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With the rapid development of the Internet technology and smartphone, people can easily capture and 
upload media information including text, audio, photos, and video. And then it becomes one critical 
demand to effectively and efficiently manage these personal multimedia that are often presented in 
multiple modalities. Canonical correlation analysis (CCA) has been widely employed for multi-modal data 
in many applications because of its promising performance in feature extraction and subspace learning for 
multivariate vectors. However, the traditional CCA may be difficult to interpret especially when the 
original variables are expected to involve only a few components. In this paper, we develop a mobile 
media recognition method on the cloud. Particularly, we propose sparse canonical correlation analysis 
(SCCA) on the cloud. SCCA can find a reasonable trade-off between statistical fidelity and 
interpretability. Furthermore, we employ a generalised power method to optimise the SCCA algorithm. 
Finally, we conduct extensive experiments for recognition on several popular databases including UCI 
datasets and USAA dataset. Experimental results demonstrate that the proposed SCCA algorithm 
outperforms the traditional CCA algorithm. 
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1 Introduction  

Today, smartphone has become more and more popular, and it can easily obtain many personal 
multimedia including speeches, images, and video that are often high dimensional data [12, 20, 24, 
28]. To effectively manage the huge scale and high dimensional multimedia data, many subspace 
learning methods have been successfully applied for many applications by mapping the input data to a 
subspace with lower dimension [11, 21, 23, 25, 26]. The canonical correlation analysis (CCA) [1, 17, 
18] is one promising subspace learning method, which exploits the correlation between two 
multidimensional variables in a linear way and has been widely employed in many applications such as 
bioinformatics, economics and signal processing. In particular, The CCA measures the correlation 
between two high-dimensional variables by linear transformation and then learns two corresponding 
subspaces by maximising the correlation between the pair of variables. 

On the other hand, sparsity has been employed into many learning models to leverage the 
performance [14, 16]. However, similar with principal component analysis (PCA) [9, 13, 20, 21, 22]  
that gains the principal components (PCs) by linear transformation, the correlations of CCA also 
cannot be interpreted reasonably as the linear processes of PCA make the principal components 
difficult to explain. In other words, simple linear combination of original data makes the principal 
correlations equivocal especially when the original variables are expected to involve only a few 
components. To tackle this problem, sparse analysis is introduced to reach a balance between statistical 
fidelity and interpretability [2, 3, 10, 29]. Specifically, the sparse CCA finds a trade-off between the 
interpretability and the maximal variance projection of the same data, and further obtains better 
performance than the traditional CCA algorithm. 

Secondly, although smartphones can capture image or video effortlessly, it is impossible to 
conduct image recognition or video classification independently for smartphones given small storage 
and limited computational resources. Therefore, it should adopt an alternative way to carry out the 
recognition tasks on mobiles. 

 

Fig. 1.  The architecture of mobile media recognition on the cloud. 
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On the other hand, prodigious development of Internet technology promote cloud computing on 
mobile accessible. In this paper, we develop a mobile media recognition method by using cloud 
computing [19]. The proposed method contains the following steps: 

 training the classifier on the cloud, 

 capturing the media by mobile or selecting existed one on mobile, 

 transferring the media data to the cloud, 

 recognising the mobile media and sending the results back to mobile. 

 

Figure 1 illustrates the architecture of the proposed method. In particular, we propose sparse 
canonical correlation analysis (SCCA) [27] on the cloud and we employ a generalised power method 
to optimise the SCCA algorithm. To evaluate the effectiveness of the proposed method, we conduct 
extensive experiments for recognition on several popular databases including UCI datasets and USAA 
dataset. Experimental results demonstrate that the proposed SCCA algorithm outperforms the 
traditional CCA algorithm. 

The rest of this paper is assigned as follows. Section 2 reviews some related works. Section 3 
presents the proposed SCCA algorithm. Section 4 reports experimental results in comparison with the 
traditional CCA algorithm. Finally, Section 5 gives the conclusion. 

2 Related Works 

In this section, we briefly review the related works of CCA and SCCA algorithms. 

The CCA was first proposed by Hotelling [7] to find pairs of vectors by maximizing the correlation 

between a set of paired variables. Suppose we are given two variables  and  and their linear 

combinations  and . The CCA aims to find the two bases  and  for  and  

respectively such that the correlations between the linear projections  and  are mutually maximised. 
The coefficient can be written as follows. 

 

 

 

where  and  are the self-correlation of  and  and  is the cross-correlation of  

and . The problem of finding the maximum correlation coefficient equals to the problem of finding 

the maximum of   with respect to  and  is the maximum canonical correlation. 
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The basis vectors can be acquired by solving the equations following 

 

where  are the squared canonical correlations and  and  are the corresponding normalized 

basis vectors.  and  can be found by the eigen vectors corresponding to the maximal eigen values. 
Solve one of the equations and the other equation can be solved correspondingly. 

Kernel CCA was proposed by Fyfe and Lai [5], which projects the data into higher dimensional 

space and then perform the conventional CCA in the new space. Suppose  and  be 

the linear kernel matrices corresponding to the two variables  and , then the kernel CCA can be 
expressed as follows, 

 

Hardoon and Shawe-Taylor [6] introduced sparsity regularization into CCA to minimize the 
number of features used in both the primal and dual projections and then proposed sparse CCA as the 
following problem.  

 

And recently, Luo et al. [15] proposed tensor CCA for multi-view dimension reduction.  

3      Sparse Canonical Correlation Analysis  

Figure 2 shows the framework of  SCCA for recognition. In this section, we introduce the proposed 
sparse canonical correlation analysis. 

Suppose  and . 
The eigen vectors in problem (1) can be easily expressed as 

 

or 

. 
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Fig. 2. The framework of  SCCA for recognition. 

As mentioned above, the SCCA employs sparsity penalty on the eigen vectors in problem (1) (i.e. 

 or ) and learns the corresponding subspaces of the two variables. We write the SCCA as the 
following problems, 

 

or 

 

The optimization of problem (3) is similar to that of  problem (2). Hence we only consider the 
problem (2) in the following of this section. 

For convenience, denote  ( or  for problem (3)) and 

suppose  . Then the problem (2) can be rewritten as 

 

where  is the unit Euclidean ball in  with  and  is the parameter to 
control the sparsity. The above problem (4) provides one way to find the sparse eigen vectors with the 
largest eigen value.  

In this paper, we employ a generalised power method to solve the above problem. Considering 
that the problem (4) is not convex or concave, Journée et al. [10] reformulate the problem as 

 

 

 , 
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where  And finally the problem (4) can be translate to the following expression 
[10]. 

  

where  is the unit Euclidean sphere. 

The optimisation of problem (5) can be divided into two steps: 

 finding the locally optimal patterns of zeros and nonzeros for , 

 computing the nonzero elements of  by solving the maximam variance problem. 

 

A gradient method is adopted to find the locally optimal patterns. In particular, firstly it iteratively 

computes   with    ←   sign( )   and    ←  . Then it constructs the vector 

 such that  if  and  otherwise. 

With the optimal pattern vector , we construct a matrix  that is a submatrix of  containing the 

columns related to the active entries of . Conducting the singular value decomposition of the matrix 

 ,we have  . Then we obtain the solution of problem (5) as   and , 

where  is the complement of . 

After we obtain the sparse eigen vectors of the pair of the variables, we project the original 
samples onto the sparse subspace and then classify the testing samples to the related categories as 
illustrated in Figure 2. 

4     Experiments 

To evaluate the proposed method, we conduct extensive experiments on USAA database [8] and UCI 
datasets [4] for media recognition. 

 

Fig. 3. Examples from the USAA database. 
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The USAA database is partly separated from CCV database with 8 video categories that are 
birthday party, graduation, music performance, non-music performance, parade, wedding ceremony, 
wedding dance, and wedding reception. The videos are with complex video scene information and 
tagged by 69 multi-modal binary attributes that vary in scene, audio, object, action, and camera 
movement. Each video sample in the database is represented by a 14000-dimension vector that 
consists three parts including 5000-dimension SIFT feature, 5000-dimension STIP feature and 4000-
dimension MFCC feature. Figure 3 illustrates some examples of the USAA database. For recognition 
we choose 735 videos as the training set and the rest 731 videos as the testing set. 

We choose three datasets from UCI database including Iris dataset, Letter-recognition dataset, and 
SPECT dataset. 

Iris dataset [4] is a dataset about iris plants. This dataset contains 3 categories in 4 attributes. Each 
category has 50 samples and there are 150 samples in total. Table 1 shows some characteristics of the 
Iris database. We conduct two recognition experiments on Iris dataset. For the first experiment, we 
randomly choose 20 samples of each category as the training set, and the rest ones as testing set. For 
the second experiment, 30 samples are randomly chosen for training, and the other 20 ones for testing. 
Each experiment is conducted for 5 times. 

Table 1. Some characteristics of the Iris database. 

 Min Max Mean Standard deviation Correlation 

Sepal length 4.3 7.9 5.84 0.83  0.7826 

Sepal width 2.0 4.4 3.05 0.43 -0.4194 

Petal length 1.0 6.9 3.76 1.76  0.9490 

Petal width 0.1 2.5 1.20 0.76  0.9565 
 

Letter-recognition dataset contains 20000 images of  English alphabet from A to Z, and each 
image has 16 attributes. Figure 4 illustrates the example number of the Letter dataset. For recognition 
experiment, we conduct tree experiments with the number of training sample are 8000, 10000,12000 
respectively. 

 

Fig. 4.  Example number of the Letter dataset. 

SPECT dataset consists of single proton emission computed tomography (SPECT) images of 267 
patients with 22 attributes for each image. These patients are classified into two categories: normal and 
abnormal. For recognition experiment, we choose 80 samples as training set in which half are normal 
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ones and others are abnormal. The rest 15 normal samples and 172 abnormal samples form the testing 
set. 

We split the represent vector of each sample into two parts equally and conduct sparse canonical 
correlation analysis on the training set to learn the projective function for each subspace. Then we map 
all samples onto the corresponding subspace. Finally, we employ the nearest neighbour algorithm to 
classify the testing samples. 

Figure 5 shows the performance of USAA database. We can see that the SCCA algorithm 
outperforms the CCA algorithm in most cases. 

Figure 6 demonstrates the mean performance over all classes of Iris database. And Figure 7 and 
Figure 8 shows the average performance over each single class of different experiments respectively. 
We observe that the SCCA algorithm performs better than the CCA algorithm for both experiments for 
Iris recognition. 

Figure 9 demonstrates the mean performance over all letters of the Letter-recognition dataset. 
Figure 10, Figure 11 and Figure 12 shows the performance over each single letter of different 
experiments respectively. From the results, we can see that the SCCA algorithm outperforms the CCA 
algorithm for letter recognition experiments. 

Table 2 shows the performance of  SPECT dataset. From Table 2, it is easy to see that SCCA 
performs better to recognize the abnormal patients than CCA. In general, SCCA can work more 
efficiently than CCA on the case of medical diagnosis. 

 

 

Fig. 5.  The performance of  USAA database (r = 0.015). 
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Fig. 6.  The mean performance of Iris dataset. 

 

Fig. 8.  The average performance of the second 

experiment on Iris dataset  (r = 0.8). 

 

Fig. 7.  The average performance of the first 

experiment on Iris dataset  (r = 0.9). 

 

Fig. 9.  The mean performance of  Letter-recognition 

dataset. 
 

Table 2. The performance of SPECT dataset (r = 0.3). 

 
CCA (%) 

SCCA (%) 

 
total rate 

51.87 
90.37 

 
normal 
20.00 
20.00 

 
abnormal 

54.65 
96.51 
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Fig. 10.  The performance of the  first experiment on Letter-recognition dataset (r = 0.07). 

 

 

Fig. 11. The performance of the second experiment on Letter-recognition dataset (r = 0.07). 

 

 

Fig. 12. The performance of the third experiment on Letter-recognition dataset (r = 0.08). 
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5        Conclusion 

It is essential to find a proper way for mobile media recognition. And canonical correlation analysis 
(CCA) has achieved promising performance in feature extraction and subspace learning for 
multivariate vectors and hence been widely applied for multi-modal data in many applications. In this 
paper, we develop an mobile media recognition method by using cloud computing. We utilise sparse 
canonical correlation analysis (SCCA) on the cloud to find a reasonable trade-off  between statistical 
fidelity and interpretability. The extensive experiments on popular databases including UCI datasets 
and USAA dataset verify the superiority of the proposed method comparing with baseline algorithms. 
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