
Journal of Mobile Multimedia, Vol. 11, No. 1&2 (2015) 075–089
c© Rinton Press

ADAPTIVE REMESHING FOR

EDGE LENGTH INTERVAL CONSTRAINING

JOÃO VITOR DE SÁ HAUCK

Departamento de Ciência da Computação, Universidade Federal de Juiz de Fora

Juiz de Fora, Minas Gerais 36036-900, Brazil

jhauck@ice.ufjf.br

RAMON NOGUEIRA DA SILVA

Departamento de Ciência da Computação, Universidade Federal de Juiz de Fora

Juiz de Fora, Minas Gerais 36036-900, Brazil

ramon.nogueira@ice.ufjf.br

MARCELO BERNARDES VIEIRA

Departamento de Ciência da Computação, Universidade Federal de Juiz de Fora
Juiz de Fora, Minas Gerais 36036-900, Brazil

marcelo.bernardes@ice.ufjf.br

RODRIGO LUIS DE SOUZA DA SILVA

Departamento de Ciência da Computação, Universidade Federal de Juiz de Fora
Juiz de Fora, Minas Gerais 36036-900, Brazil

rodrigoluis@ice.ufjf.br

This paper presents a method for explicitly remesh an arbitrary input surface into a
mesh with all edge lengths within a fixed interval. The process starts with an arbitrary

triangular 2-manifold mesh. The proposed method is iterative and uses stellar operations

to achieve the necessary amount of vertices and triangles. It also applies a technique to
uniformly distribute the vertices of the model over the surface. At earlier stages of the

algorithm, this technique is an approximation of the Laplacian filter. In order to preserve

the geometry of the model, some constraints are added to the filter. At later stages, we
replace the global uniformization strategy with a nonlinear optimizer, that performs

only locally. A projection step is also applied at each iteration, to prevent the geometric

distortions caused by the method. We also apply a post processing step to correct the
final edges, if the standard iterations do not converge. Our method results in a very
regular mesh, with uniform distribution of vertices. The dual trivalent mesh obtained by
this mesh can be useful for several applications. The main contribution of this work is

a new approach for edge length equalization, with explicit constraints definition, higher

computational performance and lower global geometry losses if compared to previous
works.

Keywords: iterative remeshing, edge length equalization, interval constraining

1 Introduction

In the last few years, the support of computational tools has become mandatory for many

applications. As the cost of generating real objects for experimenting elevates, it is essen-

tial to proper simulate this objects in virtual space. On that account, the growing need of

geometric models conducted to the development of many technologies for mesh generation.

75

76 Adaptive Remeshing for Edge Length Interval Constraining

There are, for instance, computer vision algorithms with 3D scanners [1, 2] or direct modeling

softwares [3, 4]. The ways the data are presented by these technologies, however, rarely satisfy

the requirements of any specific application. Therefore, the improvement of the quality of

geometric models has become a primal research area in computer graphics.

There are some literary efforts to define the precise criteria for determining the quality of a

mesh. Bommes et al. [5] enumerate some quality aspects most commonly required. However,

the precise quality criteria usually depends on the requirements of the applications in which

the models will be used. For real time applications, for example, a simplification of the model

is preferable, in order to achieve high performance. In physics and chemistry simulations [6, 7],

some constraints may be necessary to guarantee the fidelity of the results, e.g. constraints on

edge lengths, valid vertices valency, polygon area restrictions, overall distributions of vertices,

etc.

This work is interested in the edge lengths of triangular 2-manifold meshes. Specifically,

our goal is to impose a constraining interval for the lengths. To do so, we iteratively remesh

the model until all the edge lengths satisfy the defined constraints. Since the average of

the edge lengths in a region impact on the amount of the edges and faces found there, the

method applies stellar operations to adjust the amount of edges locally. It also applies,

on the earlier iterations, an approximation of the Laplacian filter to relax the mesh. This

relaxation becomes more local in the later iterations, when the Laplacian is replaced by a

nonlinear optimization. In order to prevent the natural shrink caused by these applications,

among with other geometric losses, we perform a projection over the original surface at each

iteration. Finally, after the execution of the iterations, if there are any long of short edges,

it performs a post processing step that usually eliminates the remaining problems. Although

the process was improved to maintain the original geometry of the model, if compared to

previous works, some local geometric losses may still occur, specially in regions with high

curvature.

Our results indicate that the method generates models which satisfy the input constraining

for most cases. Furthermore, in the final mesh the standard deviation of edge lengths tends

to be low. The resulting mesh can also be used to generate a very regular trivalent mesh, by

computing its dual. This kind of mesh may be greatly useful for physics applications, such as

nano carbon simulations, which firstly motivated this work.

2 Related works

Surfacing remeshing is a process often applied in order to make certain model to meet some

requirement for a specific application. For instance, the work of Liu et al. [8] aims to

achieve a self-supporting surface, i.e., a surface that stands in static equilibrium without

external support. Although a regular triangulation is not the final objective of that work, it

is a necessary step for reaching it. Consequently, the method uses a power diagram [9] for

obtaining a regular triangulation.

Since physics and chemistry simulations usually require more regular models, there are

many works focused on obtaining more regular meshes. N-Symetric fields [10] can be used for

generating highly regular polygonal meshes, although its method is computationally expen-

sive. The work of Bommes et al. [5] applies the method for remeshing an arbitrary triangular

mesh into a high quality quadrangular mesh.

J. Hauck, N. Silva, Vieira, S. Silva 77

This approach is also used by the work of Huang et al. [11], in which the goal is to obtain

a mesh where the angle between two arbitrary edges of a triangle is 60o. Through a set of

feature lines of the model, this method can compute the N-Symmetric fields. This feature

lines can either be defined by the user or automatically estimated. However, that estimation

has a high computational cost.

The work presented in Pampanelli et al. [12] propose a method to obtain a regular trivalent

mesh. This work estimates a regular quadrangular mesh, as proposed by Bommes et al. [5],

then computes the rhomboid mapping of that quadrangular mesh. The resulting model is a

regular trivalent mesh. Although it is not the main goal of that work, a very regular triangular

mesh could be obtained by computing the dual from the resulting trivalent mesh.

Following a global parametrization strategy, Pietroni et al. [13] achieves an almost isomet-

ric mesh. They manage to obtain highly regular triangular meshes, but have the disadvantage

of being computationally expensive, since it requires a set of feature lines of the model to be

computed. Also, they are not explicitly concerned with edge lengths.

The method proposed by Botsch and Kobbelt [14] presents a method based on local

adjustments followed by global relaxations. However, the functionality of this work is only

guaranteed if the desired edge length is close to the average edge length of the original model.

The approach of our work overcomes that limitation, and also demonstrates that the global

relaxations can be replaced by local relaxations at later iterations to achieve better results.

Surazhsky and Gotsman [15] proposed a remeshing method based on area equalization

and angle smoothing. Their method aims a mesh that maximizes the minimum angle of

the triangles. Consequently, their approach build a high regular surface with triangle areas

almost uniform. They also propose a new method based on angles to obtain a smooth surface.

However, this method does not remove elements and thence is not suitable for simplifications.

The first work concerning to the edge lengths is presented in [16], where the goal is to

obtain an average edge length that is close to a user defined value. Although that work

achieve low values of standard deviation, it cannot guarantee that a specific edge length does

not surpass the bounds of a constrained interval.

Following that, the work presented in Hauck et al. [17] succeeds to achieve models with

all the edge lengths constrained to an input interval. Nonetheless, that work presents some

geometric losses because the final step forces all edge lengths into the constrained interval,

sacrificing the geometry. In an effort to preserve more geometric details, our new method

inserts the local relaxation proposed in [17] into the iterations cycle. This allows the other

steps of the algorithm to correct the geometric distortions caused by the local relaxation, and

leads to a better resulting mesh projected over the original surface.

3 Proposed method

This method is an extension of the work presented in [17]. It also aims a mesh without any

long or short edges aj , classified as:

long, if |aj | > emax ,
short, if |aj | < emin

where emin is the shortest edge length allowed and emax is the longest edge length allowed.

The input for this algorithm is a tuple (M, emin, emax, n, k, p, l), whereM is the triangular

mesh, n the maximum number of iterations allowed, k the number of rings used at the

78 Adaptive Remeshing for Edge Length Interval Constraining

Laplacian optimization step, p the number of iterations before the original mesh is replaced

by the current mesh in order to relax next projections and l is a threshold percentage of

long and short edges used for deciding how the method optimizes the vertices distribution

(Laplacian filtering or nonlinear optimization). At the end of each iteration, we save the

resulting mesh if it has a lower amount of long and short edges than the current saved mesh.

The Algorithm 1 is an overview of the proposed method.

M′ = Copy(M)

m = emin+emax
2

while (short + long) > 0 and iter < n do

if p > 0 and (i mod p) = 0 then

M = Copy(M′)

end
StellarOperations(M′)

CorrectValency(M′)

if CalcEdgesPercent() ≤ l then

NonLinearOptimizer(M′, k)
end
else

LowPassFiltering(M′, k)
end
Projection(M, M′)

end
PostProcess(M′)

returnM′

Algorithm 1: UniformRemeshing(M, emin, emax, n, k, p, l)

Detailed information about the CorrectValency and Projection procedures can be found

in [16]. The other steps will be explained ahead.

3.1 Stellar operations

The average value of edge lengths of the model is directly related to the amount of edges.

Therefore, the purpose of the first step of the algorithm is to adjust the amount of vertices,

so that the average edge length becomes near to the average value m of the interval. Thus,

we apply stellar operations on the edges whose lengths are much greater or smaller than m.

However, when the current average edge length of the model is much smaller than m, the

mesh may be radically simplified. This situation could lead to a degeneration of the mesh on

the earlier iterations. In order to prevent it, we calculate intermediate values eimin and eimax

that only allow smooth transformations. These values are defined as:
eimin = MIN(2 ·mi,m)− emax−emin

2 ,
eimax = MIN(2 ·mi,m) + emax−emin

2
where mi is the current average edge length of the model.

The order of appliance of the stellar operations impacts on the results. For the best

convergence, and also to ensure the method stability, we create a priority list of edges, as

presented in [16]. The edges are then processed in the order established by the list.

If the edge length is shorter than eimin, it is collapsed. Otherwise, if the edge length is

longer than eimax, then it is split. This modifies the amount of edges locally, since in an

J. Hauck, N. Silva, Vieira, S. Silva 79

arbitrary mesh some regions need to be refined while others need to be simplified. Each time

an edge is operated, its original vertices and the new vertice created are marked as processed.

If an edge already has both of its vertices processed, it is not operated. It is also not operated

when the edge is neither shorter or longer anymore. This may occur when the position of one

of its vertices was modified by a previous stellar operation.

Originally, both the remaining vertex of the edge collapse operation and the new vertex

of the edge split operation can be placed in an arbitrary position over the operated edge.

Hence, in order to optimize the convergence of our algorithm we compute the position that

minimizes the equation: ∑
Vj

(|Vi − Vj | −m)2, (1)

where Vi is the vertex we want to position and Vj the vertices connected to Vi.

3.2 Low-pass filter

To achieve equalized edge lengths, we have to distribute the vertices uniformly over the

surface. To do so, after the valency correction step, as described in [16], the method proceed

to a technique for optimizing the vertices’ distribution. However, the strategy used for this

optimization varies for distinct stages of the algorithm. For the earlier stages, we make use of

a global optimization strategy, adjusting the distribution all over the mesh at once. For the

later stages, we make use of a local optimization strategy, in witch we optimize only a small

area around an edge at each time. The decision criterion for which strategy will be applied is

the current percentage of long and short edges of the model. While that percentage is greater

than the input value l, the algorithm opts for the global strategy. When this condition is no

longer true, the method can proceed to the local strategy.

The global optimization method is a low-pass filtering over the surface. In this work, we

use a modified version of the Laplacian filter.

The classic Laplacian filter is defined as:

∇2f =
∂2f

∂2x1
+ ...+

∂2f

∂2xn
. (2)

It is a measurement of the dispersion in Rn of a function f . Taubin et al. [18] propose a

discrete approach to the Laplacian operator. The approach is:

L(Vi) =
∑
Vj

wij(Vi − Vj), (3)

with Vj in the neighborhood of Vi. In the literature, many weights were proposed for wij .

There are schemes based on cotangent [19] and neighborhood [16].

The discrete Laplacian is largely used due to its simplicity. Basically, its appliance moves

each vertex to the average of its neighbors. This procedure tends to equalize edge lengths,

minimizing the standard deviation. The Laplacian must be zero to achieve these properties

and the system to be solved is given by:∑
vj

wij(vi − vj) = 0. (4)

80 Adaptive Remeshing for Edge Length Interval Constraining

The technique employed in this work does not solve the system. Instead, we run an itera-

tive approximation that gives us almost the same results, significantly reducing the memory

cost.

In the classical Laplacian filter, we add some additional constraints to reduce the geometry

loss:

Ni ·Di = 0, ∀Di ∈M′,
|Di| = 0 ∀Di ∈ B,

where Ni is the normal of the current mesh in the vertex Vi and Di is the unknown displace-

ment of the vertex Vi. These constraints were imposed in the approximation as mandatory.

foreach Vi ∈M′ do

kStar=getKStar (Vi,k)
fat=0
foreach Vj ∈ kStar do

V ′
i =V ′

i +
Vj

star

fat=fat+ 1
star

end

V ′
i =

V ′
i

fat

Di=V ′
i -Vi

Di=Di -projection (Di,Ni)
end
foreach Vi ∈M′ do

if Vi 6∈ B then

Vi=Vi+Di

end

end

Algorithm 2: LowPassFiltering(M′, k)

The iterative Algorithm 2 approximates the constrained Laplacian filtering described

above. It calculates the new vertex position based on the k-neighborhood as proposed in

[16]. The first step is to compute for each vertex the new position without the application of

the new constraints. This position is defined by the center of mass of all neighbors vertices

weighted by their ring number in such a way that distant vertices contribute less than near

vertices.

The second step is to impose the constraint Ni ·Di = 0 by removing the vector projection

of Di in Ni. When all displacements are computed, the vertices Vi are updated, except those

on the borders.

3.3 Nonlinear Optimizer

At a given point of the execution of the algorithm, the improving of the quality of the mesh

through the Laplacian operator is greatly reduced. At some regions, specially the ones with

higher curvatures, the excess of refinement cannot be compensated by the global optimization.

In those circumstances, we need to apply a more local optimization strategy, which firstly

J. Hauck, N. Silva, Vieira, S. Silva 81

corrects the most troubling edges, and then cascades the optimization to its neighbors. To

do so, Hauck et al. [17] proposes an error measurement for a region around an edge:

∑
Vi

∑
Vj

(|Vi − Vj |2 −m2)2, (5)

where Vi are the vertices in the forth star of the edge and Vj the vertices in the first star of

Vi.

The minimization of Equation 5 approximates the edge lengths to m. Nonetheless, since

the movement of the vertices assume three degrees of freedom, it may greatly distort the

local geometry. Thence, we restrict those movements to the tangent plane. For each vertex

Vi, we obtain an orthonormal base with its normal vector. This local base is defined as

< Ni, Ti1, Ti2 >, where Ni is the normal direction, and Ti1, Ti2 are the directions over the

tangent plane. That base is used to impose a restriction to the Equation 5, making the final

error measurement to minimize as:∑
Vi

∑
Vj

(|Vi + αi · Ti1 + βi · Ti2 − (Vj + αj · Tj1 + βj · Tj2)|2 −m2)2, (6)

where αi and βi are the variables in the function and represent the displacement over the

tangent plane. Both αi and βi are set zero when the index i does not exist.

In this work, we use a conjugate gradient method, as seen in [20], for minimizing Equation

6. Due to performance and numerical issues, we do not perform the minimization for all the

vertices in the model at once. Instead, we process the model per edge.

Similarly to the appliance of the stellar operations, the results of this step can vary in

accord to the order in which the regions are operated. Considering the computational cost,

we wish to minimize the geometric losses with the fewest amount of operations. Therefore,

we prioritize to apply the transformations firstly in the regions where it will impact in the

greatest amount of long or short edges. To do so, we propose the creation of a new priority

list of edges. For this list, the priority Pj assigned to each edge aj is defined as Pj = N l
j +Ns

j ,

where N l
j is the amount of long edges in the neighborhood of aj , and Ns

j is the amount of

short edges in the neighborhood of aj . The neighborhood is considered to be all the edges

until the forth star of aj . The list Lo
p is the set {a1, ..., at} ⊂ A ⊂M, with P1 ≥ P2 ≥ ... ≥ Pt.

Following that, we perform the minimization of Equation 6 for each edge on the list, in order.

For the work [17], this nonlinear optimizer was presented as a post-processing step. Further

experiments evinced that this operation would give better results as a replacement to the

Laplacian filter at the later iterations. It is possible to realize that this occurs because the

Laplacian loses its effectiveness as the troubling areas become more local. However, the local

optimization alone could not solve this concentrated problem at once. Allowing it to be part

of the iterations cycle increases its efficiency by complementing the local uniformization with

the other operations. This has allowed us to reduce the amount of long and short edges

even further without abdicating the projection, which generates better results, with yet lower

geometric deformations. In most cases, the resulting mesh is now fully projected over the

original surface.

82 Adaptive Remeshing for Edge Length Interval Constraining

3.4 Post processing

If the limit of n iterations is reached, for difficult models it is possible that the best resulting

mesh still contains some long or short edges. In the occurrence of such cases, we perform the

minimization of Equation 5 without constraints, allowing three degrees of freedom to each

vertex. Although this resort solved the problem for all experiments performed, it can present

significant geometry losses.

4 Experimental results

In this section we discuss the generated results of the proposed method. The algorithm was

implemented using C++ programming language and compiled using GCC 4.6.3. All tests

were performed in a Intel Xeon(R) CPU E31220 @ 3.10GHz x 4 computer with 8 GBs of

RAM. The graphics card was an AMD Radeon HD 5700 series.

1.5

1.8

2.1

0 10 20 30 40 50
Iterations

L
e
n
g
th

 m m − s m + s

0

1

2

3

4

0 10 20 30 40 50
Iterations

L
o
g
(n

u
m

b
e
r

o
f
e
d
g
e
s
)

 Short Long All

Fig. 1. Progression of Egea model through time

First we analyze the progression of the method over the time. Figure 1 exhibits the

graphics for the progression of the Egea model, and Figure 2 shows the graphics for Bunny

model. The graphics on the left illustrate the average edge length of the model through the

iterations, and the deviation around it, where m is the average length and s is the standard

deviation. The graphics on the right show the amount of long and short edges over the time.

For visualization purposes, the y-axis is presented in a logarithmic scale with base ten. In

both examples, we ran the method until there was no long or short edges.

The first thing noticeable is that the average edge length quickly converges to a value very

close to the ideal average edge length. Furthermore, the amount of long and short edges for

both models is reduced as the number of iterations increases. We can easily perceive an fast

reduction after the point where the nonlinear optimizer starts. The final result for Egea mesh

is depicted on Figure 4, and the Figure 3 illustrates the distribution of edge lengths for the

final result.

We also depict the final results for the Bunny model in the Figure 5. This picture illustrates

J. Hauck, N. Silva, Vieira, S. Silva 83

1.25

1.50

1.75

2.00

0 20 40 60
Iterations

L
e
n
g
th

 m m − s m + s

0

1

2

3

4

0 20 40 60
Iterations

L
o
g
(n

u
m

b
e
r

o
f
e
d
g
e
s
)

 Short Long All

Fig. 2. Progression of Bunny model through time

0

500

1000

1500

2000

1.2 1.4 1.6 1.8
Lengths

A
m

o
u

n
t

o
f

e
d

g
e

s

Fig. 3. Edge lengths for the processed Egea model, with emin = 1.2 and emax = 1.8.

the improvement of the method if compared to the one presented in [17]. The geometric

distortions at the Bunny ear are greatly reduced in this new version. In fact, we achieve a

resulting mesh with all the vertices projected over the original surface.

The experimental data from Egea model can be found in Table 1, where x is the average

edge length, S the standard deviation, It. is the number of iteration needed to put all edges

lengths within the given interval, and Reg. Vert. is the percentage of regular vertices with

valency 6. The method performs better with k = 2, as the version presented in [17], so we

ran all tests with this value. These experiments reveals the influence of the new parameter

l over the method’s convergence and the quality of the resulting model. For lower values of

84 Adaptive Remeshing for Edge Length Interval Constraining

Fig. 4. Egea comparison between original mesh and processed mesh with parameters

(1.2,1.8,100,2,0,2)

l the method takes more time before executing the nonlinear optimization. This leads to a

slower convergence rate, even though the final mesh quality is usually better, presenting lower

standard deviation and higher percentage of regular vertices. As we increase the value of l,

the convergence tends to accelerate. However, there is a limit to this effect. If we increase l

too much, the method’s convergence starts to decrease. This is an expected result, since the

local optimization is only effective for small regions. If there are still huge regions of long or

short edges, the effectiveness of the local optimizer is greatly impaired.

The effect of l over the quality is much more direct: as l increases, the quality decreases.

Again, this is an expected result. The nonlinear optimizer corrects small regions by ignoring

the edges around it. This means that, unlike the global optimization, it does not aims a result

that improves the quality of the mesh as a whole. As consequence, the quality of the mesh

decreases. Yet, if we decreases l so much that the nonlinear optimization is never executed,

the method will not converge and the post processing step will be applied, causing several

geometric losses.

We can also notice that the parameter p is less effective than it is in [17]. However, it

can present a greater role for the iterations performed with the nonlinear optimizer. As it

smooths the original surface, it may reduce the probability of the method reaching a local

minimum, like the one we see for the parameters (1.2,1.8,100,2,0,5). However, it is important

J. Hauck, N. Silva, Vieira, S. Silva 85

Fig. 5. Bunny Models. The first figure is the original mesh, the second one is the resulting mesh

found in [17] and the last picture is our new result.

Fig. 6. Final result for rockerarm model with variant intervals for edge lengths. Each picture

illustrates a specific length constraining.

to note that it can also slightly modify the geometry, as the projections are performed in a

mesh gradually more distinct from the original, so the geometry distortions caused by each

iteration becomes permanent.

Figure 6 presents the surface rockerarm with variant values for emin and emax. The

results are shown from the state before the post processing step. The original surface is fairly

86 Adaptive Remeshing for Edge Length Interval Constraining

Table 1. Egea experiments with different k and p values

(emin,emax,n,k,p,l) x S It. Reg. Vert. (%) Time(s)
Model 2.25 0.702222 - 76.87 -
(1.2,1.8,100,2,0,2) 1.548329 0.109813 49 88.343476 165.046543
(1.2,1.8,100,2,0,5) 1.546942 0.115387 100 86.152724 399.453587
(1.2,1.8,100,2,0,8) 1.541189 0.131334 28 85.020750 204.223015
(1.2,1.8,100,2,0,10) 1.534562 0.137918 21 83.023665 193.354571

(1.2,1.8,100,2,10,2) 1.546141 0.110332 45 88.394597 184.454901
(1.2,1.8,100,2,10,5) 1.545709 0.122208 29 86.442711 174.859291
(1.2,1.8,100,2,10,8) 1.539932 0.134256 24 84.249951 194.527297
(1.2,1.8,100,2,10,10) 1.540058 0.140096 23 83.076721 220.757845

(1.2,1.8,100,2,25,2) 1.548902 0.109361 41 88.267669 157.827723
(1.2,1.8,100,2,25,5) 1.543660 0.120304 30 86.430659 154.612424
(1.2,1.8,100,2,25,8) 1.541183 0.131332 28 85.020750 207.849420
(1.2,1.8,100,2,25,10) 1.534562 0.137918 21 83.023665 192.297335

(1.2,1.8,100,2,50,2) 1.548329 0.109813 49 88.343476 161.671505
(1.2,1.8,100,2,50,5) 1.543919 0.121043 51 86.152724 201.896734
(1.2,1.8,100,2,50,8) 1.541189 0.131334 28 85.020750 204.984423
(1.2,1.8,100,2,50,10) 1.534562 0.137918 21 83.023665 193.273994

preserved when the method aims for a refined version of the model. Nonetheless, when the

process seeks to perform a strong simplification, details of the original surface are naturally

lost.

4.1 Applications

Regular meshes are very useful for computational simulations. For instance, in the simulations

of nano-carbon structures the atoms and the bounds between them may be represented as a

trivalent mesh. This kind of mesh can be obtained by triangular meshes. The dual mesh of a

triangular mesh is a trivalent mesh. The ideal mesh for this kind of application is a hexagonal

mesh. One may observe that if the primal mesh is not regular, there will be non hexagonal

polygons on the dual. Thence, the most regular the primal mesh is, the best is its quality for

computational simulations.

For this work, we present results for the dual mesh of the rockerarm model resulted from

the appliance of our method. To analyze the quality of this model, we calculate the Lennard-

Jones potential with eps = 10.1 and σ = 0.9. As depicted in Figure 7 the processed model does

not have great energy variations. We can conclude that the resulting structure is much more

stable than the original one for simulations. This result is very similar to the one obtained

in the work presented in [17]. Nonetheless, the new result has a better preservation of the

original rockerarm geometry, as the new resulting mesh is fully projected over the original

surface.

Another application is the processing of a model so it becomes more stable for other

numerical methods, e.g. finite elements. Due to the great regularity of the output mesh,

several numerical issues are avoided.

5 Conclusion

This paper presents a method to remesh an arbitrary triangular 2-manifold mesh with all

the edge lengths within an user defined interval. The main contribution of this work is a

J. Hauck, N. Silva, Vieira, S. Silva 87

Fig. 7. The first picture is the original rockerarm model with potential from −33.4 to 1.21 and
the second one is the processed model with potential from −17.59 to −3.08.

method that preserves more of the original geometry than the previous works. In addition,

we achieve a method that has a well defined stop criterion. Consequently, we only have to

limit the number of iterations n in order to prevent the method looping for the cases it does

not converge. Moreover, the computational performance was also improved. Our tests showed

that the new approach is faster than the previous work mainly because it converges in less

iterations.

Our results also indicate that the method achieves the goal for a wide range of lengths,

even without the need of proceeding to the post processing step. Furthermore, the resulting

mesh fairly represent the original surface in most of cases, and can be useful for several

applications.

The new parameter l greatly impacts on the results. For a lower l, the algorithm runs the

global Laplacian filter over the mesh for a longer time, which leads to higher quality results,

at the cost of more iterations. On the other hand, if its value is higher the method requires

less iterations to converge, but the quality of the resulting mesh is reduced. If l is too low, the

percentage is never reached by the global optimization and the algorithm does not converge.

If l is too high, the method may not converge too because the nonlinear optimizer requires a

good overall mesh quality to perform.

With regard to the parameter p, when its value is low, but not zero, the geometry is more

likely to be softened, specially if many iterations are performed. Low values of p are useful

for assuring the convergence, if the application allows the loss of some details of the original

geometry.

For the minimum and maximum values allowed for edge lengths, as the values emin and

emax are greater and the difference emin - emax is smaller, the final geometric losses are greater

and the convergence of the method is slower.

One major problem faced by the method is to maintain the geometry when the model is

being simplified. As a future work, a new approach that treats in a different way models that

88 Adaptive Remeshing for Edge Length Interval Constraining

are being simplified may be proposed.

Acknowledgements

Authors thank to FAPEMIG, CAPES and UFJF for financial support.

References

1. C. Rocchini, P. Cignoni, C. Montani, P. Pingi, and R. Scopigno. A low cost 3d scanner based on
structured light. Computer Graphics Forum, 20(3):299–308, 2001.

2. Marcelo Bernardes Vieira, Luiz Velho, Asla Sa, and Paulo Cezar Carvalho. A camera-projector
system for real-time 3d video. In Computer Vision and Pattern Recognition-Workshops, 2005.
CVPR Workshops. IEEE Computer Society Conference on, pages 96–96. IEEE, 2005.

3. Renan Dembogurski, Bruno Dembogurski, RodrigoLuis Souza da Silva, and MarceloBernardes
Vieira. Interactive mesh generation with local deformations in multiresolution. In Beniamino
Murgante, Sanjay Misra, Maurizio Carlini, CarmeloM. Torre, Hong-Quang Nguyen, David Taniar,
BernadyO. Apduhan, and Osvaldo Gervasi, editors, Computational Science and Its Applications –
ICCSA 2013, volume 7971 of Lecture Notes in Computer Science, pages 646–661. Springer Berlin
Heidelberg, 2013.

4. Joachim Schöberl. Netgen an advancing front 2d/3d-mesh generator based on abstract rules.
Computing and Visualization in Science, 1(1):41–52, 1997.

5. David Bommes, Henrik Zimmer, and Leif Kobbelt. Mixed-integer quadrangulation. ACM Trans.
Graph., 28(3):77:1–77:10, July 2009.

6. Sumio Iijima et al. Helical microtubules of graphitic carbon. nature, 354(6348):56–58, 1991.
7. D. C. Rapaport. The Art of Molecular Dynamics Simulation. Cambridge University Press, New

York, NY, USA, 1996.
8. Yang Liu, Hao Pan, John Snyder, Wenping Wang, and Baining Guo. Computing self-supporting

surfaces by regular triangulation. ACM Trans. Graph., 32(4):92:1–92:10, July 2013.
9. F Aurenhammer. Power diagrams: properties, algorithms and applications. SIAM J. Comput.,

16(1):78–96, February 1987.
10. Nicolas Ray, Bruno Vallet, Wan-Chiu Li, and Bruno Lévy. N-symmetry direction field design. In

ACM Transactions on Graphics, 2008. Presented at SIGGRAPH.
11. Jin Huang, MuYang Zhang, WenJie Pei, Wei Hua, and HuJun Bao. Controllable highly regular

triangulation. Science China Information Sciences, 54(6):1172–1183, 2011.
12. Patŕıcia Pereira Pampanelli, JP Peanha, Alessandra Matos Campos, Marcelo Bernardes Vieira,

Marcelo Lobosco, and Sócrates de Oliveira Dantas. Rectangular hexagonal mesh generation for
parametric modeling. In Computer Graphics and Image Processing (SIBGRAPI), 2009 XXII
Brazilian Symposium on, pages 120–125. IEEE, 2009.

13. Nico Pietroni, Marco Tarini, and Paolo Cignoni. Almost isometric mesh parameterization through
abstract domains. Visualization and Computer Graphics, IEEE Transactions on, 16(4):621–635,
2010.

14. Mario Botsch and Leif Kobbelt. A remeshing approach to multiresolution modeling. In Proceedings
of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing, pages 185–192.
ACM, 2004.

15. Vitaly Surazhsky and Craig Gotsman. High quality compatible triangulations. Engineering with
Computers, 20(2):147–156, 2004.

16. João Paulo Peçanha Navarro de Oliveira. Iterative method for edge length equalization. In
International Conference on Computational Science, pages 481–490, Barcelona,Spain, 2013.

17. João Vitor Hauck, Ramon Nogueira da Silva, Marcelo Bernardes Vieira, and Rodrigo Luis de Souza
da Silva. Iterative remeshing for edge length interval constraining. In Computational Science and
Its Applications–ICCSA 2014, pages 300–312. Springer, 2014.

18. Gabriel Taubin. A signal processing approach to fair surface design. In Proceedings of the 22nd

J. Hauck, N. Silva, Vieira, S. Silva 89

annual conference on Computer graphics and interactive techniques, SIGGRAPH ’95, pages 351–
358, New York, NY, USA, 1995. ACM.

19. Pierre Alliez, Mark Meyer, and Mathieu Desbrun. Interactive geometry remeshing. ACM Trans.
Graph., 21(3):347–354, July 2002.

20. William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical
Recipes in C (2Nd Ed.): The Art of Scientific Computing. Cambridge University Press, New York,
NY, USA, 1992.

