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Dynamic hand gestures have become increasingly popular as touch-free input modality
for interactive systems. There exists a variety of arm-worn devices for the recognition

of hand gestures, which differ not only in their capabilities, but also in their positioning

on users’ arms. These differences in positioning might influence how well gestures are
recognized, leading to different gesture recognition accuracies. In this paper, we investi-

gate the effect of device placement on dynamic hand gesture recognition accuracy. We

consider devices being strapped to the forearm on two positions: the wrist and below
the elbow. These positions represent smart watches being worn on the wrist and devices

with EMG sensors for the additional detection of static hand gestures (e.g spreading the
fingers) being worn right below the elbow. Our hypothesis is that wrist-worn devices

will have better recognition accuracy, caused by higher acceleration values of a bigger

action radius of dynamic hand gestures. We conducted a comparative study using an
LG G Watch and Thalmic Labs’ Myo armband, for which we recorded a total of 12960

gesture samples of eight simple dynamic gestures in three different variants with eight

participants. We evaluated a potential difference in gesture recognition accuracies us-
ing different feature sets and classifiers. Although recognition accuracies for wrist-worn

devices seem higher, the difference is not statistically significant due to substantial vari-

ations in accuracy across participants. We thus cannot conclude that different positions
of gesture recording devices on the lower arm have significant influence on correctly

recognizing arm gestures.

Keywords: Gesture recognition; Hand gestures; Accelerometer; Sensor placement; Arm-
worn devices

1 Introduction

Hand gestures are becoming increasingly popular as touch-free input modality, e.g. in cars or

for home entertainment systems. However, most gesture recognition systems rely on cameras

and can be negatively affected by poor lighting conditions or obstructions, which limit the

range in which gestures can be used (cf. [1, 2]). These problems can be avoided by deriv-

ing gesture information directly from arm-worn devices, such as smartwatches or armbands.

One example of the latter is Thalmic Labs’ Myo armbanda. In contrast to wrist-worn devices

like smartwatches or activity trackers, it not only allows detection of dynamic gestures using

inertial measurement units, but also static gestures/poses with the hand [3] using electromyo-

graphy sensors that read electrical signals from the muscles in the forearm. One constraint,

however, comes with the placement of such devices. In order to properly read muscle signals

from the forearm, they have to be strapped to the forearm just below the elbow. While this

aThe Thalmic Labs’ Myo armband: https://www.myo.com/
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placement is a necessity for detecting hand poses, we expect it to have a negative effect on

the detection of dynamic hand gestures. Because of the lower action radius, accelerations get

lower the closer sensing devices are worn to the elbow, which acts as rotary joint.

We therefore investigate a possible negative effect on gesture recognition accuracy when

placing an arm-worn device right below the elbow, as this is relevant for interactive systems

that use both static and dynamic gestures.

Summarizing, the contributions of our work are:

• We investigate the influence of devices being strapped to either the wrist or the lower

arm on acceleration-based gesture recognition. Our hypothesis is that wrist-worn devices

will allow higher gesture recognition accuracies than devices worn below the elbow. To

evaluate this hypothesis, we built an acceleration based gesture recognition system that

combines features and models from previous work in gesture and activity recognition.

• We recorded a total of 12960 gesture samples of eight different dynamic arm gestures

that have previously been used for gesture recognition [4, 5, 6, 7] (Fig. 2), from eight

participants in three different variants of execution. In a prior paper [8], we have already

tested the effect of device placement for the first variant of gestures. As recording devices

we use an LG smartwatchband Thamic Labs’ Myo armband, which both represent

off-the-shelf, state-of-the-art hardware available to consumers, thereby facilitating a

realistic estimate of the influence of such devices on gesture recognition accuracy.

• We test our hypothesis on our dataset with different feature sets and classifiers. We

thereby find that gesture recognition accuracies seem to be partially higher with wrist-

worn devices. But due to large variations in gesture recognition accuracies across indi-

viduals, we find no statistically significant difference, hence have to reject our hypothesis.

2 Related Work

In this section we summarize previous work in both acceleration based arm gesture recognition

and using different sensor positions on the human body for e.g. activity recognition.

2.1 Gesture Recognition Using Arm-Worn Devices

Much previous research on gesture recognition relies on built-in accelerometers. Devices are

often held in hands, such as with Wu et al. [9]. They used a Nintendo Wii controller with

built-in accelerometers to distinguish 12 gestures: tilting the hand to the left, right, forward

and backward, drawing a circle, square, right-angle, and the characters C, S, V, W, and Z

into the air. They recorded a total of 3360 gesture samples and used FDSVM (Frame-based

Descriptor and multi-class SVM), a self developed gesture recognition system, to distinguish

gestures. FDSVM first represents the collected acceleration data by a frame-based descriptor

and extracts discriminative information per frame. Then, a SVM-based multi-class classifier

is built for gesture recognition in nonlinear feature space. They compared their approach

with four other models (Naive Bayes, J48, DTW, WiiGee) and achieved a recognition rate

of 95.21% for the user-dependent, respectively 89.29% for the user-independent evaluation,

which outperformed all other models. A similar work is presented by Marasović and Papić [10].

bThe LG smartwatch: http://www.lg.com/us/smart-watches/lg-W100-lg-watch

http://www.lg.com/us/smart-watches/lg-W100-lg-watch
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They used an Android smartphone held in the hand to capture accelerometer readings and

distinguish seven gestures: right, down, square, circle, triangle, drawing an L and N into the

air. They recorded each gesture from a single participant six times and extract 37 features per

sample. By applying Principal Component Analysis (PCA), they reduced their feature set

to contain only the 80% most discriminative features, then used these to employ a k-nearest

neighbour (kNN) and Linear Discriminant Analysis (LDA) classifier. Their evaluation yielded

high recognition accuracies for both models (LDA: 87.6%, kNN: 86.7) – however, due to the

limited size of the underlying evaluation data, those results might not be generalizable.

In other previous work, wrist-worn devices were used for gesture recognition, instead of

devices held in hands. For example, Rekimoto [11] used a gesture detection unit mounted on

users’ wrists. They recognized hand gestures by capacitively measuring wrist-shape changes

and forearm movements with built-in accelerometers. By using three pairs of capacitance

transmitters and receivers placed around the users wrist, their system could clearly distinguish

between two hand shapes (making a fist and pointing at something). When using these wrist-

shape changes in combination with accelerometer readings, they were able to create a set

of gesture commands that use the two hand shapes to separate the gesture commands and

then detect the transformation between two consecutive arm positions, like palm up, palm

down, palm right, palm left, forearm up, and forearm down, as one command. Porzi et al. [7]

proposed a gesture recognition system that used a smartwatch with built-in accelerometers to

assist people with visual impairments. They distinguished eight dynamic gestures: moving the

hand left, right, up, down, and drawing a circle clockwise, counter clockwise, a square, and an

arrow to the right side into the air. To achieve effective user independent gesture recognition

they developed their own version of a Global Alignment Kernel (GAK). For evaluation, they

used three different Support Vector Machines (SVM), including their own Global Alignment

Kernel and the standard implementation of it, and a DTW (Dynamic Time Warping) model as

reference. Overall, they achieved up to 92.33% recognition accuracy with their own recognition

system.

2.2 Placement of Accelerometers for Gesture Recognition

Different placements of accelerometers on the human body have been investigated mainly

in the field of activity recognition. Cleland et al. [13] conducted a study about the optimal

placement of accelerometers for detection of everyday activities like walking, sitting, lying,

standing and walking up and down stairs. They placed accelerometers on the chest, left

wrist, left hip, left foot, left thigh and lower back and tested multiple combinations of them

for their recognition accuracy. Therefore, they calculated a total of 26 features, such as

mean, standard deviation (SD), energy, kurtosis, and skewness for each axis from a sliding

window running over the raw acceleration data and containing 512 of these values. With

those features they trained four different classifiers (SVM, J48 decision tree, Naive Bayes,

and Neural Network). Using only one accelerometer, they achieved more than 91% accuracy

for evaluated accelerometer positions, with the SVM being the best classifier, and the hip

being the best position. The simultaneous use of three sensors yielded best results, while

using e.g. five or six sensors simultaneously even decreases the activity recognition accuracy,

compared to using two or three sensors.

The activity recognition accuracy for different accelerometer positions has also been in-
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vestigated by Olguin and Pentland [14]. They used a Hidden Markov Model (HMM) to test

eight different common activities like walking, performing hand movements, or sitting. For

sensor positioning, they used combinations of up to three wireless accelerometers placed on

the wrist, the left hip, and the chest. Using only one accelerometer on the chest resulted in an

average activity recognition accuracy of 62.45%, which they found to improve by 20% when

adding a second accelerometer on the hip or wrist. When using accelerometers at all three

positions they achieved the best results (92.13% accuracy).

Another study on the accelerometer placement by Gjoreski et al. [15] distinguished fall

detection cases (falling slowly, falling from chair slowly, falling from chair quickly) as well as

postures (lying, sitting, standing, on all fours, sit on ground, going down, standing up) which

might be recognized subsequently to a previous fall. They used up to four accelerometers on

different sensor positions, such as chest, waist, right tight, and right ankle. For recognition,

they combined raw acceleration data with a set of 18 extracted attributes. The resulting

feature set has been used to train four models (SVM, Naive Bayes, J48 and Random Forest).

They found posture recognition with a single sensor on the chest (75%) or waist (77%) causing

difficulties in distinguishing sitting and standing or on all fours and lying on the stomach.

Recognition accuracies improved remarkably when using two (91.5%), three (97%) or four

acceleration sensors (99%). For fall detection, they got similar results as for detecting postures.

2.3 Comparison and Discussion

In previous work in acceleration based gesture recognition devices are either held in hands

(cf. [9, 10]) or are limited to sensor position on the wrist (cf. [14, 15]). While those works

provide a good overview of different approaches towards dynamic (hand) gesture recognition,

none investigates the differences of positioning sensors on either wrist or lower arm, and its

subsequent influence on gesture recognition accuracy. However, in terms of gesture similarity,

we want to point out the work of Porzi et al. [7], which uses a gesture set very similar to

the one we investigate in our approach. Similarly, while previous work in acceleration based

activity recognition investigates different sensor positions, few of them consider the wrist as

sensor position (cf. [13, 14]). Further, those works are limited to distinguishing activities

and do not focus on distinguishing arm or hand gestures. However, those approaches use

feature extraction and models that can be used with acceleration based gesture recognition

alike (cf. [13, 15]), which thereby can be beneficial to our approach.

Summarizing, to the best of our knowledge, no previous research combines acceleration

based gesture recognition with sensors placed on the wrist and the forearm of users (Tab. 1).

Consequently, we investigate the influence of sensor placements on the wrist and the forearm

to acceleration based gesture recognition accuracy. We further do not rely on potential cum-

bersome prototypical hardware, but instead use available off-the-shelf hardware (LG G Watch

on the wrist and Myo armband strapped to the lower arm just below the elbow joint). This

facilitates obtaining a realistic estimate of the impact sensor positioning has with products

readily available to consumers.
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Table 1. Overview of related work for acceleration based arm gesture and activity recognition.

Work Device Placement Measurement(s) Recordings Features Models

Wu et al. [9]
Nintendo Wii
controller

Held in
the hand

Acceleration
Gestures (left, right, go,
come, circle, square,
right-angle, C, S, V, W, Z)

Mean, Energy, Entropy, SD,
Correlation between the axes

Frame-based
Descriptor and
multi-class SVM
Naive Bayes, J48,
DTW, WiiGee

Marasović and
Papić [10]

Smartphone
Held in
the hand

Acceleration
Gestures(right, down,
square, circle,
triangle, L, N)

For each axis: Average, Average
Absolute Difference, Variance,
Standard Deviation, Root Mean
Square, Zero-Crossings,
Signal-to-Noise Ratio.
Duration, Correlation Coefficient,
Acceleration, Average Resultant,
Binned Distribution

kNN with PCA
LDA

Rekimoto [11]
Gesture
recording unit

Wrist

Capacitive
wrist-shape
changes and
acceleration

Gestures (making a fist and
pointing in combination with
six arm positions: palm up,
palm down, palm right,
palm left, forearm up,
forearm down)

- -

Porzi et al. [7]
Smartwatch
together with a
Smartphone

Wrist
(Smartwatch)

Acceleration

Gestures (left, right, up,
down, circle clockwise,
circle counter clockwise,
square, arrow to the right)

Global Alignment Kernel SVM, DTW

Cleland et al. [13] Accelerometers

Left wrist,
chest,
left hip,
left foot,
left thigh,
lower back

Acceleration

Activities (walking,
jogging, sitting, lying,
standing, walking up
and down stairs)

For each axis: Mean, Energy,
Standard Deviation, Kurtosis,
Skewness
Over all axes: Average Standard
Deviation, Average Mean, Average
Skewness, Average Kurtosis,
Average Energy
Correlations between/within the axes

J48, NB, SVM,
NN (Multilayer
Perceptron)

Olguin and
Pentland [14]

Accelerometers
Right wrist,
left hip, chest

Acceleration

Activities (sit down, run,
squat, walk, stand, crawl,
lay down on the chest, hand
movements while standing)

-
Hidden Markov
Models (HMMs)

Gjoreski et al. [15] Accelerometers
Waist, chest
right thigh,
right ankle

Acceleration

Postures (lying, sitting,
standing, on all fours,
sit on ground, going down,
standing up) and
Falls (tripping, falling slowly,
falling from chair slowly,
falling from chair quickly)

Raw acceleration values, length of
the acceleration vector, orientation
angles for each axis, movement
detection attributes, statistical
attributes for each axis and the
length of the acceleration vector:
mean, root mean square,
standard deviation,

Nave Bayes, SVM,
J48, Random Forest
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3 Implementation Details

In order to be able to investigate our hypothesis using the gesture recognition accuracies for

each device position, we build a gesture recognition approach (Fig. 1) to record and label eight

simple gestures (Fig. 2): waving left, waving right, waving up, waving down, drawing a square,

drawing a triangle, and drawing a circle clockwise and counter-clockwise with the right hand in

the air in front of the body. Our gesture recognition approach is split into four parts, which

we describe in more detail in the following sections: sensor data collection, preprocessing,

feature extraction and feature normalization. For sensor data collection, a smartwatch (LG G

Watch) and a gesture armband (Thalmic Labs’ Myo armband) are chosen. For preprocessing,

feature extraction, normalization, and classification, Rc is chosen due to its comprehensive

data analysis capabilities and high amount of available classifiers and filters.

Preprocessing
Feature 

Extraction
Feature 

Normalization
Classification

Data Collection

Acceleration

Data

Data Aggregation

Evaluation

Fig. 1. Overview of our gesture recognition system.

Left Right Up Down

Square Triangle Circle clockwise Circle counter clockwise

Fig. 2. The eight basic gestures we use for our gesture recognition approach based on previous

work [5, 4, 6].

chttps://www.r-project.org/

https://www.r-project.org/
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3.1 Sensor Data Collection

Table 2. The set of features that was used as basis for our evaluation.

No. Feature Description
1 Mean Magnitude The mean over all magnitudes.
2 Minimum Magnitude The lowest of all magnitudes.
3 Maximum Magnitude The highest of all magnitudes.
4-6 Range The acceleration value range for each axis.
7-9 Mean The mean value of the acceleration values for each axis.
10-12 Mean Absolute The mean over all absolute deviations for each axis.

Deviation
13-15 Root Mean Square The mean over all squared accelerometer values for each axis.
16-18 Variance The variance of the accelerometer values for each axis.
19 Mean Variance The mean over the accelerometer value variances.
20 Magnitude Variance The variance of the magnitude values.
21-23 Standard Deviation The standard deviation of the accelerometer values for each axis.
24 Mean Standard The mean over the accelerometer value standard deviations.

Deviation
25 Magnitude Standard The standard deviation of the magnitude values.

Deviation
26-28 Peaks The number of times an acceleration value is higher than the

mean of this axis.
29 Magnitude Peaks The number of times a magnitude is higher than the Mean

Magnitude value.
30 Mean Peaks The mean over the acceleration value peaks for each axis.
31-33 Mean Peak Values The mean over all peak values for each axis.
34-36 Correlation The correlation coefficient between two axes.

Coefficients
37-39 Energy The energy of the accelerometer values for each axis.
40-42 Frequency Range The frequency range for each axis.
43-45 Mean Frequency The mean over the frequency values for each axis.
46-48 Frequency Peaks The number of times a frequency value is higher than

the Mean Frequency of that axis.
49 Mean Frequency The mean over the frequency peaks for each axis.

Peaks
50 Gesture Duration The number of acceleration values for a gesture.
> 51 Accelerometer Data Every 50th normalized and centred acceleration value. The exact

number of acceleration values depends on the gesture length.

To record gestures with the Myo armband and the LG G Watch, an Android application

is developed which runs on smartphones with Android version 4.3 or higher. To collect

acceleration data from the two input devices, a Bluetooth connection to the smartphone

and its application is required. Using the Myo SDK, the connection to the Myo armband is

established using Bluetooth 4.0 and the accelerometer data from the Myo is delivered via a

callback method in the smartphone application.

For the Android Wear smartwatch, a dedicated application is implemented, which receives

a start/stop command for data recording from the smartphone. The collected data is then

sent back to the mobile phone application via the established Bluetooth connection. The

acceleration data from both devices is collected in a data structure until the gesture is finished,

whereupon the raw acceleration data for all three axes and from both devices is stored in two

csv-files on the smartphone’s internal storage. The Myo armband delivers its data with a

fixed sampling frequency of 50 Hz, the sampling frequency of the Android Wear smartwatch
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was set to 50 Hz in the application, but can slightly vary due to the Android-internal sensor

implementation.

3.2 Preprocessing

Preprocessing consists of two steps to a) smooth acceleration data and b) normalize the length

of all gestures. As smoothing function, a running median of odd span is used with a width of

11 samples per window, which corresponds to 220 ms.

For the gesture length normalization, the maximum length of all recorded gestures of a

device is chosen, to avoid loss of information for single gestures. The acceleration samples of

each gesture are interpolated to this maximum length, which is fixed to 303 samples for the

Myo armband and 424 samples for the LG G Watch for the first variant of execution, to 243

and 223 samples for the second variant, and to 248 samples for the Myo and 231 samples for

LG G Watch for the third variant of the gesture execution.

3.3 Feature Extraction and Selection

Based on several existing works on gesture recognition with three-axis accelerometers [5, 16,

17], a set of features proven to be useful for gesture recognition is chosen. The basic features

are calculated from a window that contains all accelerometer data belonging to one single

gesture, which means that the window length is 303 respectively 424 for the Myo and the LG

G Watch for the first variant of the gestures, 243 respectively 223 for the two devices for the

second and 248 respectively 231 for the Myo and the LG G Watch for the third variant of

gesture execution.

The feature set with at least 51 features is chosen as the basis for the feature extraction

and therefore calculated for each device and setup (Tab. 2). In addition to that, the best

feature combination for each device and setup is calculated by applying the recursive feature

elimination algorithm provided by R, which tries every combination of the available features

and evaluates it with a Random Forest classifier with a 10-fold cross-validation with 10 rep-

etitions. With this approach, we are able to reduce the amount of features from 77 to 45 for

the LG G Watch and from 68 to 42 for the Myo armband for the first gesture variant, from

65 to 49 and from 65 to 48 for the second variant of gesture execution and from 65 to 55 for

the LG G Watch and from 65 to 63 for the Myo armband for the third variant of the gestures.

The features selected for each variant are listed in table 3.

3.4 Feature Normalization

In order to get better results and more accurate recognition accuracies especially for the k-

Nearest Neighbour classifier (which is impacted by data that is not normalized), the whole

feature set calculated during the feature extraction is additionally centered and scaled to the

mean of the data being 0 and the standard deviation being 1.

4 Experiment

4.1 Participants

To test our hypothesis with the developed gesture recognition system described above, we

conducted a comparative study with eight voluntary participants (2 female, 6 male). Their

ages varied from 22 to 55 years (mean=32.25; SD=11.95) and all of them were right-handed.
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Table 3. The set of the selected features for each device and gesture variant that was used for our

evaluation, based on the full feature set listed in table 2.

Gesture
Variant

Device Feature No.

Variant 1
Myo

2-4, 6, 7, 10, 12, 13, 16, 18, 20, 21, 23, 25-28, 30, 31, 34-37, 40, 43, 45, 48-50 and
four acceleration readings from the x and z axis starting from the second value
and the first five acceleration readings from the y axis.

Wear

5, 6, 10-12, 14-18, 21-23, 31, 34-36, 38-40, 42, 44-46, 49, 50 and
six acceleration reading from the x axis starting from the third value,
seven acceleration readings from the y axis and
six acceleration readings from the z axis starting from the second value.

Variant 2
Myo

1-4, 6, 7, 10-13, 16-26, 29-31, 34-37, 40, 43-50 and
five acceleration readings from the x axis starting from the first value and
three acceleration readings from the y and z axis starting from the second value.

Wear
5-18, 21-23, 26, 29-42, 44-46, 49, 50 and
four acceleration readings from each axis starting at the second value.

Variant 3
Myo

1-26, 28-46, 48-50 and
the first five acceleration readings of each axis.

Wear
1, 4-27, 29, 31-42, 44-46, 49, 50 and
four acceleration readings from each axis starting at the second value.

None was familiar with gesture recognition or with the eight gestures. Five of the participants

were IT-students or programmers, three participants had no IT-background.

4.2 Apparatus

As gesture recording devices, the latest version of Thalmic Lab’s Myo armband was used

and as Android Wear smartwatch a LG G Watch W100 with Android Wear version 5.1.1 was

chosen. For the Android smartphone application, Android Studio 1.4 was used as development

environment. A Google Nexus 5x smartphone with Android version 6.0 was used as gesture

recording device and for the whole machine learning toolchain, RStudio version 0.99.903 with

R version 3.2.3 was used.

4.3 Procedure

The participants were asked to perform the eight simple, dynamic gestures in three different

variants with both devices mounted on the same arm simultaneously. At the beginning of

each session, the gestures and how they should be performed (starting and end position,

palm always facing down) was explained to each participant. For the data collection, the

participants were equipped with the Myo armband and the LG G Watch on the right arm,

and they were told which gesture to perform next and when to start.

For the first variant of execution (Fig. 3), the participants used the outstretched arm being

held orthogonal to the body and parallel to the floor as starting position and also performed

the gestures with completely outstretched arm all the time. The second variant of the gestures

was performed by holding the upper arm as still as possible on the side of the body and only

moving the lower arm from the elbow downwards. For the third variant, the participants were

asked to perform the gestures as naturally as possible keeping the palm downwards, which

resulted in this approach being a mediocre between the two preceding ones. A comparison of

the gesture variants two and three is shown in figure 4. Each gesture of each variant was then

trained and performed 30 times by each of the eight participants, which resulted in a total of

2160 gesture samples per variant and device or 12960 samples in total.
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(a) (b) (c) (d)

Start / End
1.

2.

4.

3.

Start / End

1. 2.

Start / End Start / End

(e) (f) (g) (h)

Fig. 3. Visualization of how each gesture was performed for the first variant of execution by the

participants: waving (a) left, (b) right, (c) up and (d) down, as well as drawing (e) a square, (f)

a triangle, (g) a circle clockwise and (h) a circle counterclockwise.

(a) (b) (c) (d)

Fig. 4. Visualization of the main differences of the second and third variant of gesture execution.
Waving left in variant two (a) is shorter than in variant three (b). Waving up in variant two (c) is

only performed with the forearm with the upper arm held as still as possible, whereas in variant
three (d), the upper arm is moved upwards too.
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4.4 Design

In order to test our hypothesis of the wrist-worn device (LG G Watch) achieving a better

recognition accuracy than the one worn below the elbow (Myo armband), we evaluated each

variant of the recorded gestures with the evaluation design described below. To calculate

the recognition accuracies, we used four different classifiers being k-Nearest Neighbour, J48

decision tree, Random Forest and Naive Bayes. With each classifier, we first evaluated the

recognition accuracies using the well known and frequently used 10-fold cross-validation with

10 repetitions. However, this approach lacks in generalizing the results due to using ges-

tures from all participants for training the classifiers, which helps them in adapting to the

differences between the participants. Therefore, we secondly conducted a leave-subject-out

cross-validation in which a single participant is repeatedly (for each participant) left out from

the training data and used for testing only. This approach produces more generalizable re-

sults due to testing the trained classifier on the gestures of a person it has never seen before,

which would also be the case in real life applications. Moreover, we conducted the training

and testing with each classifier with both evaluation approaches for all features (Tab. 2) as

well as only for the selected features (Tab. 3).

5 Results

The evaluation and classification of gestures was done with R Studio on a PC. The bar charts

(Fig. 5 to 7) show the recognition results for the different gesture variants for each device,

classifier, feature set and evaluation type; the error bars represent the standard deviations.

In addition to that, the recognition accuracies for each best classifier are shown in table 4.

The recognition accuracies for 10-fold cross-validation with 10 repetitions are, as expected,

better than for the leave-subject-out cross-validation, and also the deviation of the results is

much lower.

Table 4. Recognition accuracies for the best classifier for all gesture variants, devices and feature

sets.
10-fold

cross-validation
Leave-subject-out
cross-validation

Gesture Variant Device
All

Features
Selected
Features

All
Features

Selected
Features

Variant 1
Myo 97.13% 97.54% 84.69% 88.96%
Wear 94.43% 95.44% 89.90% 90.73%

Variant 2
Myo 96.58% 97.00% 74.96% 75.80%
Wear 91.18% 91.94% 80.48% 80.53%

Variant 3
Myo 98.03% 98.17% 81.51% 80.57%
Wear 91.25% 91.61% 83.33% 84.38%

5.1 Gesture Variant 1

For the first variant of the recorded gestures, the Myo armband achieves between 88.05% and

97.13% mean recognition accuracy for the different classifiers and therefore performs slightly

better than the LG G Watch, which achieves between 83.52% and 94.44% with the 10-fold

cross-validation and all features. Considering only the selected features (Tab. 3) increases the

mean recognition accuracies by approximately 1%, which is a good result for using only about

one half of the original features. We also tested the statistical significance for both feature sets

(all features and only the selected ones) and the best classifier for each device for the 10-fold
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LG G Watch Myo
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Fig. 5. The recognition accuracies for the first gesture variant for both devices, each classifier

and all features as well as for the selected features. The evaluation was done with (a) 10-fold

cross-validation with 10 repetitions and (b) with leave-subject-out cross-validation.
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Fig. 6. The recognition accuracies for the second gesture variant for both devices, each classifier

and all features as well as for the selected features. The evaluation was done with (a) 10-fold

cross-validation with 10 repetitions and (b) with leave-one-subject-out cross-validation.
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Fig. 7. The recognition accuracies for the third gesture variant for both devices, each classifier

and all features as well as for the selected features. The evaluation was done with (a) 10-fold
cross-validation with 10 repetitions and (b) with leave-subject-out cross-validation.

cross-validation. For the setup with all features, the best classifier was the Random Forest

for both devices, whereas for the setup with the selected features, the best classifier was the

kNN with k=5 for the LG G Watch and the Random Forest for the Myo armband. For both

approaches, the Myo armband achieved better recognition accuracies compared to the LG G

Watch. The difference between the two devices was proved to be statistically significant (all

features: t99 = 9.6, p < 0.001; selected features: t99 = 7.9, p < 0.001).

With results for the leave-subject-out cross-validation of the first gesture variant, one can

see that the LG G Watch (between 76.04% and 89.89% for all features and 75.74% and 90.73%

for the selected features) performs better than the Myo armband (between 73.07% and 84.69%

for all features and 75.89% and 88.96% for the selected features) with almost every classifier

with both feature sets. However, removing unnecessary features again increased the mean

accuracy of the different devices and classifiers (despite one) by at least 0.3% and up to 4.4%.

Again, we tested the statistical significance for this type of cross-validation and with both

feature sets for the best classifier of each device (kNN with k=5 for the Myo armband and

the LG G Watch for all features, kNN with k=9 for the Myo armband and kNN with k=7 for

the LG G Watch for the selected features). As there were substantial variations across the

participants, the difference between the two devices was not statistically significant with both

feature sets for the leave-subject-out cross validation (all features: t8 = −0.72, not significant

(ns); selected features: t8 = −0.72, ns).

Summing up, for the 10-fold cross-validation evaluation approach, we found the Myo arm-

band to perform significantly better than the LG G Watch with both feature sets. However,

when using the leave-subject-out cross-validation, no significant difference between the two

devices could be found.
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5.2 Gesture Variant 2

With the second gesture variant, the Myo armband again performs slightly better than the

LG G Watch by achieving between 84.54% and 96.58% mean recognition accuracy compared

to accuracies achieved by the LG G Watch, which are between 77.34% and 91.18% with the

10-fold cross-validation and all features. Using only the selected features for the classification

increases the mean recognition accuracies for the Myo by up to 3.4% and for the LG G

Watch between 0.7% and even 13.9%. Testing the statistical significance for both feature

sets and only the best classifier for each device (all features: Random Forest for the Myo

armband and kNN with k=5 for the LG G Watch; selected features: Random Forest for

both devices), the difference between the two devices was proven to be highly significant (all

features: t99 = 17.19, p < 0.001; selected features: t99 = 16.36, p < 0.001).

When evaluating the second gesture variant with the leave-subject-out cross-validation

with all features, the Myo achieved between 60.44% and 74.96% recognition accuracies whereas

the LG G Watch achieved between 63.05% and 80.48%, which is slightly better than the Myo.

When using only the selected features for each device, the accuracies could be increased by

up to 10.9% for the Myo armband and up to 2.4% by the LG G Watch. When testing

the statistical significance for this evaluation approach, we found that there is a significant

difference between the two devices when the best classifier (the Random Forest for both, the

Myo armband and the LG G Watch) is evaluated with all features (t99 = −3.24, p < 0.05).

However, when using only the selected features and the best classifier for each device, no

significant difference between the two devices could be found (t8 = −1.16, ns).

Evaluating this gesture variant with the 10-fold cross-validation with 10 repetitions, the

Myo armband performed significantly better than the LG G Watch with both feature sets.

Besides that, we were also able to prove that the LG G Watch performed significantly better

in the leave-subject-out cross-validation approach when used with all features.

5.3 Gesture Variant 3

For the third variant of the recorded gestures when evaluated with the 10-fold cross-validation

and all features, the Myo armband achieves between 88.45% and 98.09% mean recognition

accuracy for the different classifiers and therefore performs better than the LG G Watch,

which achieves between 74.81% and 91.25%. Considering only the selected features increases

the mean recognition accuracies only slightly by at most 1%, which is easily explainable due

to the fact that only very few features are dismissed during the selection for this gesture

variant. For this gesture variant, we again found a highly significant difference between the

two devices for the best classifier of the 10-fold cross-validation (the Random Forest for both

devices) with all features (t99 = 21.32, p < 0.001) and also the selected ones (t99 = 19.88,

p < 0.001).

When evaluating the third gesture variant with the leave-subject-out cross-validation, we

found that the LG G Watch, which achieved between 64.32% and 83.33% for all features and

63.75% and 84.37% for the selected features, performs better than the Myo armband, which

achieved between 67.14% and 81.51% recognition accuracy for all features and 68.65% and

80.57% accuracy for the selected features. Removing the unnecessary features resulted in

slightly decreased recognition accuracies (by about 0.1% to 0.9%) for most of the classifiers,

but also increased the accuracies for the other classifiers by up to 1.5%. Again, we tested the
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statistical significance with both feature sets for the best classifier of each device (Random

Forest the Myo armband for all and only the selected features, kNN with k=7 for all features

and kNN with k=9 for the selected features for the LG G Watch). Also for this variant

of the gestures, there were substantial variations across the participants, so the difference

between the two devices was not statistically significant with both feature sets (all features:

t8 = −0.52, ns; selected features: t8 = −0.98, ns).

Summing up, we again found the Myo armband to perform significantly better than the

LG G Watch with both feature sets when evaluated wit the 10-fold cross validation with

10 repetitions. However, when evaluating with the leave-subject-out cross-validation, no

significant difference between the two devices could be found.

5.4 Discussion

In general, we found that for all three different gesture variants, the Myo armband performed

significantly better when evaluated with the 10-fold cross-validation, whereas the LG G Watch

performed better in the gallery independent setup with the leave-subject-out cross validation.

However, the statistical significance of the watch performing better than the Myo armband in

the second evaluation approach could only be proved for one case out of the six presented ones,

which is the leave-subject-out cross-validation with all features for the second variant of the

recorded gestures. One reason for this result can be found in the evaluation approaches. When

using the 10-fold cross-validation for the evaluation, the classifier is tested only with people

it has already seen during training. However, when the leave-subject-out cross-validation

is used, people that have not been included during the training process and are therefore

completely unknown to the classifier, are used to evaluate the classifier. In addition to that,

the gesture set we use is quite simple and does not contain any rotational movements, which

could also have an influence on the high recognition accuracies but not significant differences

between the devices. For this reason, we partly have to reject our hypothesis that there is a

statistical significance between the two devices.

Finally, figures 8 to 10 visualize the confusion matrices for the leave-subject-out cross-

validation with only the selected features and the best classifiers for each variant of the

gestures. One can see that for all three gesture variants, the Myo armband often confused

the circle clockwise with the circle counter clockwise and that the LG G Watch performed

better, especially in the first variant of the recorded gestures.

6 Conclusions

In this work, we investigated if gesture recognition accuracies are affected by placing the

recording device either at the wrist or below the elbow during performing gestures. We

compared the placement of two wearable devices, an LG G Watch worn on the wrist and a

Myo armband from Thalmic Labs worn right below the elbow, concerning the recognition of

three different variants of dynamic hand gestures. We implemented an Android-based system

for simultaneously collecting sensor data from both devices. In a study with eight participants

and three different variants of the eight gestures, we collected 2160 gesture samples from

each device for each gesture variant. The data was filtered and normalized, features were

extracted, relevant features were selected and normalized, and they were classified using

k-Nearest Neighbour, J48 decision tree, Random Forest and Naive Bayes classifiers. We
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Fig. 8. The confusion matrices for the first variant of the recorded gestures with leave-subject-out

cross-validation for the best classifier of (a) the Myo armband (kNN with k=9) and (b) the LG G

Watch (kNN with k=7) with only the selected features.
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Fig. 9. The confusion matrices for the second variant of the recorded gestures with leave-subject-

out cross-validation for the best classifier of (a) the Myo armband and (b) the LG G Watch (the

Random Forest for both) with only the selected features.
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Fig. 10. The confusion matrices for the third variant of the recorded gestures with leave-subject-

out cross-validation for the best classifier of (a) the Myo armband (Random Forest) and (b) the
LG G Watch (kNN with k=9) with only the selected features.

evaluated the recognition accuracy with 10-fold cross-validation with 10 repetitions and leave-

subject-out cross-validation.

Our assumption was that the wrist-worn device would have a significantly better recogni-

tion accuracy due to its bigger action radius. Using the set of selected features only and an

evaluation with leave-one-subject-out cross-validation, whose results are more generalizable

than those for the 10-fold cross-validation, the recognition accuracies for the LG G Watch

were higher than for the Myo armband. Although this supports our hypothesis we had to

reject it, as we were not able to prove that the difference between the two devices is significant

for all three gesture variants. However, for the second variant of the gestures and the feature

set containing all possible features, we found a statistical significance between the two devices.

A possible cause for the non-significance is, that the used gestures – even though we

recorded different variants of them – are very simple. Moreover, the gestures were charac-

terized by large arm movements, which is why the acceleration values measured below the

elbow were still big enough to distinguish the gestures well. Therefore, an interesting item of

future work would be the investigation of recognition accuracies with more complex gestures

like less sweeping gestures as well as gestures that include rotations of the forearm.
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