
Journal of Mobile Multimedia, Vol. 12, No. 3&4 (2017) 291–302
c© Rinton Press

ANALYSIS AND EVALUATION OF FEATURE DETECTION AND
TRACKING TECHNIQUES USING OPENCV WITH FOCUS

ON MARKERLESS AUGMENTED REALITY APPLICATIONS

GUSTAVO MAGALHÃES MOURA RODRIGO LUIS DE SOUZA DA SILVA
Computer Science Department, Federal University of Juiz de Fora

Juiz de Fora, Minas Gerais, 36036-900, Brazil
gmmoura@ice.ufjf.br rodrigoluis@ice.ufjf.br

Augmented Reality (AR) is a technology able to extend human interactions with the real
world. One field of study in AR is the use of real objects as markers. To perform this task,
feature recognition of the real world by computer systems must be performed. This work
consists in the analysis and evaluation of several algorithms available in OpenCV library
that allow the detection of pre-established patterns in images and videos. The main
contribution of this work is to present the most appropriate combination of algorithms
to help the development of markerless AR applications.

Keywords: Augmented Reality, OpenCV, feature detector

1 Introduction

Augmented Reality (AR) is a technology that allows the modification of a real-world view
through the overlay of virtual images, generated computationally, using a capture device. In
[1], AR is defined as a system that complements the real-world with virtual objects generated
by computers that appear to coexist in the same space as the real world. The generation of
these virtual objects can be made through sensing and overlapping patterns or images with
georeferenced points.

Although augmented reality research dates back to the early 1960s through the work of
Sutherland [2], its popularity has not yet occurred, compared with the recent growth of virtual
reality, it is mainly restricted to research environments and industrial applications. With the
advent of relatively inexpensive equipment, hardware that support the requirements of AR
applications, for example smartphones, and libraries that support the development of AR
applications, the range of this technology is increasing. Among the available libraries that
provide algorithms for the development of AR applications there is OpenCV.

OpenCV (Open Source Computer Vision) is a free and open library created in 1998 by
Intel, currently held by Itseez, which provides tools for developing applications in Computer
Vision for academic and commercial use. It has interfaces for C++, C, Python, Java and MA-
TLAB and support for development on Linux, Windows, Mac OS, iOS and Android. OpenCV
has over 2500 algorithms that support basic and advanced image processing, computational
geometry, detector and feature descriptors, object tracking, optical flow, object detection,
camera calibration, etc.

OpenCV has wide applicability, from health [3] to traffic control [4] and it was chosen for
this work to be free, robust, support multiple programming languages and have user-friendly

291

292 Analysis and Evaluation of Feature Detection and Tracking Techniques Using OpenCV with Focus on . . .

interface to access their algorithms.
Pattern detection in an image basically comprises three stages: feature detection, descrip-

tion and matching. There are specific algorithms for each step and algorithms comprising
the first two. This work will present the combination of three types of algorithms available
in the OpenCV library for detecting a predetermined pattern in an image (Figure 1). The
main contribution of this work is to present the most appropriate combination of algorithms
for AR applications.

Fig. 1. Example of matching a pattern in an image (left) on a set of images where the pattern is
inserted (right).

The remainder of this paper is organized as follows: Section 2 describes the related works;
Section 3 introduces the concepts and algorithms used in this work; the description of the
methodology was carried out in Section 4; experiments are presented in Section 5; and the
conclusion is found in Section 6.

2 Related Works

Among the three types of algorithms presented in this paper, detectors and descriptors are
the most widely studied because of the dependency on what information is relevant in the
image and how they are encoded, respectively, and they demand the highest percentage of
processing time, as will be presented in the following sections.

Due to the large number of algorithms responsible for detection and description available in
the literature, their versatility and the transformations that an image may suffer, comparison
articles can evaluate different aspects with different emphases, as in [5]. This paper compares
two of the most used algorithms, namely detectors and descriptors, focusing on matching
different views of the same scene, assessing the number of interest points and processing
time. A comparison between five algorithms for detection and description in order to study
the correspondence of a standard object in an image was presented in [6]. In this work the
authors did not set an unique matching algorithm, because the types of descriptors used were
different.

Other studies have brought comparisons with a large number of algorithms and changes

G. M. Moura and R. L. S. Silva 293

in test images such as image quality, scale, rotation and perspective transformations. In [7]
the best algorithm, or combination of each evaluated transformation was presented. The
work presented in [8] used a greater number of changes in test images, lighting, viewpoint
changes, rotation, blurring, scale, JPEG compression and exposure time, and used combi-
nations of detectors and descriptors to determine the best combination for each evaluated
transformation.

The papers [9] and [10] compare the two most widely used algorithms for detection and
description and proposed new approaches to generate new algorithms.

The work that is closest to this one was presented in [11]. This work compare the detection
and description algorithms and two matching algorithms aiming to get the best fit for visual
recognition of pictures in smartphone.

The main contribution of this work in comparison with the articles presented in this section
is the inclusion of the matching algorithms presented in OpenCV regarding performance
reviews and the evaluation of combinations to detect a pattern previously established in
images and videos with focus on the performance requirements for AR applications.

3 Basic Concepts

This section describes the basic concepts presented in this paper.

3.1 Feature Detectors

In [12], Suarez et al defined that feature detectors are algorithms that extract points of an
image that can characterize its contents robustly. These points (also called local features
or interest points) can be classified into edges, corners or blobs (regions). The regions can
be considered as areas where certain properties are approximately constant. The detection
algorithms are specialized in identifying one or more of the mentioned characteristics. Table 1
shows the types of characteristics that each detection algorithm considers.

Table 1. Types of features considered by each detection algorithm

Detector Feature Type
Edge Corner Blob

BRISK � �

Dense Detects the type of feature that is
regularly distributed in the image.

FAST � �
GFTT � �
HARRIS � �
MSER �
ORB � �
SIFT � �
SimpleBlob �
STAR � � �
SURF � �

Proposed by [13], FAST (Features from Accelerated Segment Test) detector is very fast
in detecting corners. However, it is not selective detecting many points of no great interest.

BRISK (Binary Robust Invariant Scalable Keypoints) detector proposed by [14] was ins-
pired by FAST detector. It was presented as an alternative to SIFT and SURF with the
purpose to maintain their strengths, but with better performance.

294 Analysis and Evaluation of Feature Detection and Tracking Techniques Using OpenCV with Focus on . . .

Dense algorithm is a detector that picks the interest points on the nodes of a regular grid
superimposed on the image excluding the points of the grid limits. Because of this feature,
the selected interest points may not be relevant.

GFTT (Good Features To Track) method proposed by [15], tries to detect corners and
edges that stand out in the images, since they are less affected by rotation or image scale.

HARRIS detector combines the GFTT method with the detection method proposed by
[16]. This detector handles corners and edges tolerating rotations, but is not suitable for scale
changes.

MSER (Maximally Stable Extremal Regions), proposed by [17], is a method able to detect
regions, being tolerant to rotations, change of scale, perspective and lighting changes.

Created to be an alternative to the SIFT and SURF, the ORB (Oriented FAST and
Rotated BRIEF) algorithm was proposed by [9] and its detector was set from FAST adding
an orientation component. The authors claimed that their method is fast and versatile when
compared to similar approaches.

Presented by [18], the SIFT (Scale Invariant Feature Transform) method is one of the
most popular detectors in literature. The method processes the image pixel by pixel with a
high computational cost, but it has the advantage of finding interest points invariant to scale
and rotation. This method is patented and can not be used for commercial purposes without
authorization.

SimpleBlob algorithm uses a simple method to detect regions, as the name suggests. The
algorithm converts the original image into two or more colors, generating images in grayscale.
After that, the grayscale values are binarized. The common areas in both images are then
filtered considering various parameters. This method is tolerant to rotations.

STAR algorithm is an implementation of OpenCV derived from the CenSurE (Center
Surround Extremas) detector, proposed by [19]. The CenSurE uses polygons as squares,
hexagons and octagons to delimit the search for regions as a less computationally expensive
alternative. STAR uses as a delimiter two overlapping squares, one of them rotated 45◦. The
obtained figure is called regular octagram {8}2, which is an eight-pointed star.

SURF (Speeded Up Robust Features) is a method proposed by [20], having a robust feature
detector and it is tolerant to scale and rotation. It is similar to the SIFT method to obtain
interest points and the most important difference is the method used to determine the valid
interest points. This method also has patent and can not be used for commercial purposes.

3.2 Descriptors

Descriptor algorithms transform the information obtained from interest points by the detector
algorithms in information that is invariant to differences in lighting and small perspective
deformations for use by matching algorithms. Some detection algorithms also has components
of description. A brief explanation of the descriptors used in this work will be presented next.

BRIEF (Binary Robust Independent Elementary Features) descriptor was the first binary
descriptor proposed by [21]. This descriptor does not have a orientation component nor a
interest points sampling pattern obtained by the detector.

Proposed by [14], the BRISK algorithm is a binary descriptor using an orientation com-
ponent obtained by analyzing the neighboring pixels to the interest points.

FREAK (Fast Retina Keypoint) method is a descriptor inspired by human visual system

G. M. Moura and R. L. S. Silva 295

and proposed by [22]. This binary descriptor uses a small amount of memory and has a fast
processing.

Also proposed by [9], ORB descriptor was based on the BRIEF descriptor, but has an
efficient calculation of the interest points orientation and a variance and correlation analysis
of interest points to deliver best results.

SIFT descriptor, proposed by [18], uses gradient orientation histograms in the region
around the interest points depending on the location of these points in the image. It is a
robust descriptor invariant to scale, rotation and other transformations on the images. Due
to the high amount of information stored for each point of interest, its computational cost is
high.

Also proposed by [20], SURF descriptor uses the dominant orientation of the square
region surrounding the interest point to determine the orientation of this point.

As shown, there are methods that are only detectors or descriptors and other methods
that have detection and description components. Table 2 summarizes the components of the
presented methods.

Table 2. Summary of the components of detectors and descriptors evaluated
Method Detector Descriptor

BRISK � �
BRIEF �
Dense �
FAST �
FREAK �
GFTT �
HARRIS �
MSER �
ORB � �
SIFT � �
SimpleBlob �
STAR �
SURF � �

3.3 Matchers

Matching Algorithms (or Matchers) are methods that determine which characteristics repre-
sented in the descriptors of two images are similar according to their criteria. Chances of
finding a pattern in an image increases with the number of similar features found.

Brute force matchers available in OpenCV are simple. Each feature of the first descriptor
is compared with all features of the second descriptor according to a distance metric with
the closest pair returned. A minimum distance value determines whether the pair will be
considered relevant or not.

A brief description of the matching algorithms used is presented next according to [12].
In the following equations, V1 and V2 are the feature vectors of the two images, M the size of
the vectors and v1[i] and v2[i] are the ith element of the respective vector.

The BruteForce-L1 algorithm uses the L1 metric distance, also known as Manhattan or
City Block, to determine the distance between floating point descriptors as shown in Eq. 1.

d (V1, V2) =

M∑
i=1

|v1 [i]− v2 [i]| (1)

296 Analysis and Evaluation of Feature Detection and Tracking Techniques Using OpenCV with Focus on . . .

BruteForce is used by floating points descriptors and the considered distance is L2, also
known as Euclidean Distance. This method requires more processing power than BruteForce-
L1 since it is a quadratic function as shown in Eq. 2.

d (V1, V2) =

√√√√ M∑
i=0

(v1 [i]− v2 [i])
2 (2)

The BruteForce-Hamming implementation is used by binary descriptors. Its equation
is the sum of the results of a bit-by-bit bitwise XOR operation between description vectors of
two images, according to Eq. 3.

d (V1, V2) =

M∑
i=1

v1 [i]⊗ v2 [i] (3)

BruteForce-Hamming(2) is also used by binary descriptors and uses two bits rather
than one bit in XOR operations compared to the previous algorithm.

Proposed by [23], the FlannBased algorithm is used with floating point descriptors. It
uses a framework for a preprocessing stage, usually faster than brute force algorithms at the
cost of greater memory utilization.

4 Methodology

An AR application should recognize a pattern in a scene, and then use it as a reference in the
registration of a virtual object. Patterns can be 2D or 3D, but usually 2D patterns (as images)
are the most used. These images should preferably be obtained frontally and under favorable
light conditions for a proper capture of the features that compose its pattern. When executing
the search for this pattern in a second image or a video, its possible to occur geometric
distortions such as rotation and scale that make it difficult to detect. Besides, a sequence of
images captured in a scene may suffer variation in brightness, contrast, focus, among other
visual characteristics that can prevent the identification of a particular marker when moving
the camera from its original position. Thus, it is necessary to use a systematic method to
capture images in order to prevent the disturbance caused by environmental conditions when
analyzing the algorithms described in this paper.

In order to create a sequence of images with more controlled features, we used a graphic
design program to build the standard image and the test images, varying only the transfor-
mation parameters systematically. Our base pattern (standard image) was a high resolution
image obtained from the internet. Test images were constructed using the standard image
in the center, with dimensions that correspond to approximately 25% of the test image area.
The background was composed by other high-resolution images of the same size positioned at
various angles, to obtain a test image with heterogeneous background. Figure 2 exemplifies
the construction of the test images.

For the construction of the test videos, we used a video editing program and the same
high-resolution images used to build the test images. For geometric transformations, the angle
variation rate was 1 degree per frame and the frame rate was 24 fps.

To analyze the aforementioned algorithms, the parameters used for comparison were as
follows:

G. M. Moura and R. L. S. Silva 297

Fig. 2. Example of the construction of test images. Dimension is in pixels.

• Time: time required for the processing algorithm or set of algorithms completing their
purpose;
• Accuracy: number of correctly identified images divided by the total number of test

images;
• Frame rate: number of frames processed per second (fps) by the set of algorithms,

exclusively for the analysis of test videos.

5 Experiments

The experiments described here were performed on an Asus notebook model S400CA, Intel R©

Core
TM

i5 3317U 1.70 GHz processor, 4GB RAMDDR3 1600 MHz and an Intel R© HDGraphics
4000 graphics board.

Algorithms presented in Section 3 were implemented using their respective OpenCV ver-
sions. However, for ORB, GFTT and HARRIS detectors, it was necessary to specify the
maximum number of points to be detected. Thus, to match all detectors to their maximum
number of computable interest points, a sufficiently high value of interest point was specified
for these three detectors.

The number of interest points and the execution time of each detector obtained for the
standard image and the test image without any transformation with dimensions of 1280 x 720
are listed in Table 3. Dense, FAST and ORB detectors stands out for their large number of
interest points detected, and the first two also emphasize the low execution times.

As the initial goal of most Augmented Reality applications is the detection of a pattern
in an image, all possible combinations of the algorithms previously described (a total of 330
combinations) was computed, to detect a standard image on a set of test images modified by
geometric transformations (mainly rotations on Z and X axis). Axes orientation are illustrated
in Figure 3.

Table 4 shows the accuracy (in percentage) obtained for all combinations of algorithms
when detecting the base image on the test image set. Some combinations had an error
during the tests because some methods were incompatible. These combinations were excluded
from the table. The combinations that presented best accuracies considering both geometric
transformations are highlighted in Table 4.

298 Analysis and Evaluation of Feature Detection and Tracking Techniques Using OpenCV with Focus on . . .

Table 3. Detectors Performance

Detector Pattern Scene
Interest Points Time (ms) Interest Points Time (ms)

BRISK 944 35,29 2518 102,42
Dense 6417 0,13 25680 0,50
FAST 6336 5,75 15415 15,45
GFTT 2972 19,89 6613 77,19
HARRIS 1431 18,68 2612 73,37
MSER 286 238,06 793 818,78
ORB 10885 37,07 34013 112,78
SIFT 1546 195,85 4513 735,89
SimpleBlob 11 90,18 37 234,85
STAR 481 14,04 1933 80,66
SURF 2243 317,95 6809 1120,66

Fig. 3. Orientation of rotation axes of geometric transformations.

For the remainder of this work, we will denote the trio detector, descriptor and matcher
algorithms using the notation: detector+descriptor+matcher to simplify the representation.

Table 5 shows the results of the 34 best matches considering test images with dimensions
1280 x 720 images, 540 x 960 and 480 x 360 pixels. For each combination, the percentage
accuracy and the average time (in seconds) of a correct match is presented, separated by
rotation axis. Combinations with higher accuracy associated with a lower processing time
were obtained with the SIFT detector, and the best overall combination for accuracy was
SIFT+SIFT+BruteForce-L1. The combinations SIFT+BRISK+BruteForce-Hamming and
SIFT+BRISK+BruteForce-Hamming(2) also gave satisfactory results with lower processing
time for all test images. Finally, the combinations STAR+SURF+BruteForce, STAR+SURF
+FlannBased and STAR+SURF+BruteForce-L1 gave satisfactory accuracy results with the
lowest processing times considering all combinations, except with test images with lower
dimensions.

Table 6 shows the accuracy and frame rate results for the 18 best combinations when
detecting an image pattern in videos with 960 x 540 videos and 480 x 360 pixels dimen-
sion. The fastest combinations were SIFT+BRISK+BruteForce-Hamming(2) and SIFT+
BRISK+BruteForce-Hamming, however their accuracy results for tests in videos with 960 x
540 pixels were not satisfactory.

The combinations SIFT+SIFT+BruteForce, SIFT+SIFT+FlannBased and SIFT+SIFT+
BruteForce-L1 showed best accuracy results, however, their best results of frame rate was

G. M. Moura and R. L. S. Silva 299

Table 4. Accuracy of test images with dimensions of 1280 x 720 pixels separated by rotation axis.
The combinations that presented best accuracies considering both geometric transformations are
highlighted.

Z Axis X Axis
BK DE FA GF HA MS OR SI SB ST SU BK DE FA GF HA MS OR SI SB ST SU

BF 0,0 4,2 0,0 4,2 8,3 4,2 4,2 4,2 0,0 8,3 8,3 33,3 16,7 0,0 16,7 33,3 33,3 0,0 16,7 16,7 33,3 33,3
BK 0,0 4,2 62,5 54,2 37,5 16,7 41,7 91,7 0,0 50,0 70,8 0,0 66,7 33,3 16,7 0,0 16,7 33,3 50,0 0,0 50,0 66,7
FR 0,0 0,0 0,0 0,0 0,0 0,0 0,0 - 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 - 0,0 0,0 0,0
OR 0,0 4,2 41,7 33,3 20,8 0,0 66,7 - 0,0 8,3 79,2 0,0 16,7 16,7 16,7 16,7 0,0 33,3 - 0,0 16,7 16,7
SI 100,0 - 12,5 12,5 12,5 12,5 100,0 100,0 4,2 12,5 100,0 66,7 - 83,3 83,3 83,3 83,3 50,0 83,3 33,3 83,3 66,7
SU 95,8 - 100,0 25,0 29,2 100,0 100,0 95,8 16,7 100,0 100,0 66,7 - 50,0 0,0 0,0 50,0 66,7 50,0 0,0 50,0 66,7

(a) BruteForce

BK DE FA GF HA MS OR SI SB ST SU BK DE FA GF HA MS OR SI SB ST SU
BF 8,3 4,2 4,2 8,3 8,3 8,3 4,2 4,2 0,0 8,3 8,3 33,3 16,7 0,0 16,7 33,3 16,7 0,0 16,7 16,7 33,3 33,3
BK 4,2 8,3 87,5 91,7 91,7 33,3 41,7 66,7 0,0 62,5 50,0 0,0 66,7 50,0 50,0 66,7 33,3 33,3 66,7 0,0 50,0 50,0
FR 0,0 0,0 0,0 - 0,0 0,0 0,0 - - 0,0 0,0 0,0 0,0 0,0 - 0,0 0,0 0,0 - - 0,0 0,0
OR 0,0 0,0 45,8 37,5 50,0 8,3 45,8 - 0,0 45,8 66,7 0,0 16,7 16,7 16,7 33,3 16,7 66,7 - 0,0 16,7 16,7
SI 100,0 - 12,5 12,5 12,5 12,5 100,0 95,8 8,3 20,8 100,0 66,7 - 83,3 83,3 83,3 66,7 66,7 83,3 50,0 83,3 66,7
SU 95,8 - 100,0 62,5 62,5 95,8 100,0 91,7 16,7 100,0 100,0 66,7 - 66,7 0,0 0,0 66,7 66,7 50,0 0,0 66,7 66,7

(b) BruteForce-L1

BK DE FA GF HA MS OR SI SB ST SU BK DE FA GF HA MS OR SI SB ST SU
BF 8,3 4,2 8,3 8,3 8,3 8,3 8,3 8,3 0,0 8,3 8,3 83,3 50,0 33,3 50,0 50,0 83,3 50,0 33,3 50,0 33,3 50,0
BK 4,2 12,5 100,0 91,7 87,5 25,0 75,0 95,8 0,0 70,8 62,5 0,0 66,7 33,3 50,0 16,7 33,3 50,0 66,7 0,0 50,0 66,7
FR 0,0 - 0,0 0,0 0,0 0,0 0,0 - 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 - 0,0 0,0 0,0
OR 0,0 4,2 79,2 91,7 79,2 8,3 95,8 - 4,2 75,0 83,3 0,0 33,3 33,3 50,0 50,0 16,7 50,0 - 0,0 33,3 50,0

(c) BruteForce-Hamming

BK DE FA GF HA MS OR SI SB ST SU BK DE FA GF HA MS OR SI SB ST SU
BF 8,3 4,2 8,3 8,3 8,3 8,3 8,3 8,3 0,0 8,3 8,3 83,3 33,3 33,3 33,3 50,0 66,7 33,3 33,3 50,0 33,3 33,3
BK 4,2 12,5 100,0 91,7 79,2 20,8 75,0 95,8 4,2 62,5 62,5 0,0 66,7 33,3 50,0 16,7 16,7 50,0 66,7 0,0 50,0 66,7
FR 0,0 - 0,0 0,0 0,0 0,0 0,0 - 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 - 0,0 0,0 0,0
OR 0,0 12,5 79,2 91,7 75,0 25,0 95,8 - 4,2 70,8 83,3 0,0 33,3 33,3 50,0 50,0 16,7 50,0 - 0,0 33,3 50,0

(d) BruteForce-Hamming(2)

BK DE FA GF HA MS OR SI SB ST SU BK DE FA GF HA MS OR SI SB ST SU
SI 100,0 - 12,5 12,5 12,5 12,5 100,0 100,0 4,2 12,5 100,0 66,7 - 83,3 83,3 83,3 66,7 50,0 83,3 33,3 83,3 66,7
SU 95,8 - 100,0 29,2 37,5 100,0 100,0 95,8 16,7 100,0 100,0 66,7 - 50,0 0,0 0,0 50,0 66,7 50,0 0,0 50,0 50,0

(e) FlannBased

Lines are the descriptors and columns the detectors: BF - BRIEF, BK - BRISK, DE - Dense, FA - FAST, FR
- FREAK, GF - GFTT, HA - HARRIS, OR - ORB, SB - SimpleBlob, SI - SIFT, ST - STAR, SU - SURF.

between 2.2 and 1.6 slower when compared with best frame rate combinations.
Considering the 18 combinations listed in Table 6, 16 used at least one of the SIFT

or SURF components, which are patented methods, therefore depending on the authoriza-
tion of the patent for commercial use. The two combinations using only free methods are
ORB+ORB+BruteForce-Hamming and ORB+ORB+BruteForce-Hamming(2) which obtai-
ned intermediate results of accuracy and frame rate.

ORB is a free method with 8 configurable parameters. This method obtained superior
processing time in previous works (as in [8] and [6]) when compared to other methods. To
achieve better results, additional tests were performed varying the maximum amount of points
of interest that the ORB detector can find. Tables 7 and 8 contain the lower limits of interest
points that achieve best results with images and videos, respectively, with 480 x 360 pixels.

Comparing the results of Tables 5 and 7, using the combinations ORB+ORB+BruteForce-
Hamming and ORB+ORB+BruteForce-Hamming(2) the accuracy results and average time
of success were higher when the number of interest points was limited to a low value when
compared with the results of these combinations with a high number of interest points. The
average time for the ORB+ORB+BruteForce-Hamming combination was superior when com-
pared to the best results of Table 5.

Considering the combinations ORB+ORB+BruteForce-Hamming and ORB+ORB+Bru-
teForce-Hamming(2) in Tables 6 and 8, changing the number of interest points did not change
significantly the accuracy but increased the frame rate when the number of interest points
was reduced. This behavior was expected, because reducing the number of interest points

300 Analysis and Evaluation of Feature Detection and Tracking Techniques Using OpenCV with Focus on . . .

Table 5. Accuracy results and average frame rate to detect a pattern in test images.

Detector Descritor Matcher
1280 x 720 960 x 540 480 x 360

Z Axis X Axis Z Axis X Axis Z Axis X Axis
A T A T A T A T A T A T

BRISK SIFT BruteForce 100,0 1,98 66,7 1,91 100,0 1,39 50,0 1,39 0,0 - 0,0 -
BRISK SIFT BruteForce-L1 100,0 1,95 66,7 1,88 100,0 1,37 66,7 1,37 12,5 0,55 0,0 -
BRISK SIFT FlannBased 100,0 1,89 50,0 1,85 100,0 1,36 66,7 1,36 0,0 - 0,0 -
BRISK SURF BruteForce 95,8 0,75 66,7 0,71 100,0 0,47 66,7 0,49 58,3 0,15 50,0 0,18
BRISK SURF BruteForce-L1 95,8 0,73 66,7 0,69 100,0 0,46 50,0 0,47 41,7 0,15 33,3 0,16
BRISK SURF FlannBased 95,8 0,7 66,7 0,66 100,0 0,46 50,0 0,47 58,3 0,16 33,3 0,17
FAST SURF BruteForce 100,0 6,04 50,0 6,96 100,0 2,93 66,7 2,92 95,8 0,63 66,7 0,61
FAST SURF BruteForce-L1 100,0 5,37 66,7 6,05 100,0 2,63 66,7 2,63 100,0 0,59 66,7 0,56
FAST SURF FlannBased 100,0 1,85 50,0 2,13 100,0 1,19 66,7 1,21 95,8 0,45 66,7 0,43
MSER SURF BruteForce 100,0 1,13 50,0 1,11 95,8 0,62 50,0 0,65 12,5 0,17 0,0 -
MSER SURF BruteForce-L1 95,8 1,13 66,7 1,1 91,7 0,62 66,7 0,63 8,3 0,16 0,0 -
MSER SURF FlannBased 100,0 1,13 50,0 1,12 95,8 0,63 50,0 0,66 12,5 0,17 0,0 -
ORB ORB BruteForce-Hamming 83,3 4,69 50,0 4,56 83,3 3,46 66,7 3,41 87,5 0,47 66,7 0,48
ORB ORB BruteForce-Hamming(2) 83,3 5,32 66,7 5,31 83,3 3,96 50,0 3,88 87,5 0,53 50,0 0,55
ORB SIFT BruteForce 100,0 22,14 33,3 22,06 70,8 19,81 33,3 19,85 0,0 - 0,0 -
ORB SIFT BruteForce-L1 95,8 21,05 50,0 21,09 79,2 19,08 16,7 19,05 0,0 - 0,0 -
ORB SIFT FlannBased 100,0 15,12 50,0 15,13 70,8 14,71 33,3 14,71 0,0 - 0,0 -
ORB SURF BruteForce 100,0 15,65 66,7 15,56 95,8 14,3 66,7 14,33 100,0 5,06 50,0 5,28
ORB SURF BruteForce-L1 100,0 15 66,7 14,95 100,0 13,84 66,7 13,86 100,0 5 50,0 5,22
ORB SURF FlannBased 100,0 11,72 66,7 11,66 95,8 11,43 66,7 11,49 100,0 4,8 50,0 5,01
SIFT BRISK BruteForce-Hamming 95,8 1,42 50,0 1,49 91,7 0,77 50,0 0,77 100,0 0,17 66,7 0,17
SIFT BRISK BruteForce-Hamming(2) 95,8 1,5 50,0 1,6 91,7 0,82 50,0 0,82 100,0 0,17 66,7 0,17
SIFT SIFT BruteForce 100,0 2,35 83,3 2,47 100,0 1,37 83,3 1,37 100,0 0,36 66,7 0,36
SIFT SIFT BruteForce-L1 95,8 2,26 83,3 2,38 100,0 1,33 83,3 1,32 100,0 0,36 83,3 0,36
SIFT SIFT FlannBased 100,0 1,93 66,7 2,04 100,0 1,18 83,3 1,19 100,0 0,36 66,7 0,37
SIFT SURF BruteForce 95,8 1,85 50,0 2,37 87,5 1,22 66,7 1,29 83,3 0,39 66,7 0,39
SIFT SURF FlannBased 95,8 1,62 50,0 2,05 83,3 1,11 66,7 1,18 83,3 0,39 50,0 0,38
STAR SURF BruteForce 100,0 0,43 50,0 0,43 100,0 0,25 50,0 0,26 0,0 - 0,0 -
STAR SURF BruteForce-L1 100,0 0,43 66,7 0,44 95,8 0,25 66,7 0,28 0,0 - 0,0 -
STAR SURF FlannBased 100,0 0,43 50,0 0,43 100,0 0,26 50,0 0,27 0,0 - 0,0 -
SURF SIFT BruteForce 100,0 13,59 66,7 12,7 100,0 7,8 66,7 7,48 8,3 2,06 16,7 2,03
SURF SIFT BruteForce-L1 100,0 13,4 66,7 12,5 100,0 7,74 66,7 7,39 25,0 1,99 50,0 2,04
SURF SIFT FlannBased 100,0 12,57 66,7 11,75 100,0 7,5 66,7 7,2 8,3 2,06 33,3 2,01
SURF SURF BruteForce 100,0 4,77 66,7 4,58 95,8 2,58 83,3 2,42 87,5 0,58 66,7 0,58
SURF SURF BruteForce-L1 100,0 4,65 66,7 4,49 100,0 2,54 66,7 2,51 95,8 0,58 66,7 0,58
SURF SURF FlannBased 100,0 4,19 66,7 4,06 95,8 2,41 83,3 2,28 87,5 0,58 50,0 0,61

Where A - Accuracy (%), T - Average Time (s).

Table 6. Accuracy results and average frame rate to detect a pattern in videos

Detector Descritor Matcher
960 x 540 480 x 360

Z Axis X Axis Z Axis X Axis
A F A F A F A F

FAST SURF BruteForce 97,8 0,34 54,4 0,41 99,4 1,61 58,9 1,76
FAST SURF BruteForce-L1 98,6 0,38 57,8 0,45 100,0 1,72 60,0 1,87
FAST SURF FlannBased 97,8 0,85 54,4 0,95 99,4 2,29 60,0 2,36
ORB ORB BruteForce-Hamming 90,6 0,15 52,2 0,19 95,6 2,31 46,7 2,23
ORB ORB BruteForce-Hamming(2) 90,3 0,14 51,1 0,17 96,1 2,05 44,4 2,01
ORB SURF BruteForce 99,7 0,05 61,1 0,05 96,1 0,22 41,1 0,22
ORB SURF BruteForce-L1 100,0 0,05 62,2 0,05 96,7 0,22 37,8 0,22
ORB SURF FlannBased 99,7 0,06 55,6 0,07 96,1 0,23 43,3 0,23
SIFT BRISK BruteForce-Hamming 90,6 1,59 58,9 1,51 98,6 6,91 60,0 5,43
SIFT BRISK BruteForce-Hamming(2) 91,4 1,50 55,6 1,49 98,3 6,70 60,0 5,28
SIFT SIFT BruteForce 100,0 0,80 67,8 0,87 100,0 3,13 63,3 3,02
SIFT SIFT BruteForce-L1 99,7 0,83 66,7 0,90 99,7 3,20 67,8 3,09
SIFT SIFT FlannBased 100,0 0,92 66,7 0,97 100,0 3,11 65,6 2,97
SIFT SURF BruteForce 89,4 0,95 50,0 1,08 82,2 3,07 52,2 3,30
SIFT SURF FlannBased 88,9 1,04 50,0 1,16 81,7 3,03 50,0 3,26
SURF SURF BruteForce 100,0 0,43 60,0 0,47 91,4 1,94 53,3 1,85
SURF SURF BruteForce-L1 100,0 0,43 56,7 0,48 91,4 1,95 52,2 1,86
SURF SURF FlannBased 100,0 0,46 60,0 0,50 91,4 1,91 50,0 1,83

Where A - Accuracy (%), F - Frame rate (fps).

G. M. Moura and R. L. S. Silva 301

Table 7. Combination results of the ORB method in images
Combination RA IPL A T
ORB+ORB+

BruteForce-Hamming
Z 1990 95,8 0,14
X 910 66,7 0,09

ORB+ORB+
BruteForce-Hamming(2)

Z 2400 95,8 0,19
X 1840 66,7 0,18

Where RA - Rotation Axis, IPL - Interest Points Limit, A - Accuracy (%), T - Average Time (s).

Table 8. Combination results of the ORB method in videos
Combination RA IPL A T
ORB+ORB+

BruteForce-Hamming
Z 3640 95,0 4,18
X 4500 51,1 3,05

ORB+ORB+
BruteForce-Hamming(2)

Z 3640 94,7 4,26
X 4260 51,1 2,84

Where RA - Rotation Axis, IPL - Interest Points Limit, A - Accuracy (%), T - Average Time (s).

speed up the detection.

6 Conclusions

The main contribution of this work was to provide a comparison and analysis of combinations
of the algorithms presented in OpenCV library that allow the detection of pre-established
patterns in images and videos and determine the best combinations for Augmented Reality
systems. All combinations of detectors, descriptors and matching algorithms available in the
OpenCV library were compared to detect a pattern in images and video with application of
rotations and changes in scale.

After the tests, the results demonstrated that, without a previous setting, combinations
of the SIFT detector, BRISK descriptor and binary matching algorithms were superior in the
detection of a pattern in images and videos, especially when using low resolution.

The ORB method with a fine parameter adjustment was a good alternative to patented
methods with satisfactory results, especially when used to detect image patterns.

The average frame rate found in our tests are not sufficient for determining the position of a
pattern in a video for Augmented Reality applications in real time. One way to overcome this
problem is using hybrid approaches, for example, optical flow techniques after the recognition
of objects of interest, to maintain a frame rate best suited for this type of application.

For future work, we propose to analyze the use of tracking algorithms such as optical flow
combined with the results obtained in this study. Applications that use similar approaches
are not new in literature ([24]) but the analyses of those algorithms using a well known library
as OpenCV can provide an interesting contribution.

References

1. R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier and B. MacIntyre (2001), Recent advances
in augmented reality, IEEE Computer Graphics and Applications, Vol.21, N.6, pp. 34-47.

2. I. E. Sutherland (1968), A head-mounted three dimensional display, Managing Requirements Kno-
wledge, International Workshop on, Vol.0, pp. 757.

3. S. F. Kurniawan, I. K. G. Darma Putra and A. A. K. Sudana (2014), Bone fracture detection using
OpenCV, Journal of Theoretical and Applied Information Technology, Vol.64, N.1, pp. 249–254.

4. A. Roy, N. Gale and L. Hong (2011), Automated traffic surveillance using fusion of Doppler radar
and video information, Mathematical and Computer Modelling, Vol.54, N.1–2, pp. 531–543.

302 Analysis and Evaluation of Feature Detection and Tracking Techniques Using OpenCV with Focus on . . .

5. P. M. Panchal, S. R. Panchal and S. K. Shah (2013), A Comparison of SIFT and SURF, Interna-
tional Journal of Innovative Research in Computer and Communication Engineering, Vol.1, N.2,
pp. 323-327

6. K. V. S. Bezerra and E. Aguiar (2013), Casamento de padrões em imagens e vídeos usando ca-
racterísticas de imagens, Workshop of Undergraduate Works (WUW) in SIBGRAPI 2013 (XXVI
Conference on Graphics, Patterns and Images).

7. J. Heinly, E. Dunn and JM. Frahm (2012), Comparative evaluation of binary features, Computer
Vision – ECCV 2012, Vol.7573, pp 759-773.

8. D. Mukherjee, Q. M. Jonathan Wu and G. Wang (2015), A comparative experimental study
of image feature detectors and descriptors, Machine Vision and Applications, Vol.26, N.4, pp.
443–466.

9. E. Rublee, V. Rabaud, K. Konolige and G. Bradski (2011), ORB: An efficient alternative to SIFT
or SURF, 2011 International Conference on Computer Vision (Barcelona), pp. 2564-2571.

10. R. Bouchiha and K. Besbes (2015), Comparison of local descriptors for automatic remote sensing
image registration, Signal, Image and Video Processing, Vol.9, N.2, pp. 463–469.

11. E. Chatzilari, G. Liaros, S. Nikolopoulos and Y. Kompatsiaris (2013), A comparative study on
mobile visual recognition, Machine Learning and Data Mining in Pattern Recognition: 9th Inter-
national Conference, MLDM 2013, Proceedings, pp. 442-457.

12. O. D. Suarez, M. M. F. Carrobles, N. V. Enano, G. B. Garcia, I. S. Gracia, J. A. P. Incertis
and J. S. Tercero (2014), OpenCV essentials: acquire, process, and analyze visual content to build
full-fledged imaging applications using OpenCV, Packt Publishing Ltd (Birmingham).

13. E. Rosten and T. Drummond (2006), Machine learning for high-speed corner detection, Computer
Vision – ECCV 2006, Lecture Notes in Computer Science, Vol.3951, pp. 430–443.

14. S. Leutenegger, M. Chli and R. Y. Siegwart (2011), BRISK: Binary Robust invariant scalable
keypoints, International Conference on Computer Vision (Barcelona), pp. 2548-2555.

15. Jianbo Shi and C. Tomasi (1994), Good features to track, Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition (Seattle), pp. 593-600.

16. C. Harris and M. Stephens (1988), A combined corner and edge detector, In Proc. of Fourth Alvey
Vision Conference, pp. 147-151.

17. J. Matas, O. Chum, M. Urban and T. Pajdla (2004), Robust wide-baseline stereo from maximally
stable extremal regions, Image and Vision Computing, Vol.22, I.10, pp. 761-767.

18. D. G. Lowe (1999), Object recognition from local scale-invariant features, Proceedings of the Se-
venth IEEE International Conference on Computer Vision (Kerkyra), Vol.2, pp. 1150-1157.

19. M. Agrawal, K. Konolige and M. R. Blas (2008), CenSurE:Center Surround Extremas for realtime
feature detection and matching, Computer Vision – ECCV 2008, Lecture Notes in Computer
Science, Vol 5305, pp 102-115.

20. H. Bay, T. Tuytelaars and L. Van Gool (2006), SURF: Speeded Up Robust Features, Computer
Vision – ECCV 2006, Lecture Notes in Computer Science, Vol.3951, pp. 404-417.

21. M. Calonder, V. Lepetit, C. Strecha and P. Fua (2010), BRIEF: Binary Robust Independent Ele-
mentary Features, Computer Vision – ECCV 2010, Lecture Notes in Computer Science, Vol.6314,
pp. 778-792.

22. A. Alahi, R. Ortiz and P. Vandergheynst (2012), FREAK: Fast Retina Keypoint, IEEE Conference
on Computer Vision and Pattern Recognition (Providence), pp. 510-517.

23. M. Muja and D. Lowe (2009), Fast approximate nearest neighbors with automatic algorithm con-
figuration, In VISAPP International Conference on Computer Vision Theory and Applications,
Vol.1.

24. A. Ufkes and M. Fiala (2013), A markerless augmented reality system for mobile devices, Interna-
tional Conference on Computer and Robot Vision (Regina), pp. 226-233.

