ1 1.686 4.039 8.155 16.642
TQ2 1.693 4.055 8.183 16.708
T̄ 1.692 4.070 8.235 16.819
TQ3 1.699 4.078 8.223 16.840
σT 0.011 0.062 0.168 0.300

Uint64
MSPSort TQ1 2.696 6.694 13.360 24.210

TQ2 2.736 6.829 13.663 24.831
T̄ 2.746 6.843 13.688 25.004
TQ3 2.788 6.980 14.024 25.582

(Continued)
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Table 8 Continued
Alg. KPI (Sec.) 200M 500M 1000M 2000M

σT 0.072 0.206 0.466 1.065
BQSort TQ1 2.543 6.340 12.695 24.110

TQ2 2.584 6.344 12.951 24.953
T̄ 2.601 6.417 13.021 25.315
TQ3 2.638 6.525 13.270 26.085
σT 0.086 0.275 0.491 1.767

MWSort TQ1 2.065 5.103 10.166 NA
TQ2 2.085 5.133 10.753 NA
T̄ 2.078 5.170 10.693 NA
TQ3 2.100 5.205 10.880 NA
σT 0.035 0.113 0.492 NA

Double
MSPSort TQ1 2.737 6.672 13.497 24.569

TQ2 2.771 6.774 13.808 25.186
T̄ 2.780 6.796 13.835 25.334
TQ3 2.812 6.892 14.139 25.808
σT 0.068 0.186 0.468 1.065

BQSort TQ1 2.610 6.414 13.032 24.890
TQ2 2.647 6.495 13.248 25.601
T̄ 2.664 6.534 13.321 25.981
TQ3 2.697 6.603 13.547 26.725
σT 0.078 0.187 0.441 1.650

MWSort TQ1 2.245 5.711 11.717 NA
TQ2 2.262 5.769 11.787 NA
T̄ 2.258 5.724 11.790 NA
TQ3 2.277 5.811 11.878 NA
σT 0.031 0.149 0.197 NA

Table 9 Statistics of Run Time T of MSPSort vs BQSort vs MWSort for all data types at
various sizes N on R9-2920 system after 1000 trials

Alg. KPI (Sec.) 200M 500M 1000M 2000M
Uint32

MSPSort TQ1 1.171 2.972 6.124 12.589
TQ2 1.181 2.991 6.157 12.659
T̄ 1.182 2.994 6.173 12.681
TQ3 1.191 3.012 6.203 12.730
σT 0.017 0.033 0.086 0.158

BQSort TQ1 1.237 3.221 6.727 13.971
TQ2 1.261 3.287 6.859 14.375
T̄ 1.264 3.303 6.891 14.488
TQ3 1.285 3.352 6.991 14.831
σT 0.040 0.127 0.288 0.774

MWSort TQ1 1.237 3.125 6.423 14.343
(Continued)
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Table 9 Continued
Alg. KPI (Sec.) 200M 500M 1000M 2000M

TQ2 1.248 3.142 6.850 14.524
T̄ 1.260 3.175 6.774 14.454
TQ3 1.269 3.197 6.942 14.686
σT 0.035 0.075 0.294 0.367

Uint64
MSPSort TQ1 1.680 4.514 9.602 20.180

TQ2 1.691 4.547 9.678 20.353
T̄ 1.694 4.556 9.690 20.357
TQ3 1.703 4.588 9.771 20.537
σT 0.023 0.065 0.148 0.330

BQSort TQ1 1.703 4.549 9.529 20.332
TQ2 1.732 4.638 9.742 20.815
T̄ 1.746 4.682 9.838 20.980
TQ3 1.775 4.769 10.048 21.448
σT 0.063 0.205 0.483 0.990

MWSort TQ1 1.457 3.898 8.106 16.388
TQ2 1.474 3.997 8.207 16.584
T̄ 1.474 3.946 8.190 16.582
TQ3 1.489 4.050 8.300 16.766
σT 0.027 0.159 0.187 0.356

Double
MSPSort TQ1 1.747 4.679 9.757 20.611

TQ2 1.759 4.708 9.826 20.756
T̄ 1.762 4.718 9.837 20.777
TQ3 1.772 4.744 9.905 20.906
σT 0.024 0.069 0.118 0.263

BQSort TQ1 1.756 4.677 9.806 20.655
TQ2 1.782 4.760 10.003 21.051
T̄ 1.798 4.799 10.081 21.306
TQ3 1.826 4.871 10.253 21.688
σT 0.059 0.173 0.418 1.047

MWSort TQ1 1.554 3.938 8.791 17.919
TQ2 1.566 3.960 8.877 18.096
T̄ 1.570 4.028 8.732 18.044
TQ3 1.582 4.002 8.936 18.243
σT 0.024 0.160 0.342 0.406

With respect to MWSort, MWSort was unable to test at N=2000M of
Uint64 and Double on X5670 system because the amount of RAM was
limited to 24 GB. MWSort can achieve faster average Run Time T̄ and low
σT for all data sizes. It could be due to balanced and independent memory
accesses. Both X5670 and R9-2920 systems are NUMA with 4 memory
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channels supporting high memory traffic. The tradeoffs between run time and
memory resources are still debatable especially on server systems that CPU
cores and memory are shared among many processes/threads.

4.6.3 Run Time Stability
It can be noticed that almost all of the run time statistics on every system
are right skew where T̄ is mostly higher than TQ2 (median). For stability
analyses, run time statistics σT and TIQR can be of interests. The σT and
TIQR of MSPSort are mostly lower than BQSort and MWSort for every
data type except on X5670 system. It can be concluded that MSPSort is
consistently stable on a wide variety of systems.

5 Conclusions and Future Work

MSPPartition is a block-based multithreaded version of the single-pivot
Hoare’s partition algorithm. A number of threads are forked to compare-swap
left and right data from both ends to the middle. Each thread has its own
private left and right stacks to keep track of those block boundary indices.
The partition process continues until the stack on either side is empty first. At
last, the sequential Lomuto’s is invoked to finish the small leftover region.

The MSPPartition can be recursively applied to become a parallel MSP-
Sort on manycore and even NUMA systems. MSPSort is evaluated on four
Linux systems and benchmarked against two STL parallel mode algorithms
namely, BQSort and MWSort. MSPSort can achieve better run time statistics
than BQSort for all data types and sizes except on Intel X5670 system.
However, only MWSort can take advantages of NUMA systems for Uint64
and Double over MSPSort.

As future works, other candidate parameters shall be investigated further
to be parameterized as functions of core count. Block size B should be
fine-tuned to align with virtual memory page so that cache/TLB misses can
be minimized. Different data distributions shall be experimented. In addi-
tion, MSPPartition shall be applied to support parallel multipivot partition
operations.
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