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Due to the amount of anonymity afforded to users of the Tor infrastructure, Tor has
become a useful tool for malicious users. With Tor, the users are able to compromise

the non-repudiation principle of computer security. Also, the potentially hackers may
launch attacks such as DDoS or identity theft behind Tor. For this reason, there are
needed new systems and models to detect the intrusion in Tor networks. In this paper,
we present the application of Neural Networks (NNs) and Friedman test for intrusion

detection and user identification in Tor networks. We used the Back-propagation NN and
constructed a Tor server, a Deep Web browser (Tor client) and a Surface Web browser.
Then, the client sends the data browsing to the Tor server using the Tor network. We
used Wireshark Network Analyzer to get the data and then used the Back-propagation

NN to make the approximation. We present many simulation results for different number
of hidden units considering Tor client and Surface Web client. The simulation results
show that our simulation system has a good approximation and can be used for intrusion

detection and user identification in Tor networks.

Keywords: Neural Networks, Friedman Test, User Identification, Intrusion Detection,
Tor Networks, Deep Web, Hidden Unit

1 Introduction

Tor (The Onion Router) [1, 2] is an implementation of an Onion Routing network, where

users expect a large degree of privacy. This privacy is reflected in the perfect forward secrecy

exhibited by Tor connections such that traffic captured at any single network location during

transit only uncovers the previous and next waypoints [3]. Due to the amount of anonymity

afforded to users of the Tor infrastructure, Tor has become a useful tool for malicious users.

With Tor, the users are able to compromise the non-repudiation principle of computer security.

Also, the potentially hackers may launch attacks such as DDoS or identity theft behind Tor.
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The Tor has been designed to make it possible for users to surf the Internet anonymously,

so their activities and location cannot be discovered by government agencies, corporations, or

anyone else. Compared with other anonymizers Tor is more popular and has more visibility

in the academic and hacker communities. Tor is a low-latency, circuit-based and privacy-

preserving anonymizing platform and network. It is one of several systems that have been

developed to provide Internet users with a high level of privacy and anonymity in order to

cope with the censorship measures taken by authorities and to protect against the constantly

increasing threats to these two key security properties.

There are two main approaches to the design of Intrusion Detection Systems (IDSs). In a

misuse detection based IDS, intrusions are detected by looking for activities that correspond

to known signatures of intrusion or vulnerabilities. On the other hand, anomaly detection

based IDS detects intrusions by searching for abnormal network traffic. The abnormal traffic

pattern can be defined either as the violation of accepted thresholds for the legitimate profile

developed for the normal behavior.

In [4], the authors designed and implemented TorWard, which integrates an Intrusion De-

tection System (IDS) at Tor exit routers for Tor malicious traffic discovery and classification.

The system can avoid legal and administrative complaints and allows the investigation to be

performed in a sensitive environment such as a university campus. An IDS is used to discover

and classify malicious traffic. The authors performed comprehensive analysis and extensive

real-world experiments to validate the feasibility and effectiveness of TorWard.

One of the most commonly used approaches in expert system based on intrusion detection

is a rule-based analysis using soft computing techniques such Fuzzy Logic (FL), Artificial

Neural Networks (ANNs), Probabilistic Reasoning (PR), and Genetic Algorithms (GAs).

They are good approaches capable of finding patterns for abnormal and normal behavior.

In some studies, the neural networks have been implemented with the capability to detect

normal and attack connections [5].

In [6], a specific combination of two Neural Network (NN) learning algorithms, the Error

Back-propagation and the Levenberg-Marquardt algorithm, is used to train an artificial NN

to model the boundaries of the clusters of recorded normal behavior. It is shown that the

training dataset, consisting of a combination of recorded normal instances and artificially

generated intrusion instances, successfully guides the NN towards learning the complex and

irregular cluster boundary in a multidimensional space. The performance of the system is

tested on unseen network data containing various intrusion attacks [6].

In [7] is presented a NN-based intrusion detection method for the internet-based attacks

on a computer network. The IDSs have been created to predict and thwart current and

future attacks. The NNs are used to identify and predict unusual activities in the system.

In particular, feed-forward NNs with the Back-propagation training algorithm were employed

and the training and testing data were obtained from the Defense Advanced Research Projects

Agency (DARPA) intrusion detection evaluation data sets. The experimental results on real-

data showed promising results on detection intrusion systems using NNs.

In [8], the authors use a Back-propagation Artificial Neural Network (ANN) to learn

system’s behavior. The authors used the KDD’99 data set for experiments and they obtained

satisfying results.

In this paper, we present the application of NNs and Friedman test for intrusion detection
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and user identification in Tor networks. We used the Back-propagation NN and constructed

a Tor server and a Deep Web browser (client) in our laboratory. Then, the client sends

the data browsing to the Tor server using the Tor network. We used Wireshark Network

Analyzer to get the data and then use the Back-propagation NN to make the approximation.

We present many simulation results for different number of hidden units considering Tor client

and Surface Web client.

The structure of the paper is as follows. In Section 2, we present a short description of

Deep Web and Tor. In Section 3, we give an overview of ANNs. In Section 4, we present

an overview of R. In Section 5, we present the proposed model. In Section 6, we give a

brief introduction of Friedman test. In Section 7, we discuss the simulation results. Finally,

conclusions and future work are given in Section 8.

2 Deep Web and Tor Overview

2.1 Deep Web

The Deep Web (also called the Deepnet, Invisible Web or Hidden Web) is the portion of

World Wide Web content that is not indexed by standard search engines [9, 10]. Most of

the Web’s information is far from the search sites and standard search engines do not find it.

Traditional search engines cannot see or retrieve content in the Deep Web. The portion of

the Web that is indexed by standard search engines is known as the Surface Web. Now, the

Deep Web is several orders of magnitude larger than the Surface Web. The most famous of

the deep web browsers is called Tor.

The Deep Web is both surprising and sinister and accounts for in excess of 90% of the

overall Internet [11]. The Google and other search engines deal only with the indexed surface

web. The deep-dark web hosts illegal markets, such as the Silk Road, malware emporiums,

illegal pornography, and covert meeting places and messaging services. The pervasiveness of

the Internet provides easy access to dark-web sites from anywhere in the world. The growth of

the dark web has been paralleled by an increasing number of anonymity web-overlay services,

such as Tor, which allow criminals, terrorists, hackers, paedophiles and the like to shop and

communicate with impunity. Law enforcement and security agencies have had only very

limited success in combating and containing this dark menace.

2.2 Tor

Tor is a low-latency, circuit-based and privacy-preserving anonymizing platform and network.

It is one of several systems that have been developed to provide Internet users with a high level

of privacy and anonymity in order to cope with the censorship measures taken by authorities

and to protect against the constantly increasing threats to these two key security properties

[12, 13, 14, 15].

The Tor main design goals are to prevent attackers from linking communication partners,

or from linking multiple communications to or from a single user. Tor relies on a distributed

overlay network and onion routing to anonymize TCP-based applications like web browsing,

secure shell, or peer-to-peer communications.

The Tor network is composed of the Tor-client, an entry/guard node, several relays and

the exit node. The Tor-client is a software, installed on each Tor user’s device. It enables

user to create a Tor anonymizing circuit and to handle all the cryptographic keys, needed to
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Fig. 1. A neuron model.

communicate with all nodes within the circuit. The Entry Node is the first node in the circuit

that receives the client request and forwards it to the second relay in the network. The Exit

Node is the last Tor-relay in the circuit. Once the connection request leaves the entry node,

it will be forwarded, through relays in the circuit, all the way to the exit node. The latter

receives the request and relays it to the final destination.

When a client wants to communicate with a server via Tor, he selects n nodes of the Tor

system (where n is typically 3) and builds a circuit using those selected nodes. Messages are

then encrypted n times using the following onion encryption scheme. The messages are first

encrypted with the key shared with the last node (called the exit node of the circuit) and

subsequently with the shared keys of the intermediate node. As a result of this onion routing,

each intermediate node only knows its predecessor and successor, but no other nodes of the

circuit. In addition, the onion encryption ensures that only the last node is able to recover

the original message.

A Tor client typically uses multiple simultaneous circuits. As a result, all streams of a

user are multiplexed over these circuits. For example, a BitTorrent user can use one of the

circuits for his connections to the tracker and other circuits for his connections to the peers.

3 Artificial Neural Network (ANN)

3.1 Computational Models of Neurons

A computational model for an artificial neuron is shown in Fig. 1. This mathematical neuron

computes a weighted sum of its n input signals, xj , where j =1, 2, . . ., n, and generates an

output of 1 if this sum is above a certain threshold u [16, 17, 18]. Otherwise, an output of 0

results. Mathematically,

y = θ

(
n∑

j=1

wjxj − u

)
, (1)

where θ() is a unit step function at 0, and wj , is the synapse weight associated with the jth

input. For simplicity of notation, the threshold u is considered as another weight w0 = −u

attached to the neuron with a constant input x0 = 1. Positive weights correspond to excitatory

synapses, while negative weights model inhibitory ones. In principle, suitably chosen weights

let a synchronous arrangement of such neurons perform universal computations. There is



T. Ishitaki, T. Oda, Y. Liu, D. Elmazi, K. Matsuo, and L. Barolli 255

Neural Networks

Feed-forward Networks Recurrent/Feedback Networks

Single-layer

perceptron

Multi-layer

perceptron

Radical Basis

Function nets

Competitive

Networks

Kohonen's

SOM

Hopfield

Networks

ART

Models

Fig. 2. A taxonomy of feed-forward and recurrent/feedback network architectures.

a crude analogy here to a biological neuron: wires and interconnections model axons and

dendrites, connection weights represent synapses, and the threshold function approximates

the activity in a soma. This model contains a number of simplifying assumptions that do not

reflect the true behavior of biological neurons. An obvious way is to use activation functions

other than the threshold function, such as piecewise linear, sigmoid, or Gaussian.

3.2 Network Architectures

The ANNs can be viewed as weighted directed graphs in which artificial neurons are nodes

and directed edges (with weights) are connections between neuron outputs and neuron inputs.

Based on the connection pattern (architecture), ANNs can be grouped into two categories (see

Figure 2): feed-forward networks, in which graphs have no loops and recurrent (or feedback)

networks, in which loops occur because of feedback connections.

In the most common family of feed-forward networks, called multilayer perceptron, neu-

rons are organized into layers that have unidirectional connections between them. Different

connectivities yield different network behaviors. The feed-forward networks are static, be-

cause they produce only one set of output values rather than a sequence of values from a

given input. The feedforward networks are memory-less in the sense that their response to

an input is independent of the previous network state.

Recurrent, or feedback, networks, on the other hand, are dynamic systems. When a new

input pattern is presented, the neuron outputs are computed. Because of the feedback paths,

the inputs to each neuron are then modified, which leads the network to enter a new state.

Different network architectures require appropriate learning algorithms.

3.3 Learning

The ability to learn is a fundamental trait of intelligence. Although a precise definition of

learning is difficult to formulate, a learning process in the ANN context can be viewed as

the problem of updating network architecture and connection weights so that a network can

efficiently perform a specific task. The network usually must learn the connection weights

from available training patterns. Performance is improved over time by iteratively updating

the weights in the network. ANNs’ ability to automatically learn from examples makes them

attractive and exciting. Instead of following a set of rules specified by human experts, ANNs

appear to learn underlying rules (like input-output relationships) from the given collection of
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representative examples. This is one of the major advantages of NNs over traditional expert

systems.

To understand or design a learning process, we should have a model of the environment

in which a NN operates. We must know what information is available to the network. Also,

we must understand how network weights are updated and which learning rules govern the

updating process. A learning algorithm refers to a procedure in which learning rules are used

for adjusting the weights.

There are three main learning paradigms: supervised, unsupervised, and hybrid. In su-

pervised learning, or learning with a “teacher”, the network is provided with a correct answer

(output) for every input pattern. Weights are determined to allow the network to produce

answers as close as possible to the known correct answers. Reinforcement learning is a variant

of supervised learning in which the network is provided with only a critique on the correctness

of network outputs, not the correct answers themselves. In contrast, unsupervised learning,

or learning without a teacher, does not require a correct answer associated with each in-

put pattern in the training data set. It explores the underlying structure in the data, or

correlations between patterns in the data, and organizes patterns into categories from these

correlations. Hybrid learning combines supervised and unsupervised learning. Part of the

weights are usually determined through supervised learning, while the others are obtained

through unsupervised learning.

3.4 Back-propagation Algorithm

One of the most popular ANN algorithms is Back-propagation algorithm. A Back-propagation

algorithm can be broken down to four main steps. After choosing the weights of the network

randomly, the back propagation algorithm is used to compute the necessary corrections. The

algorithm can be decomposed in the following four steps:

• Feed-forward computation,

• Back-propagation to the output layer,

• Back-propagation to the hidden layer,

• Weight updates.

The algorithm is stopped when the value of the error function has become sufficiently

small.

4 The R environment

The R is an integrated suite of software facilities for data manipulation, calculation and

graphical display [19]. Among other things it has:

• an effective data handling and storage facility,

• a suite of operators for calculations on arrays, in particular matrices,

• a large, coherent, integrated collection of intermediate tools for data analysis,

• graphical facilities for data analysis and display either directly at the computer or on

hardcopy, and
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Fig. 3. Proposed system model.

• a well developed, simple and effective programming language (called ‘S’) which includes

conditionals, loops, user defined recursive functions and input and output facilities.

Indeed most of the system supplied functions are themselves written in the S language.

The term“environment”is intended to characterize it as a fully planned and coherent sys-

tem, rather than an incremental accretion of very specific and inflexible tools, as is frequently

the case with other data analysis software. R is very much a vehicle for newly developing

methods of interactive data analysis. It has developed rapidly, and has been extended by a

large collection of packages. However, most programs written in R are essentially ephemeral,

written for a single piece of data analysis.

Many people use R as a statistics system. The R is an environment within which many

classical and modern statistical techniques have been implemented. A few of these are built

into the base R environment, but many are supplied as packages.

5 Proposed Intrusion Detection and User Identification Model for Tor Networks

The proposed system model is shown in Fig. 3. We call this system: Intrusion Detection

System using NN (IDSNN). We used the Back-propagation NN and constructed a Tor server

and a Deep Web browser (client) in our laboratory. Then, the client sends the data browsing

to the Tor server using the Tor network. We used Wireshark Network Analyzer [20] to get

the data and then use the Back-propagation NN to make the approximation.

In this paper, we consider a sinusoidal function for approximation. We train the ANN and

then apply the data received from Wireshark. The system runs until the number of loops is

achieved.

The data of the Tor client and Surface Web client with the Tor server are compared. The

system can detect the intrusion and the bad behavior user by comparing the data at the

client site and server site. If the data are similar, this means that we do not have intrusion

in the system and detects the bad behavior user. Otherwise, if the data are different, it can

be considered that someone attacked the Tor network.
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Fig. 4. Calculation method for the difference between SF and NN.

Table 1. Simulation parameters for intrusion detection.

Parameters Values

Number of hidden layer 1
Number of hidden unit 3,6,9,12,15,18
Learning rate parameter 0.04

Count of loop 10000

6 Friedman Test

The Friedman test [21] is a nonparametric statistical test of multiple group measures. It

can be used to approve the null hypothesis that the multiple group measures have the same

variance to a certain required level of significance. On the other hand, failing to approve

the null hypothesis shows that they have different variance values. We analyze the difference

in performance between server and client considering number of packets using IDSNN and

Friedman test in R. We considered as null hypothesis H0 that there is no difference in the per-

formance between server and client considering number of packets. As alternative hypothesis

we considered H1 that there is difference in the performance of server and client considering

number of packets. The significance level in this testing hypothesis is α = 0.05. We reject H0

for p > α (p-value is the probability of obtaining a test statistic at least as extreme as the one

that was actually observed, assuming that the null hypothesis is true). Further, since there is

a correspondence between server and client considering number of packets using IDSNN, we

used Friedman test.

7 Simulation Results

7.1 Simulation Results of Intrusion Detection in Tor Networks

The calculation method is shown in Fig. 4. We show the simulation results in Fig. 5. The

simulation parameters are shown in Table 1. The traffic values are approximated by the

Sinusoidal Function (SF).

We ran the simulation 10,000 times. In Fig. 5 is shown difference between SF and IDSNN
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(a) 3 hidden units
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(b) 6 hidden units
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(c) 9 hidden units
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(d) 12 hidden units
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(e) 15 hidden units
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(f) 18 hidden units

Fig. 5. Difference between Sin function and Back-propagation NN.

vs. the number of loops. From the results, we can see that 9, 12 and 15 hidden units have

almost the same performance. But for 6 hidden units, the difference between SF and NN is

the smallest.

7.2 Simulation Results of User Identification in Tor Networks

We show the simulation results in Fig. 6. The simulation parameters are shown in Table 2.

We ran the simulation 10,000 times. In Fig. 6 is shown the p-value of Friedman test for
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Table 2. Simulation parameters for user identification.

Parameters Values

Number of hidden layers 1
Number of hidden units 12,15,18
Learning rate parameter 0.04

Number of loops 10000
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Fig. 6. The p-value of Friedman test for number of packets using IDSNN.

IDSNN considering number of packets. The p-value shows the difference between server and

client. The p-values for Tor client are p < 0.05. In this case, we adopt H0. For Surface Web

client, we adopt H1 since p > 0.05. From the results, we see that for all number of hidden

units the system can identify Tor client. But for 18 hidden units, the p-value is the highest.

In Fig. 7, Fig. 8, Fig. 9, we show the initial settings, middle running and final running

results, respectively. As can be seen from the simulation results, the results of Tor server are

almost the same with Tor client, but they are different with Surface Web client.

8 Conclusions

Tor network has become a useful tool for malicious users. With Tor, the users are able to

compromise the non-repudiation principle of computer security. Also, the potentially hackers

may launch attacks such as DDoS or identity theft behind Tor. For this reason, there are

needed new systems and models to detect the intrusion in Tor networks. In this paper,
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(a) Initial Setting (b) Middle Solution (c) Final Solution

Fig. 7. Simulation results of IDSNN considering Tor server.

(a) Initial Setting (b) Middle Solution (c) Final Solution

Fig. 8. Simulation results of IDSNN considering Tor client.

(a) Initial Setting (b) Middle Solution (c) Final Solution

Fig. 9. Simulation results of IDSNN considering Surface Web client.

we presented the application of NNs and Friedman test for intrusion detection and user

identification in Tor networks. We used the Back-propagation NN and constructed a Tor

server and a Deep Web browser. Then, the client sent the data browsing to the Tor server

using the Tor network. We used Wireshark Network Analyzer to get the data and then useed

the Back-propagation NN to make the approximation. The simulation results have shown

that our simulation system has a good approximation and can be used for intrusion detection

and user identification in Tor networks.
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