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Smartphone technology has become more popular and innovative over the last few years, and has led to the 
prevalence of wearable devices embedded with body sensors for fitness tracking and various smartphone 
features. Internet of Things (IoT), which can interact with wearables and personal sensor devices (PSDs), is 
emerging with technologies such as mobile health (mHealth), the cloud, big data and smart environments 
like smart homes. It may also provide enhanced services utilising health data obtained from physiological 
sensors. When these sensors are converged with IoT devices, the volume of transactions and traffic are 
expected to increase immensely due to the increased demand of health data from the IoT network. These 
additional demands will affect the existing mHealth services. Health service providers may also demand 
more data to enhance their services such as real-time monitoring and actuation of sensors alongside the 
existing monitoring of traffic. Both of these situations can cause rapid battery consumption and consume 
significant bandwidth. Some PSDs are implanted on or inside the body, and may require invasive surgical 
operations to replace batteries, such as for a heart pacemaker. It is therefore crucial to save and conserve 
power consumption in order to reduce the frequency of such procedures as well as health data transmission 
when needed. There has not yet been any research into managing and controlling data processing and 
transmission to reduce transactions by applying intelligence onto body sensors. This paper provides a novel 
approach and solution to reduce data transactions in sensors and allow for the transfer of critical data without 
failure to medical practitioners over IoT traffic. This can be done via an inference system to transfer health 
data collected by body sensors efficiently and effectively to mHealth and IoT networks. The results from the 
experiments to reduce bandwidth and battery resources with heart rate sensors show a possible savings in 
resource usage of between 66% and 99.5%. Battery power can be saved by 3.14 Watts in the experiments if 
the transmission of a single 1KB data point is reduced, and by 7.47 Watts if the transmission of 628 data 
points totalling the size of 120KB is reduced. The accuracy of data inference between the originally sensed 
data and the data transmitted after inference can be maintained by up to 99% or more. Such savings have 
the potential of making always-on mHealth devices a practical reality. This research contributes a low-
overhead approach to mHealth sensors by inferring the processing and transferring of data. 

Key words: Body sensors; WBAN; IoT; mHealth; Personal sensor device (PSD); Body sensor 

network (BSN); Activity Recognition (AR) 

1 Introduction  

The rapid popularity of smart devices such as wearables have led to an increasing demand for health 
related services and applications along with emerging technologies such as the Internet of Things (IoT), 
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big data and the cloud. For example, sensors can monitor the cardiovascular system using electrodes on 
the chest for electrocardiography (ECG). Implantable medical devices such as pacemakers can have 
smart functions to communicate wirelessly with external devices [1]. In addition, fitness tracking devices 
and smart watches are being popularised for the use of health status monitoring and services, which can 
connect and provide IoT applications. 

As a result, industries such as the healthcare industry are embracing mobile technology to support 
and integrate with these technologies to provide secured and efficient services demanded by other 
networks. This has resulted in new applications such as mobile health (mHealth) converged with IoT. 
Furthermore, health service network operations will want to manage their customers’ devices to provide 
better managed services as well as physicians, who will want to access their patients’ device for real-
time monitoring or actuation when needed.  

All these demands will cause additional transactions and workloads on wireless personal area 
networks (WBAN) consisting of personal sensor device (PSD) and smart devices such as smartphones, 
which will consequently affect the performance and battery power of PSDs such as physiological sensors 
and wearables. Current PSDs neither profoundly interact with IoT networks nor intelligently provide 
data to health networks. Instead, they are passive and simply provide sensed data on a regular basis or 
on demand due to typical sensors having hardware and size limitations. However, this is now being 
changed due to the introduction of smartphones interacting with wearables, allowing sensors access to 
more powerful resources and a greater capacity to provide health information demanded by wellbeing 
requests. As sensors interacting with IoT devices to use health data is a new area of demand, there have 
not been many works done on how to efficiently transfer sensor data to external networks. It is to be 
expected and envisaged that traffic and transactions of data requests to PSDs will be enormously 
increased by IoT networks, as Gartner forecasted that 20.8 billion ‘things’ will be connected to IoT by 
2020 [2]. 

This paper proposes an inference system in sensors to determine and ensure whether it can manage 
data between PSD networks (e.g. WBAN) and external networks (e.g. IoT or healthcare), such that 
critical information is always transmitted. This includes designing, implementing and verifying 
intelligent functions on sensors to provide inferred decision making on what and how to transfer data to 
requestorsa. For example, sensors can prioritise transactions differently from physicians or a smart light-
bulb with quality of service (QoS) by using algorithms which use processed information analysed by big 
data in a cloud monitoring centre.  

As the contribution, sensors will process and transmit sensed data intelligently and be able to provide 
an optimised data transfer mechanism controlling workload and traffic. Sensors should also provide real-
time tracking of mHealth user’s health status and future predictions of their wellbeing such as alarming 
of health conditions to caregivers before a dangerous health situation occurs. This is possible when a 
PSD is intelligent enough to send a warning message to the patient’s doctor or caregiver by checking 
and inferring from the pre-defined threshold database, and prioritising this task to other IoT traffic. 
Furthermore, these sensor data can be utilised along with activity recognition (AR) data which currently 
uses accelerometer devices in order to enhance the accuracy of situation determination for alarming. 
Figure 1 shows both existing and new interfaces between mHealth and IoT networks. 

                                                 
a Requestors are those who request health data of sensors such as caregivers in mHealth and IoT devices. 
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(Internet)
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Figure 1 Interfaces of Health and IoT network from WBAN. Interface (b) and (d) are new while (a) and (c) are already 
existent. A PSD can be any device with sensor functions attached on or inside a body to collect health data 

1.1 Research Motivation 

Little research has been conducted between mHealth and IoT due to the limitations and constraints of 
PSD hardware resources such as battery power and computational capacity as they are equipped on or 
implanted on the body [3]. In recent times, the innovation of wearable devices has changed the direction 
of the industry and the wearables market. Apple launched the Apple Watch in mid-2015 and other major 
players such as Samsung and Google also developed or made plans to develop similar products. These 
mobile devices are powerful and well integrated with smartphones and smart devices, providing ease to 
communicate with IoT for its smart functions and powerful resources (i.e. CPU, memory, interfaces, 
battery and apps). It is obvious that sensors and monitoring devices will be equipped with more capacity 
to better handle the problems of additional traffic that burdens PSDs.  

Infectious diseases such as the Middle East Respiratory Syndrome (MERS) and the Zika virus affect 
human health and quality of life in many countries. The World Health Organization (WHO) reports that 
the global case count for MERS was 1,651 laboratory-confirmed cases as of 10 March 2016, including 
590 deaths with a fatality rate of 36% since the first cases were reported in September 2012 [4]. In the 
Republic of Korea, the MERS outbreak resulted in 186 infected people, including 38 deaths. This 
emerging epidemic nearly paralysed the country resulting in 2208 school closures, 16000 people 
quarantined for health monitoring and over 100,000 scheduled tourists cancelling their trip from nearby 
countries. It took 6 weeks to bring the disease under control [5]. This case could have been better 
managed with mHealth monitoring system converged with IoT as the disease has symptoms of fever and 
coughs that may be monitored by sensors during quarantine. Infected patients visited several hospitals 
for medical shopping and visited other places during the self-quarantine period at home. The government 
had no information of their movements other than to call them on a daily basis to manually ask about 
their symptoms and location.  Pandemics are regarded as a national security that may cause more 
casualties, especially during a time when globalisation allows for disease to spread widely and more 
rapidly than in the past.  Thirty four percent of all deaths worldwide are now attributable to infectious 
disease, while war only accounts for 0.64 percent of deaths [6]. When a case requires the monitoring of 
a large volume of people and geographic area such as a city or across borders, it may cause network 
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congestions from a continuous stream of data. Thus it will be crucial to minimise the size of data from 
personal sensor devices when transmitting to the monitoring centre (MC). It is vital to consider how best 
to handle the prioritisation of traffic between sensors and IoT devices and between sensors and the MC.  

As the merging of IoT traffic with existing mHealth traffic will create additional transactions, it is 
also required to manage and control PSDs of which functions such as registration, device status, traffic 
measurements, software updates and battery checks are essential. This requirement will be an additional 
burden to PSDs which generally have limited resources to be carried by a human body. It is proposed to 
implement intelligent functions on PSDs and smart devices to provide inferred decision making on what 
and how to transfer data to requestors. These tasks need to consider and reflect QoS and security 
requirements into the inference system to adopt smart algorithms when making a decision, along with 
taking into account information processed and analysed by big data in the cloud monitoring centre. 
Figure 2 illustrates an example of the data flow of inference and its application e.g. prediction of health 
status. Health data received from the sensor are processed and resent to the same sensor based on the 
knowledge base built and maintained by the sensor for future decision making. Another example is that 
the sensor uses the information of past requests received and stored from an IoT device so that it can 
decide the priority of what information to transfer and how often. 

X + Z

Generic Big data

Personal data inferred

MC
Smartphone

Health status/Life 
expectancy

Present and predicted
data

Sensor node

 
Figure 2 Data inference flow for an application. Monitoring Centre (MC) collects and creates meaningful information to feed 

back to sensors, which continuously adjusts the thresholds and utilises the results for inference 

1.2 Research Problems 

There are major problems envisaged in the mHealth domain with the convergence of mHealth with IoT 
technology and networks [7, 8]. 

 Sensors are currently passive and are programmed to transfer data on a scheduled basis without 
discerning the situation of priority or the importance of the data. This may cause battery power 
issues which is a constraint for functionality, actuation and urgent monitoring function. 

 Currently, sensors are not managed by a network operation, and work in isolation for tasks such as 
device registration and status monitoring [9]. This includes an alarm for low battery levels and 
malfunctions, security attacks and statistics. When this function has been implemented, it will cause 
additional transactions and increase the burden to PSDs. 

 Personal sensor data volume will increase significantly for sensors to provide health information to 
IoT networks (e.g. additional data demanded from IoT devices) [10] 
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 There is no functionality or intelligence on PSDs to manage and control the external demand, which 
will overload the device capacity and eventually malfunction with risks of being a target of attack. 

1.3 Research Approach and Methodology 

In order to experiment and assess the result, we undertook an extensive set of testing to obtain test data 
from a real human subject. The outcome of the experiments is in the form of measurements, such as 
efficiency and accuracy comparing the original data with the processed data from the inference system. 
Therefore the quantitative data analysis is used for testing and assessing the solution including various 
types of data, i.e. nominal, ordinal, interval and ratio [11]. Whilst there is no definite figure for validating 
the research problems from the results, experiments show how accurate and efficient the solution is 
against the original data volume in terms of bandwidth and battery power consumption. For example, 
sensors assess the data request to see whether they are from a caregiver terminal or an IoT device 
(nominal), the captured data to see whether they are in a normal or an abnormal range (ordinal) as well 
as the frequency of data transfer decided (interval). This is done prior to sending out the personal sensor 
data such as heart pulse rate (ratio) to the requestor. 

The solution is verified by experimental testing of the sensor data and analysing the results both with 
and without implementation of the inference system.  

 Testing: Test environment and network topology, test data, test tools, end to end testing, integration 
and interoperability testing, entry/exit criteria 

 Evaluation: Show amounts of battery power saved after the inference, efficiency rate, and 
descriptive result record for further analysis. Accuracy and efficiency are used to evaluate the results 
of inferences 

 Proof of Success: Compare test results with and without the solution applied followed by a result 
review process. The outcome will be shown using an efficiency and accuracy rate to show how 
efficiently the solution works to reduce data transmission and bandwidth to save battery power 

To create and analyse test data and set out the criteria for verification, it is planned to adopt the 
concept of the experimental design method originally formed by Fisher [12] and Kirk [13], which may 
be suitable to this project for the variability of individual health data. Therefore, the following 
calculations are proposed to be used in analysing the results to assess the outcome of inference system 
with efficiency and accuracy along with bandwidth and battery power savings, which is the ultimate 
goal. Whilst efficiency is generally defined to show the ratio between the actual output and the effective 
or designed capacity (or input and output ratio of energy), the main concern is to know how much 
capacity can be saved against the volume of transferred data. Thus, a new equation is proposed as shown 
in Equation 1 below to define how efficiently the data are transmitted by defining the difference of sensed 
data and transferred data against the actual transferred data volume.  

Efficiency Rate (ER)  =
No of Sensed data − No of Transferred data

No of Transferred data
 

Equation 1 Efficiency Rate 

To calculate the SR, data savings are measured from the total volume of the original data points 
versus the total of screened (reduced) data points. Whilst ER or SR can show how much data are saved 
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or reduced, it does not represent how accurately the data have been produced and transmitted. To 
determine how closely the transmitted data is compared to the original data, it is required to calculate 
the accuracy rate (Ar) as shown in Equation 3 below. 

Savings Rate (SR)  =
No of Sensed data − No of Transferred data

Number of Sensed data
x100 

Equation 2 Savings Rate 

Accuracy Rate (Ar)  =
Sum of original DPs −  Sum of differences 

Sum of original DPs
x100 

Equation 3 Accuracy Rate (%) 

2 Current Practice and Related Research Works 

Sensors have traditionally been passive devices. Smart sensors are now being deployed but wearables 
are limited in the role of biomedical sensors nodes. Instead they are mainly used for monitoring and 
capturing physiological data such as in accelerometers, gyroscopes and pedometers. Therefore, it is hard 
to find literature regarding the empowerment of PSDs with intelligence, as intelligence is yet to be 
implemented on PSDs. There are few ‘inference’ related works found in the IoT domain [14] but not in 
the emerging areas of PSD or mHealth networks. However, there have been many solid approaches and 
works done in the IoT network domain.  

As a by-product of the solution, there can be an application of using the result of big data analysis 
and processing for a personalised life expectancy that can be estimated on an individual basis. Therefore, 
literature on prediction algorithm and mechanisms are searched and reviewed to see how this research 
will affect the industry. Whilst there are many research works found regarding life expectancy of a 
country, region, race or on a disease basis, there have been no works done on regarding this metric at a 
personal level basis. In this regard, [7] was published with a novel idea of tracking and predicting a 
personal health status for individuals as well as intelligent functionality of inference systems in sensor 
nodes to interface IoT networks.  

In addition, activity recognition is essential to determine the status of alarms before transmitting 
sensed data to requestors in order to minimise false alarming. Thus, this area has been included in the 
search. 

There have been much research in inferencing body activity monitoring, conserving battery power, 
processing sensed data and improving efficiency network protocols. Haghighi et al [15] proposed a 
situation-aware mobile health monitoring framework to monitor health conditions using an algorithm of 
activity recognition classifier. They identify health status by utilising health data such as heart rate with 
other vitals, which we also suggest to use multiple data for inferencing. However this solution is 
processed outside of sensor networks, which is crucial in case of emergency, e.g. real-time alarming. 
Furthermore, developing individual thresholds would be a key information and our solution proposes 
enhanced alarm notification in real-time by a user feedback system. 

Whilst there are many works on improving sensor networks to process data such as using 
middleware in a new global sensor network infrastructure [16], improving routing protocols or 
acquisition of reading and modelling the accuracy of the sensor reading using algorithms [17], there have 
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been little works performed in trying to minimise the data sampling and transmission from the sensors. 
Jara et al [18] presented an interconnection framework for mHealth and IoT which makes continuous 
remote monitoring for vital signs. Borodin et al [19] suggested applications design from multi sources 
for health care monitoring systems such as ECG and Heartrate monitors which require interfaces between 
patient terminals and IoT. They discuss how to collect and transfer health data to MC, however, they do 
not show how those monitoring devices can interface to other networks such as IoT.  

Wearable sensors have been developed and have increased significantly in number in the last few 
years, requiring the consideration of techniques on how the data are treated and processed. Accordingly, 
there have been many methods and algorithms used to analyse data from wearable sensors and 
physiological monitoring devices capturing vital signs in healthcare services including anomaly 
detection, prediction, diagnosis and decision making [20]. A Bayesian model has been used for averaging 
to develop a high-accuracy prediction analytic method for a large-scale IoT application [21], however, 
this method cannot be applied to mHealth data as the volume size and nature of the data are quite different 
between mHealth and IoT networks. IoT networks involve a huge number of devices over the Internet 
whilst mHealth is a personal body network. 

Privacy is key to the security of mHealth. Kang and Adibi [22] comprehensively surveyed a range 
of security protocols and mechanisms for mHealth as confidentiality of health data is a priority concern. 
It was discovered that many works have already been done in areas of authentication, authorisation, key 
management and hash technologies. However, a light-weight security with a well-secured measure is 
required to transfer health data when it needs to communicate with IoT networks, which will request 
health data for their own purpose and are beyond the control of mHealth networks. This requires 
thorough security to protect mHealth devices as well as the privacy of users. 

In conclusion, it was found that there have been many works done in the area of sensors, IoT, WSNs, 
WBANs, mHealth, eHealth, network security, inference logic and system, remote monitoring, network 
management system, communication protocols, prediction of situation and applications. However, there 
is very little work which focuses on implementing intelligence on personal sensor networks and its 
enhancement with intelligence and its integration with IoT, and traffic control of sensor devices when it 
is overloaded. 

3     Implementation 

Our proposed system focuses on an inference system embedded in the sensor itself to make a decision 
on how best to transmit sensed data through discerning situations and optimising data. 

3.1 Situation Determination 

There are existing techniques such as [15] to determine a situation, which is required for alarm 
notification in our inference system. Depending on the requestor such through WBAN or machine to 
machine (M2M) protocol, sensor nodes will wake up when a request arrives. When data are captured by 
sensors, it is calculated to work out the actual value to be used to produce the health status value. Inferred 
value can be obtained by applying thresholds such as low, normal, and high for blood pressure, and other 
data such as male/female, age, disease related, body weight, exercise tolerance and the individual’s 
overall health condition [23]. They are used along with the weighting of the attribute which is the portion 
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of which it affects the health status. The outcome of the inferring process is to calculate a personalised 
range of normal thresholds for each attribute and to compare it with generic information, such as an 
individual’s personal blood pressure range (85/55 – 110/70 mmHg) to the generic range (90/60 – 120/80 
Hg) of the specific group the user belongs to. When data are captured by sensors, it is calculated to work 
out the actual value to be used to produce the health status value. As shown in Table 1, each data type 
has its own activity defined by a medical professional. These values are used to determine an activity 
along with other data types to determine a situation. Utilising the prescribed data, an individually 
developed health status can be calculated for each data type as shown in Table 2. Data types can be each 
of the sensed data such as blood pressure (e.g. 140/90 mmHg), heart rate pulse (e.g. 97 bpm) and Body 
Mass Index (BMI) (e.g. 24 = 170cm/70kg). Table 2 shows an example of how the weighted value can 
be used to calculate a situation activity when there is a mixed outcome based on each application. Points 
are the input to the result using a calculation table which can be prepared by physicians or scientists. 
Thus, the outcome in this case will be ‘running’ activity, i.e. 39R (running) over 33W (walking) as 39 is 
larger than 33. 

By combining various data, it is possible to determine a situation or activity as physiological data 
are related to each other. When a user is running for instance, heart rate increases, body temperature goes 
up [24] and respiration rate also rises.  

Figures in Table 1 and Table 2 are given arbitrarily, and should be designated by a physician in a 
real world application depending on the context of its usage. The weighting for Table 1 is defined based 
on the attributes and is multiplied with the inferred value to result in the points. 

Table 1. Situation determination to define the threshold of the activity from each type of data 

Data type Sleeping Resting Walking Running Weighting 
BP <110/70 120/75 130/80 145/100 4 
HR <60 60-100 101-149 >150 5 
BT 33 33.4 35.5 36.9 2 
RR <12 13-18 19-30 >30 6 

Table 2. Situation and Activity calculated from a mixed outcome using points to get results based on a pre-defined table 

Attributes 
Data measurement and calculation 

Sensed Data Inferred activity point result 
BP 145/100 5.5 (Running) 4 22+R 
HR 85 3.0 (Walking) 5 15+W 
BT 40 8.5 (Running) 2 17+R 
RR 20 3.0 (Walking) 6 18+W 

In order to improve the accuracy of the determination, existing activity recognition (AR) sensors 
such as an accelerometer can be used together with physiological data. Whilst the AR sensors indicate 
the status of activity motion such as sitting, standing, walking, running or dancing, they do not show the 
level of activity, such as the degree of tiredness. Furthermore, the accuracy of the activity relies on the 
sensor location which may be untrue when misplaced. To enhance the quality of content, physiological 
data and AR sensor data can be used together to assess the situation. 

3.2 Optimisation of Sensed Data 

The inferred value obtained by the situation determination is used to represent how the attribute locates 
the overall status of the individual’s health. When comparing data from multiple sensors it may not give 
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much option to discern due to discrepancies as shown in Figure 3, which was taken from an hour of 
walking while wearing two devices, i.e. sensor device 1 for heart rate and sensor device 2 for heart rate, 
along with skin temperature sensors on the same wrist. This discrepancy could be accounted for by 
averaging the values from the different data sources. When the number of sensors increases to more than 
two devices, it becomes more difficult to determine how to handle the data. For example, when sensed 
data from various sensors for body temperature are different and some of them are not consistent with 
the rest of the data, it needs to be inferred to decide whether the specific data should be ignored. 

3.3 Alarm Generation 

An alarm notification is generated when the battery level is lower than a pre-defined threshold, or data 
are out of the normal ranges. When sensed data are out of the normal range as shown in Table 3, it needs 
to be verified against the situation of whether they are normal or abnormal as the activity will determine 
the normality. For example, a heart rate of 170 will be normal when the user is in exercise mode whilst 
it will be alarming if it was captured during sleep. The alarm notification can be improved by using 
feedback from the user to optimise the accuracy of alarm determination [25]. 
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Figure 3. Data discrepancy of two heart rate sensors, which are averaged as well as body temperature. 

3.4 Data Transmission 

The outcome of previous inferences provides user priority, optimised data, validity of sensed data, 
alarming and the content of message for transmission. In order to transmit the data, sensors calculate the 
frequency of transmission such as whether to transmit immediately or after a delay, periodically or with 
increased intervals, and to ignore the request and do nothing if required. When the sensed data does not 
change often, it is likely that the user is in a reasonably stable condition without many motion changes, 
and the data can be transmitted less instead of transmitted regularly as originally scheduled. In this case, 
the intervals between each data transmission can be lengthened to reduce the battery consumption. 

For alarming, a threshold table (Table 3) is used as suggested by a medical practitioner for a general 
purpose. Values are customised for individuals by their physicians and the table shows an example only. 
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Figure 4. Data transmission interval with inference applied. 

 

Table 3. Alarm Threshold of Sensed Data 

Data type Acceptable Warning Severe Critical  
Low High Low High Low High Low High 

BP 91 169 90 170 80 185 65 220 
HR 51 139 50 140 40 180 32 210 
BT 34.1 37.9 34 38 32 40 30 42 
RR 11 29 10 30 8 36 6 45 

Figure 4 depicts how the frequency of data transmission is adjusted based on the data transmission 
inference algorithm. After a pre-defined period of data transmission without a change in the data based 
on the threshold table, e.g. 5 consecutive regular transmissions, the time interval algorithm kicks in at 
(A) starting with the 5th frame. The interval is extended until it reaches the set time or the sensor captures 
a range criteria changed data depending on whichever comes first, before returning to the regular 
scheduled cycle at (B). To apply a non-linear interval time, the equation below can be used for instance 
as it is a design requirement. 

(ݔܶܫ)݁݉݅ܶ ݈ܽݒݎ݁ݐ݊ܫ = ܽ଴ + ෎ ቆ
݊(݊ + 1)

2
ቇ

௄

௡ୀଵ

+ ݔ) ܶܫ − 1),  

ݔ ݁ݎℎ݁ݓ > 0, ܽ଴ = ,݁݉݅ݐ ݕ݈ܽ݁݀ ݉ݑ݉݅݊݅݉ ݐ݈ݑ݂ܽ݁݀ ܭ = ݁ܽܿℎ ݅݊݁ݑ݈ܽݒ ݈ܽݒݎ݁ݐ 

For example where ܽ଴ = 30, the interval time will be (31, 65, 105, 160, 225) for each interval period 
of K. 

4     Verification and Discussion 

HR data are used for collection over a period of short (2 hours) and long (24 hours) observations tested 
repeatedly over a few weeks before taking samples for experiments. More data and increasing the 
frequency of capturing will increase the accuracy in averaging and increases the credibility of the 
outcome. As heart rate sensors are popular and practical to collect data, it is used in this experiment. A 
heart rate sensor has been attached on the wrist for 24 hours and the tester moved with various motions 
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including resting, walking, jogging, running, sitting and sleeping. The sensor device collects data every 
second during exercise mode and every five seconds as a function of a general mode.  

There are various algorithms to apply to get the final data and transmission, and how it is applied 
depends on the design requirements. For example, when the data are captured during sleeping, the body 
temperature is unlikely to change often and the transfer interval algorithm will significantly reduce the 
number of transmissions. However, physicians may request not to apply the inference for a certain period 
of time in order to obtain a pure observation of their patient’s health status.  

Whilst this paper proposes to use physiological data along with AR information to provide enhanced 
information, it is difficult to measure the effectiveness as it can vary depending on how they design and 
use AR along with this solution. Thus this simulation focuses on how much it can reduce the transactions 
of sensors to transfer data to smartphone as it directly affects the battery and bandwidth capacity. In this 
case, the efficiency rate and savings rate (percentage of eliminated data prior to data transmission) are 
used as in Section 1.3. The result in the body temperature simulation is a 2000% improvement. In other 
words, battery life can be extended by 20 times and an implanted device does not need to have its battery 
replaced for instance. As previously discussed, it depends on the design requirements, however it surely 
demonstrates how the solution can improve the resource capacity.  

Two sampling intervals, i.e. every second and minute, and various percentage variances have been 
used to process the collected data. Figure 5 depicts HR patterns based on activities which show that 
BPMs are around 80 or below during resting, and around 140 or below during walking. Running status 
is shown as having a BPM above 140. After inferring, data were reduced by 62% with an efficiency rate 
of 1.68, as according to equations (2) and (1) respectively. Results show that the larger the inference 
variance rate (roughness) applied, the higher the efficiency rate. For example, a variance rate of 10% 
reduced the data transactions by 99 percent of the original sensed data volume, and this is good enough 
to identify heart rate zones of Peak (over 141 BPM), Cardio (over 116 BPM), Fat Burn (83 BPM) with 
a customised zone setting of the tester with 167/60 BPM. Sampling interval affects the quality of data 
and there are significant differences to consider between the sampling intervals, that is, data obtained 
per second are 60 times the volume of data obtained per minute. Furthermore, beacons play a key role 
in optimising data as it provides a framework of the data shape. Sometimes, beacon DPs alone can be 
good enough to represent the original data. In case of short interval data, removing duplications can be 
quite useful to reduce the original data and can be used as a baseline itself for further inferences. In 
addition, the sensing interval can be significant for sensible cases. In conclusion, testing has verified that 
inferring data processing saves bandwidth and battery power significantly. 

There are two ways to transmit sensed data from sensors to requestor networks, i.e. Store and 
forward, or Cut-through [26]. When transferring HR data by the store and forward method for example, 
the data is fragmented into 1460 bytes (payload) to be formed into a frame including headers (1514 
bytes) since the data (2800 KB before compression) is larger than the maximum frame size. There are 
in total 448 packets directly exchanged between the sensor and the smart device. Among these, 180 
packets have been transmitted from the sensor to the smart device, and 268 packets received (mainly for 
acknowledgement) at the sensor. Data are compressed before transmission. Battery consumes more 
power during radio transmission than in receiving or standby mode. For simulation purposes, the figures 
below are used for discussion [27].  
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Knowledge assumption: 

 1 micro ampere is consumed for standby 

 10 milli ampere are used for data receiving 

 25 milli ampere are used for transmission 

Table 4. Outcome of Inference Efficiency after applying different variance rates 

Inference Var (%) 1 2 3 4 5 10 
Efficiency Rate 1.8 3.9 6.8 14.2 25.2 257 

Savings Rate (%) 65 80 88 93 96 99 
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Figure 5. Hourly sensed data every minute with activities and their inference results obtained from the original sensed data.  
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Figure 6 Inferring original data without (left) and with (right) beacons 

When inferring, beacons are very important to improve the accuracy of inferred data. As shown in 
Figure 6 when a fine inference is applied (baseline DP: 1308, inferred DP: 69) without beacons (left 
figure), the result is very rough (i.e. less accurate). However, when beacons are applied in addition to 
the inference (right figure), it corrects for the roughness and the accuracy improves significantly with a 
minimal increase in sampling data (baseline DP: 1308, inferred DP: 107).  

To transmit 2800 KB data in a simulation by store and forward method, it consumes 3130mA 
(2680mA for receiving + 4500 mA for transmission), which affects the power consumption directly (e.g. 
P=VI) as each type of battery may have different voltage types. When sensed data are transmitted in 
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real-time without storing, the number of transmissions directly affect the power consumption and 
therefore the power is significantly affected if the frequency of transmission is decreased. There are 
many packets exchanged to establish a communication before and after the transmission even to transmit 
a single data point. Results show a possible power savings when sensor data have been inferred and 
reduced for the transmission accordingly. For example, in the case of zinc-carbon or alkaline type 
batteries, they produce around 1.5 volts per cell and 3.14 W (i.e. 2090mA x 1.5V) of power can be saved 
when a transmission of single data of HR is reduced by the inference system.  

Table 5 Summary of Data processing for long/short interval for resting and exercise modes 

Test data Walk minute Sleep minute Walk second Sleep second 
Mode Exercise Rest Exercise Rest 
Interval Long Long Short Short 
Efficiency 1.8 3.8 8.8 14.7 
Savings (%) 45 73.6 88.7 93.2 
Accuracy (%) 99.98 99.1 98.2 98.62 

In summary, the table below shows the result of data processing for exercise and resting modes as 
well as short and long interval sensing times. Generally, a higher data savings implies a better efficiency, 
and a lower accuracy. This result can be compared with before applying the inference. Battery power 
can be saved by 2090 mA x1.5V for a single data point transmission reduced, and 4980 mA x 1.5V for 
120KB size of data reduced. Saving resource capacity resulted in reduced transactions in sensors which 
can allow additional capacity to be reserved for high priority transactions. 

Informed consent from all human subjects were obtained prior to the experiment, and comply with 
ethical clearance codes such as the Australian ‘National Statement on Ethical Conduct in Human 
Research’ [28].  

5     Conclusion 

It is expected that body sensors will be overloaded and will consume battery quickly when they connect 
to the IoT network due to the additional traffic and transactions that will be demanded. This paper tries 
to address this problem by considering how to determine whether a resource constrained sensor in a 
WBAN can provide data to external networks consistently and reliably regardless of the traffic load. As 
a solution, we proposed to implement intelligence on body sensors by applying an inference system to 
reduce unnecessary transactions and save resources. Three intelligent functions are implemented, i.e. 1) 
requestor analysis 2) data processing and situation decision making 3) data transmission. These are done 
using ‘captured data’ analysis and a pre-defined data threshold which is prescribed and provided by 
physicians for their patients. Experiment results showed that this solution is far more efficient and 
effective than other methods, e.g. up to 99.5% reduction of the original data. However, it remains a 
design aspect with regards on how to program and optimise this system with medical practitioners who 
will determine the level of detail of data they require. Moreover, IoT networks may need a single datum 
from sensors even though they simply request bulk data without ‘thinking’, and therefore it is the role 
of sensors to be ‘smart’ in discerning ‘things’ and inferring data. 
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Appendix: Test environment and network topology 

Test Network Topology for sensed data capture, transfer and export is as below. Cloud servers are in 
production network provided by Intel and Fitbit, which collects sensed data via the PT and provides 
export functions to the PC when requested for data processing. Testing devices include Fitbit Charge 
HR sensors (Accelerometer, Gyrometer, and always-on heart-rate sensor), Basis Peak sensors 
(Motion/steps, Heart rate, Calories, Sleep tracking, Skin temperature), Samsung Galaxy Note 4 
smartphone and Raspberry Pi3. 
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Raspberry Pi3 port configuration is as below. 
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