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In this work we investigate an infrared structured light prototype which is intended for

3D reconstruction in resource-restricted mobile applications. We explore the constraints

on working range and pattern resolution that are imposed by the low-light property of
our single-shot set-up. While focusing on the most light-sensitive steps of the decoding

workflow, we suggest adaptations of image rectification, pattern generation and segmen-

tation algorithms that are tailored to the specific spatial and radiometric requirements of
our system. We incorporate two disparity estimation techniques based on codeword look-

up and foreground/background segmentation into our system and analyze the effects of

different algorithmic components on the overall runtime of our implementation.
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1 Introduction

Depth sensing finds its use in a wide range of applications such as 3D reconstruction/scanning,

mobile multimedia applications and gaming, or automotive applications. In order to compute

depth information from a given scene by stereo analysis, two main techniques can be distin-

guished: passive (e.g., [12, 1, 3]) and active stereo vision approaches (e.g., [5, 10, 2, 4]). A

passive stereo matching algorithm tries to extract the 3D scene geometry via triangulation

from two images that were acquired from slightly different viewpoints by identifying corre-

sponding points in both images. The process of correspondence finding is known as the stereo

matching problem and constitutes the key challenge in the stereo processing pipeline. Passive

stereo matching algorithms typically encounter problems on textureless surfaces and in areas

of repetitive textures, due to ambiguities among match point candidates. Unfavorable light-

ing conditions such as illumination differences between the left and right stereo view or poor

ambient illumination with increased image noise can further complicate the determination

of point correspondences. The resulting matching inaccuracies can significantly reduce the
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quality of the retrieved depth information when passive techniques are used.

Contrary to passive stereo approaches, active Structured Light (SL) methods substitute

one of the cameras by an active device, for example a projector or laser. This active device

emits a light pattern - named as SL illumination - that is reflected by the scene and captured

by the camera. The additionally projected pattern makes the determination of point cor-

respondences more independent of surface texture and illumination characteristics and thus

overcomes some important limitations of passive stereo techniques. The increased robustness

and accuracy of SL techniques compared to passive stereo approaches is also reflected by the

usage of SL-derived depth maps as ground truth data for the evaluation of passive stereo

matching techniques [13].

In this paper, we focus on a near-infrared SL prototype which is intended to be used on

resource-restricted mobile devices. The set-up consists of a single camera and pico projector.

Specifically, we investigate the low-light properties of the projector regarding their effects

on the image rectification, pattern codification, segmentation and disparity estimation. We

address more literature related to the choice of our algorithms in the following section.

The rest of this paper is organized as follows. Section 2 takes a closer look at the algorith-

mic aspects including the rectification process between the captured camera image and the

projected pattern image, strategies for pattern codification and extraction, as well as disparity

estimation. In Section 3 the working range of the proposed SL system with its low projector

brightness is evaluated and runtime results are presented. We summarize our findings in the

concluding Section 4.

2 Algorithms

In this section, we discuss several algorithmic aspects of the proposed SL system under con-

sideration of the constraints imposed by the low-light property and spatial arrangement of

our set-up.

2.1 Image rectification

The first step of the SL decoding workflow comprises the rectification between the camera and

projector image. Due to its simplicity and well-known accuracy, the method by Zhang [16] has

become one of the most widespread approaches for camera calibration. Inspired by that earlier

work, Moreno and Taubin [8] proposed a method for camera/projector calibration by modeling

the projector as an inverse camera. A sequence of Gray code patterns is projected onto a static

planar checkerboard placed within the working volume for finding correspondences between

projector pixels and 3D world points. This approach requires a physical checkerboard to be

placed in the scene at various positions, which has to remain static during projecting and

capturing of the Gray code pattern sequence.

In the case of low projector brightness the accurate determination of chessboard corner

locations is diminished or may not be possible at all due to blurry delineations of chessboard

tiles and an increased presence of image noise. Hence, since the vertical alignment between

projector and camera image denotes a crucial step in order to extract depth information

efficiently, we propose a computationally fast method for uncalibrated image rectification.

Instead of placing the chessboard physically into the scene, a chessboard image is projected

onto a planar surface.
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Fig. 1. Chessboard-based image rectification: (a) Initial camera image. (b) Camera image after
contrast enhancement and denoising. (c) Camera image with binary chessboard pattern formed

after combining the regular and inverse projected chessboard patterns. (d) Detected chessboard

corners overlaid on contrast enhanced input image.

In our processing chain, we first enhance the contrast of the camera image and reduce the

amount of image noise by local filtering operators (see Figure 1 b). To increase the robustness

of the corner detection process, the inverse chessboard is projected additionally and both

captured camera images are combined to form a binary image of the chessboard pattern as

illustrated in Figure 1 c. This binary image serves as the basis to fit the initial chessboard

pattern (i.e. projector image) into the camera image via cross-correlation by adapting the scale

and orientation of the pattern image. Finally, the artificially created camera image is used

to compute the chessboard corner correspondences. After the inner chessboard corners have

been detected, a mapping between coordinates of projector and camera pixels is established

based on the chessboard corner correspondences. This mapping is then extrapolated in the

area of the outer chessboard tiles.

As the correspondences between chessboard corners of the projector image and the camera

image are established based on the inner chessboard corner points, the size of the exterior

chessboard tiles is reduced so that the set of inner corner points covers a larger part of the

projector image, as can be seen in Figure 1.

2.2 Pattern codification strategy

A structured light system is based on the projection of a single pattern or a set of patterns

onto a scene, which is then viewed by a single camera. The patterns are specially designed so

that every pixel has its own codeword to establish a direct mapping from the codewords to
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the corresponding coordinates of the pixels in the pattern. The codification strategies of such

patterns can be classified into two main categories: time-multiplexing and neighborhood cod-

ification [11]. In case of time-multiplexing, a set of patterns (e.g., Gray codes) is successively

projected onto the surface to be measured. Such techniques can achieve high accuracy in the

measurements [13], but are not suitable in case of dynamic scenes as the bits of a codeword

are multiplexed in time.

In contrast to temporal coding approaches, spatial neighborhood techniques densify the

coding scheme into a single pattern image. In particular, the codeword of a specific position

is extracted from its surrounding points which allows to calculate depth information for each

frame individually, and thus enables the use of these approaches for dynamic scenes. However,

as a spatial neighborhood is required to perform decoding for each pixel, such methods lose

spatial resolution and perform poorly around depth discontinuities [14]. Moreover, the de-

coding stage becomes more difficult as the spatial neighborhood cannot always be identified.

Nevertheless, spatial neighborhood coding is the method of choice for our set-up because we

are targeting mobile applications.

Since our aim is to construct a SL system using a near infrared light source (i.e. invisible

to the human eye), color encoding of the pattern image as, for example, suggested in [15]

is not an option. Additionally, to minimize the computational complexity and to ease the

decoding process in case of low projector brightness, the encoding of codewords based on

different shapes (e.g., [6]) appears not to be a good strategy. Thus, we have chosen a binary

pseudorandom array using circles as shape primitives (hereinafter also referred to as dot

pattern) as the proposed SL pattern.

A widespread algorithm in the computer vision community for constructing such a pseu-

dorandom array is given by Morano et al. [7]. The authors propose an iterative process based

on a brute-force approach that allows to define the length of the alphabet, the size of the

window, the dimensions of the array and the Hamming distance between different windows to

allow error correction. Hence, this approach is easily adjustable to different resolutions of the

pattern image. Since the initial Morano algorithm was designed for generating color patterns,

an additional connectivity constraint was introduced to ensure that those pixel positions that

are adjacent (in an 8-neighbourhood) to an ‘on’ pixel are set to an ‘off’ status in our binary

patterns. This isolation of ‘on’ pixels constitutes a important requirement to robustly segment

a single dot during the decoding stage.

We use a dot pattern of size 1280 × 720 pixels which is based on an 80 × 45 binary

pseudorandom array, 9×9 window property and minimum Hamming distance of 3. Currently,

finer resolutions are not applicable as smaller dot sizes will further reduce the overall image

brightness and as dot segmentation is prone to fail due to reduced sharpness of the pattern

image.

2.3 Pattern segmentation

A crucial step in the workflow of a SL system is the segmentation of the pattern image. After

the scene has been illuminated by the projector, the aim is to extract the altered pattern

from the camera image in order to compute correspondences between the projected and the

captured image pattern. In the following, we discuss the segmentation of the individual dot

regions, as shown in Figure 2, in order to extract the distorted pseudorandom pattern. Two
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methods based on absolute image intensities and image gradients are presented.

2.3.1 Intensity based pattern segmentation

The first approach is based on the idea that the pattern projected onto the objects to be mea-

sured is significantly brighter than the basic brightness of the scene. The goal is now to find

an appropriate gray level threshold to separate the illumination pattern from its surround-

ing background. A common approach for image binarization is based on Otsu’s method [9].

This algorithm assumes that the image contains two classes of pixels, i.e. foreground and

background pixels, and calculates the optimum threshold separating the two classes by max-

imizing the inter-class variance of the corresponding gray level distribution. In the proposed

approach, the threshold resulting from Otsu’s method is used as a starting point. In partic-

ular, the mean size of the connected components, also referred to as Binary Large OBjects

(BLOBs), of the binary image according to the calculated threshold is compared to the size

of the dots in the initial pattern image. Depending on the deviation of the dot size in the

camera image compared to the original dot size, the threshold is incremented or decremented

iteratively until the average difference between the dot sizes lies beneath a given confidence

level.

However, the use of a global threshold can lead to poor binarization results due to vi-

gnetting artifacts of the camera sensor, uneven illumination of the projector or varying re-

flectivity properties of the measured objects. Thus, the image is divided into smaller blocks

and local thresholds are computed for each block center with missing thresholds obtained by

bilinear interpolation to avoid blocking-artifacts in the resulting binary image.

2.3.2 Gradient based pattern segmentation

Instead of using absolute intensity levels, the second approach is based on intensity changes

in the input image. As sharp brightness changes typically occur at object boundaries, an edge

detection algorithm is applied to segment the individual dot regions. In particular, due to its

low error rate and its accurate edge point localization, the well-known Canny edge detector is

selected for our processing framework. In our experiments the gradient-based segmentation

has proven to be more robust in low-light environments compared to intensity thresholding

due to significant presence of image noise (see Figure 2 c and d).

2.4 Disparity computation

The final step of the SL decoding workflow is the actual computation of pixel disparities.

Disparities are inversely proportional to corresponding depth values and denote the offset

between codeword positions in the initial pattern image and their respective positions in the

camera image captured of the illuminated scene. After the dots have been segmented accord-

ing to one of the approaches presented in the previous section, incorrectly detected BLOBs

are filtered out based on the size of the BLOB area as well as the length of and ratio between

the axes of the corresponding bounding box. Next, the center position of each detected BLOB

is calculated and mapped to the nearest grid location of the respective pseudorandom array

grid. These offsets between the initial center positions and the corresponding grid positions -

hereinafter also referred to as delta offset - can be used to account for subpixel accuracy in the

disparity map. In the following, we present two methods using a codeword look-up technique

and foreground/background segmentation, respectively, to compute pixel disparities for the
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Fig. 2. Illustration of results obtained from different processing steps: (a) Input camera image.

(b) Input image preprocessed. (c) Intensity thresholding. (d) Gradient-based edge detection. (e)

Classification after foreground/background segmentation (green: foreground; blue: background;
yellow: uncertain; red: undefined). (f) Computed final disparity map in gray value encoded

representation, with initial dot pattern superimposed. Undefined regions are marked red.

reconstructed pseudorandom array.

2.4.1 Codeword look-up

The first approach is based on the actual decoding of the codewords contained in the pseu-

dorandom array. According to the window property, for each window in the reconstructed

array the corresponding codeword is extracted and compared to the codewords of the refer-

ence pseudorandom array using a look-up table that was constructed during initialization.

For every valid codeword, the disparity is given by the horizontal offset between its respective

position in the reference array (i.e. pseudorandom array of the projected pattern) and the

reconstructed array (i.e. pseudorandom array of the captured image). The final disparity
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map is computed by averaging disparities of overlapping windows.

A problem arises for invalid codewords which emerge due to inaccuracies of the dot seg-

mentation process or due to incomplete windows at object boundaries. Specifically in the

context of segmentation errors, codeword correction can help to improve the robustness of

the reconstruction procedure. For example, if all codewords are separated by a minimum

Hamming distance of three, a single error (i.e. one incorrect bit in the binary codeword

string) can be detected and corrected. While the quality of the resulting disparity map is

enhanced, the process of code correction increases significantly the overall runtime of the

decoding process, as shown by the experimental evaluation in Section 3.

2.4.2 Foreground/background segmentation

Instead of retrieving the actual binary codeword of each individual window, the second ap-

proach is based on changes between the reconstructed and reference pseudorandom array to

segment the image into different categories (i.e. foreground, background, uncertain and un-

defined) using binary morphological operators. In the best case scenario - when there is no

vertical offset between the positions of the camera and the projector, and the captured image

is perfectly aligned in vertical direction with the projected image - the pattern illuminating

the scene is only shifted in horizontal direction when hitting an object. Thus, areas that re-

main unchanged between the reference and reconstructed pseudorandom array are considered

as background, i.e. areas with zero disparity. These areas can be determined by computing

the difference between the two arrays, which causes pixels in the alleged background regions

to be blanked out. In principle, this constitutes a simple and computationally fast method to

detect steady (i.e. background) areas in the image and also helps to restrict the search space

for correspondences of foreground objects.

However, a special case has to be considered that may also yield vacant areas in the

difference image, i.e. if similar codewords overlap due to pattern shifting. This problem has

to be taken into account in the selection and generation of the used pattern image and can be

reduced by selecting a larger Hamming distance between adjacent codewords. As the effected

areas are usually smaller than the window size of the corresponding pattern, background

regions whose size falls below a given threshold according to the window property are defined

as uncertain.

Moreover, the reconstructed pseudorandom array might contain vacant regions caused by

several reasons: unsuccessful dot segmentation due to low image contrast, strong presence

of image noise or poor reflectivity properties of the measured object, shadows caused by a

foreground object or missing information at image boundaries due to the aforementioned

pattern shift. Since the computation of disparities is not possible in these regions, they are

labeled as undefined. Finally, the remaining areas of the pseudorandom array which are not

marked as background, uncertain or undefined are considered as foreground.

The final step of the disparity computation pipeline includes a rescaling to the initial image

size, under consideration of the delta offset values and using triangle interpolation of adjacent

grid points. Furthermore, image inpainting techniques can be used to fill in the remaining

undefined disparity values. A fast and simple inpainting approach is currently implemented

to fill the blank regions on a scanline basis by replicating the maximum value of the two

disparities corresponding to the pixels located at the left and right hole boundary, i.e. the
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Fig. 3. Histograms of a white frame captured under different lighting conditions and distances.

Fig. 4. Precision/Recall plots based on dot retrieval using reference pattern. In the first, second

and third column, results are presented regarding the whole image, the center and the marginal
area, respectively. Results are generated by using local intensity thresholding and edge detection.

disparity of the object located closer to the camera.

In Figure 2 e, an example of a segmentation result is presented with foreground, back-

ground, uncertain and undefined areas colored in green, blue, yellow and red, respectively.

Based on the concept of sliding-window stereo matching techniques, each connected compo-

nent of the foreground segmentation mask is shifted horizontally to calculate the respective

disparity values based on the Sum of Absolute Differences (SAD) metric. The resulting dis-

parity map after upscaling and inpainting is shown in Figure 2 f. Darker areas in the disparity

map indicate smaller disparity values (i.e., regions in the background), brighter areas corre-

spond to the foreground.
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3 Evaluation

In this section, we first evaluate the working range of our SL set-up in terms of captured

intensity distribution and successful dot detection. Then we investigate the runtime mea-

sured from our implementation of the overall system with different versions of the involved

algorithmic components.

3.1 Working range

The available projector brightness should guarantee that the projected SL pattern can be

segmented and extracted from the captured camera image to enable the decoding process.

For that purpose, a completely white frame (i.e. all intensities are set to 255 using 8 bit depth)

is projected on a plain white wall at three different distances (50 cm, 100 cm and 150 cm) under

various indoor lighting conditions. As can be seen in Figure 3, the captured intensity values at

a distance of 50 cm deviate by 94.90% from the originally projected intensities. For distances

of 100 cm and 150 cm naturally the brightness of the captured camera image further decreases

leading to a narrower distribution of pixel intensities. In particular, values only range from 1

to 8 and 0 to 5 reaching their peaks at 4 and 3, respectively. This corresponds to a brightness

reduction of almost 99%, and the narrow histogram distributions hinder the setting of suitable

threshold values for segmentation. It is worth noting that a plain white wall nearly represents

an ideal test case and materials like plastic or fabric additionally diminish the captured pixel

brightness, as experiments have indicated. Since our evaluation has been conducted indoors

using artificial light sources (i.e. very small amount of infrared radiation), changing ambient

light conditions have only small impact on the intensity distributions.

To quantify the quality of the pattern segmentation, a reference pattern - i.e. a pattern

where every second grid position is set ‘on’ - based on an 80x45 random array is projected

and the number of retrieved dots is measured. Additionally, to investigate the influence of

decreasing projector brightness, the captured image is divided into a 4×4 grid of equally sized

rectangles and the detection rates of the 12 rectangles at the marginal area and the remaining

4 rectangles in the center area are analyzed separately. This procedure is motivated by the

fact that the brightness of our projector cannot be altered manually and that the currently

available brightness of the projector is already very low.

Comparing the ratio between the maximum brightness of the center and the marginal area,

experiments have shown that at 50 cm the intensity at border regions reaches between 89.47%

and 95.46% compared to the center area for varying lighting conditions. At 100 cm and 150

cm, the ratio falls off to 40% and 30.77%, respectively. Figure 4 shows the precision/recall

results of the dot detection based on the segmentation approaches discussed in the previous

section. As can be seen, the detection rate drastically decreases with increasing distance.

In particular, from 50 cm to 150 cm the recall rate using local image thresholding drops

from 90% to 3%, falling already below 45% at 100 cm. Compared to global or local image

thresholding, edge detection shows more robust segmentation results, i.e. up to 77% recall

at 100 cm while preserving almost 100% precision. Additionally, it can be noticed that there

is only a minor difference between precision/recall rates at central and marginal areas when

edge detection is used. For example, while for image thresholding the recall score differs by

74% at 100 cm under low ambient light conditions, edge detection results vary only by 5%.

In summary, it can be stated that the currently available projector brightness solely allows
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for acceptable dot detection rates (95% recall at 100% precision on average) up to a distance

of 50 cm in this ideal experimental assembly. We also observed that varying ambient lighting

conditions generated by indoor light sources had only minor impact on the detection rate at

this distance.

3.2 Computation time

To evaluate the runtime performance, the structured light system was positioned at a distance

of 50 cm in front of a white wall. A planar object was then placed at a distance of 7.5 cm,

19 cm and 26.5 cm in front of the wall and illuminated by a dot pattern based on an 80

x 45 random array. In Figure 5, the average runtime results computed over 10 passes are

shown, grouped by different combinations of decoding strategies. The three bars per group

correspond to the runtime results obtained by capturing the object at the aforementioned

three distances. It can be seen that the disparity computations based on codeword look-up

and foreground/background (FG/BG) segmentation require almost the same overall runtime,

with higher average values obtained when using edge detection rather than image thresholding

for pattern segmentation.

The overall runtime can be split up into three major components: Initialization, threshold

computation (only used by image thresholding) and disparity computation. Initialization sets

up the internal parameters according to the properties of the specified pattern image and

builds the corresponding codeword look-up table. This takes 12 milliseconds (ms) on average.

For image thresholding, the computation of the binary thresholds requires about 54 ms for

a distance of 7.5 cm. When the object is placed farther away from the wall (i.e., closer to

the camera), the related runtime increases to 62 ms at 19 cm and 131 ms at 26.5 cm. This

is due to the fact that the algorithm tries to find the optimal thresholds according to the

dot size. However, as the object moves towards the camera, there are some unilluminated

regions in the captured frame since the pattern image partially shifts outside the viewing

area. A similar behavior can be observed for the disparity computation including codeword

correction. While the disparity computation (which also includes the dot segmentation) takes

on average 86 ms for the image thresholding approach and 228 ms using edge detection, the

runtime rises at the aforementioned distances to 204, 496, 1007 ms and 341, 642, 989 ms,

respectively, when codeword correction is applied. In this context, the growing number of

undefined pixels should also be taken into account. As illustrated in Figure 6, the amount of

invalid pixels exceeds 18% at 19 cm and 45% at 26.5 cm, which can be attributed to the same

reasons as for threshold computation. The corresponding percentages of corrected codewords

are about 15% and 6%, respectively. It should be noted that the total number of codewords

is smaller than the number of pixels according to the window property.

4 Conclusion

In this paper, we have investigated the properties of a depth sensing system based on near-

infrared SL illumination. Based on the projection of a so-called ‘single-shot’ pseudorandom

binary pattern, techniques for projector/camera image rectification with a suitable calibration

pattern and dot segmentation under low-light projector illumination were explored. Experi-

ments have shown that currently a limited working range of 50 cm and a pattern image based

on an 80 × 45 pseudorandom array are feasible.
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Fig. 5. Runtime results grouped by different combinations of decoding strategies. The three bars

per group correspond to the runtime results obtained by capturing a planar object at 7.5 cm
(left), 19 cm (middle), and 26.5 cm (right) in front of a 50 cm distant wall. Abbreviations: Thresh

= image thresholding, Edge = edge detection, Lut = codeword look-up table, Seg = FG/BG

segmentation, CC = codeword correction.

Fig. 6. Percentage of undefined pixels and amount of corrected codewords grouped by the two
dot segmentation strategies: image thresholding and edge detection. The three bars per group

correspond to results obtained at distances of 7.5 cm, 19 cm, and 26.5 cm.

When investigating the temporal behavior of different algorithmic components, we found

that the more robust pattern segmentation based on edge detection, as opposed to local image

thresholding, was accompanied by a certain increase of the overall runtime (e.g., from about

150 ms to about 250 ms). The additional incorporation of codeword correction strategies

based on the Hamming distance led to a further increase in runtime, which became particularly
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pronounced for test scenes with large disparity differences.

In future work, the implemented strategies for disparity computation between the origi-

nal and captured pattern image, which currently rely on a codeword look-up table or fore-

ground/background segmentation, could be expanded to include active stereo matching tech-

niques. Moreover, enhancement of the projector brightness would allow to use modulations

of gray values instead of strictly binary patterns to enrich the underlying codeword alphabet

and enable the application of smaller window sizes and denser pattern images.
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