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The visible image-based approach has long been considered the most powerful approach to facial
emotion estimation. However it is illumination dependency. Under uncontrolled operating conditions,
estimation accuracy degrades significantly. In this paper, we focus on integrating visible images with
thermal image sequences for facial emotion estimation. First, to address limitations of thermal in-
frared (IR) images, such as being opaque to eyeglasses, we apply thermal Regions of Interest (t-ROIs)
to sequences of thermal images. Then, wavelet transform is applied to visible images. Second, fea-
tures are selected and fused from visible features and thermal features. Third, fusion decision using
conventional methods, Principal Component Analysis (PCA) and Eigen-space Method based on class-
features (EMC), and our proposed methods, thermal Principal Component Analysis (t-PCA) and norm
Eigen-space Method based on class-features (n-EMC), is applied. Applying our suggested methods,
experiments on the Kotani Thermal Facial Emotion (KTFE) database show significant improvement,
proving its effectiveness.

Keywords: facial emotions, thermal images, emotion estimation, feature fusion, decision fusion, ther-
mal image sequences, t-PCA, n-EMC, KTFE database.

1 Introduction

The detection and estimation of human emotions is a challenging task. In the last decade, automated
estimation of human emotions has attracted the interest of many researchers, because such systems
will have numerous applications in security, medicine, and especially human-computer interaction.
Many previous works [1], [2], [3] proposed have been inclined towards developing facial expression
estimation. Nevertheless, there is a lack of accurate and robust facial expression estimation methods
to be deployed in uncontrolled environments. When the lighting is dim or when it does not uniformly
illuminate the face, the accuracy decreases considerably. Moreover, human emotions estimation based
on only the visible spectrum has proved to be difficult in cases where there are emotion changes
that expressions do not show. Using thermal infrared (IR) imagery, which is not sensitive to light
conditions, is a new and innovative way to fill the gap in the human emotions estimation field. Besides,
human emotions could be manifested by changing temperature of face skin which is obtained by an
IR camera. Consequently, thermal infrared imagery gives us more information to help us robustly
estimate human emotions. Although there are many significant advantages when we use IR imagery,
it has several drawbacks. Firstly, thermal data are subjected to change together with body temperature
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caused by variable ambient temperatures. Secondly, presence of eyeglasses may result in loss of useful
information around the eyes. Glass is opaque to IR, and object made of glass act as temperature screen,
completely occluding the parts located behind them. Hence, the sensitivity of IR imagery is decreased
by facial occlusions. Thirdly, there are some facial regions not receptive to the emotion changes. To
eliminate the effects of these challenging problems above, we propose fusion of visible images and
sequences of thermal images. To estimate seven emotions, we use the fusion of conventional methods,
PCA and EMC, and our proposed methods, t-PCA and n-EMC, over obtained the fusion features.

2 Related work

In the recent years, a number of studies have demonstrated that thermal infrared imagery offers a
promising alternative to visible imagery in facial emotion estimation problems by better handling
the visible illumination changes. Jarlier et al. [4] extracted the features as representative temper-
ature maps of nine action units (AUs) and used K-nearest neighbor to classify seven expressions.
The database for testing has four persons and the accuracy rate is 56.4%. Khan et al. [5] suggested
using Facial Thermal Feature Points (FTFPs), which are defined as facial points that undergo sig-
nificant thermal changes in presenting an expression, and used Linear Discriminant Analysis (LDA)
to classify intentional facial expressions based on Thermal Intensity Values (TIVs) recorded at the
Facial Thermal Feature Points (FTFPs). The database has sixteen persons with five expressions and
the accuracy rate ranges from 66.3% to 83.8%. Trujillo et al. [6] proposed using a local and global
automatic feature localization procedure to perform facial expression in thermal images. They used
PCA to reduce the dimension and interest point clustering to estimate facial feature localization and
Support Vector Machine (SVM) to classify three expressions. B.Hernández et al. [7] used SVM to
classify the expressions “surprise”, “happy”, “neutral” from two inputs. The first input consists of
selections of a set of suitable regions where the feature extraction is performed, second input is the
Gray Level Co-occurrence Matrix used to compute region descriptors of the IR images. Nhan et al.
[8] extracted time, frequency and time-frequency features from thermal infrared data to classify the
natural responses in terms of subject-indicated levels of arousal and valence stimulated by the Inter-
national Affective Picture System. Yoshitomi et al. [9] used two dimensional detection of temperature
distribution on the face using infrared rays. Based on studies in the field of psychology, several blocks
on the face are chosen for measuring the local temperature difference. With Back Propagation Neutral
Network, the facial expression is recognized. The recognition accuracy reaches 90% with “neutral”,
“happy”, “surprising” and “sad” expressions. However, the testing database is obtained from only
one female frontal view. Yoshimomi generated feature vectors by using a two-dimensional Discrete
Cosine Transformation (2D-DCT) to transform the grayscale values of each block in the facial area
of an image into their frequency components, and used them to recognize five expressions, including
“angry”, “happy”, “neutral”, “sad”, and “surprise”. The mean expression accuracy is 80% with four
test subjects [10]. Koda et al. used the idea from [10] and added a proposed method for efficiently up-
dating of training data, by only updating the training data with “happy” and “neutral” facial expression
after an interval [11]. The expression accuracy increased from 80% to 87% with this new approach.
All these studies with thermal infrared imagery have shown that the facial temperature changing is
useful for estimating the human emotions.

Recently, a little attention has been paid to facial emotion estimation by using fusion information
from visible images and thermal information. Wang et al. [12] proposed both decision-level and
feature-level fusion methods using visible and IR imagery. In feature-level, they used tools for the
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Active Appearance Model (AAM) to extract features and extracted three features of head motion
for visible feature and calculated several statistical parameters including mean, standard deviation,
minimum and maximum as IR features. To select the feature, they used F-test statistic. They also
used Bayesians networks (BNs) and SVMs to obtain the feature fusion. In decision-level, BNs and
SVMs are used to classify three emotions, happiness, fear and disgust. The results show that their
methods improved about 1.35% accuracy compare with only using visible features. Yoshitomi et
al. [13] proposed decision-level fusion of voices, visual and IR imagery to recognize the affective
states. DCT is used to extract the visible and IR features, then two neutral networks are trained
for obtained visible and IR features, respectively. For voice recognition, Hidden Markov Models
(HMMs) are used. To decide the results, simple weighted voting is used. Following the related work,
there are a few researches using fusion of visible and thermal imagery or these approaches that use the
extracted features from a single infrared thermal image may lose some useful information which could
be contained in the sequences. Therefore, we consider two methods of facial emotion estimation by
fusing visible images and sequence of thermal imagery at decision-level and feature-level respectively.

Fig. 1. t-ROIs.

3 Methods

In this section, we propose a feature fusion method to integrate visible images and sequence of thermal
images by delicate selection of representative features (i.e. t-ROI) in Section 3.1, two classification
methods (t-PCA and n-EMC) and a decision-level fusion method which automatically explores the
best fusion weights of features in Section 3.2.

3.1 Feature-level fusion

Before selecting features, we perform some preprocessings such as face normalization, noise deduc-
tion.

First, with sequences of thermal images, we find the regions of interest based on t-ROIs.
In our definition, interest regions are regions in which temperature increases or decreases significantly
when human emotions change. We use the two regions which are the hottest and coldest regions of
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Fig. 2. Wavelet decomposition at level 1 and 2.

Fig. 3. Feature fusion of visible images and sequences of thermal images.

the face, except the eyeglasses, usually the forehead, eyeholes, and cheek-bone regions, as our interest
regions. Before finding the t-ROIs, to avoid any ambient temperature change from frame to frame, we
update the temperature of each point of each frame based on the difference between mean of ambient
temperature and mean of the first m frame ambient temperature.
Let h be a map from face (Fa ⊂ R2) to temperature (T ⊂ R) space

h : Fa→ T

(i, j) 7→ h(i, j)

We obtain the t-ROIs by using the following equations:

∆TFa = TFaMax − TFaMin; δTFa = ∆TFa/5

LFak,idx = {(i, j) ∈ Fa|TFaMin + δTFa ∗ (idx− 1) ≤ h(i, j) < TFaMax − δTFa ∗ (5− idx)} (1)

where TFaMax, T
Fa
Min are maximum and minimum of temperature of each human face at frame k,

respectively; idx ∈ {2, 5}.
After obtaining the t-ROIs for each frame, we find the dominant levels of frames. A frame a is

more dominant than frame b if only if temperature change of all t-ROIs between frame a and frame
a-1 is bigger than temperature change of all t-ROIs between frame b and frame b-1. Based on the
obtained dominant level of each frame, we can automatically put the weight for each frame.

Second, with visible images, to eliminate of effects of noise and to omit unnecessary details, we
use multiresolution analysis with Antonini filter bank. After two level of analysis with 7/9 Antonini
filter bank, we keep coefficents of LL part wavelet transform [14]. Figure 2 shows wavelet decompo-
sition at level 1 and 2 over our visible data.
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Fig. 4. A example procedure for fusion of visible images and sequences of thermal images.

To select the feature between visible feature and thermal feature, we perform feature-level fusion
of visible and thermal image by using t-ROIs and PCA.
Step 1. Find t-ROIs over sequence of thermal images.
Step 2. Apply Wavelet transform over visible facial images and keep LL.
Step 3. Apply PCA over accumulate the weighted discriminant t-ROI.
Step 4. Build matrix from feature vectors obtained from step 2 and 3.
Step 5. Using PCA, EMC, PCA-EMC, t-PCA and n-EMC to classify emotions.

Figure 4 shows a example procedure for fusion of visible images and sequences of thermal images.

3.2 Decision-level fusion

To estimate human emotions, we use a decision fusion method of three conventional methods (PCA,
EMC and PCA-EMC) and our proposed methods (thermal-Principal Component Analysis (t-PCA)
and norm-Eigenspace method based on class feature (n-EMC)).

With PCA, the aim is to build a face space, including the basis vectors called principal components,
which better describes the face images [15]. The difference between PCA and EMC is that PCA
finds the eigenvector to maximize the total variance of the projection to line, while EMC is obtained
eigenvector to maximize the difference between the within-class and between-class variance [16]. The
Figure 5 shows the advantage of EMC over PCA.

Figure 6 shows the procedure of estimating human emotions using PCA. Figure 7 shows the
procedure of estimating human emotions using EMC.

To analyze the human emotion using thermal infrared images, we propose two methods, thermal-
Principal Component Analysis (t-PCA) and norm-Eigenspace method based on class feature (n-EMC).
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Fig. 5. Examples of a eigenvector of PCA and EMC [17].

Fig. 6. Estimation of emotion using PCA.

Fig. 7. Estimation of emotion using EMC.
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To illustrate the feasibility of using eigen-space to fulfill facial emotion estimation task, ther-
mal PCA (t-PCA) is modified from the PCA reconstruction method and evaluated over thermal data
[15]. With PCA, the aim is to build a face space, including the basis vectors called principal compo-
nents, which better describe the face images. PCA has several advantages over other face recognition
schemes in its speed and simplicity [15]. We modified PCA to estimate facial emotion from thermal
data.

Let F be a set of classes to be analyzed. Here, F is a set of all emotion classes. Assume that Mf
m

thermal frames of training data are given as the facial temperature pattern for each class f ∈ F where
F = {anger, disgust, fear, happiness, neutral, sadness, surprise}. Let Γfi be the i − th facial
temperature pattern where i = 1,Mf ; the dimension of Γfi , n ×m , is equal to the number of pixels
in a thermal frame, and each element of Γfi indicates the temperature of each pixel.

Compute the mean of training data Ψf = 1
Mf

∑Mf

i=1 Γfi and let the normalized vector be Φfi =

Γfi − Ψf . We seek a set of M orthonormal vectors, ufk , which best describes the distribution of the
training data. The kth vector, ufk is chosen by

λfk =
1

Mf

Mf∑
i=1

((ufk)τΦfi )2. (2)

is a maximum, subject to (ufl )τufk =

{
1, if l = k.

0, if otherwise.

The eigenvectors and eigenvalues are the vector ufk and scalar λfk of covariance matrix Cf =
1
Mf

∑Mf

i=1(Φfi (Φfi )τ = Af (Af )τ where Af = [Φf1 ,Φ
f
2 , ...,Φ

f
Mf

]

(2)⇒ λfk = 1
Mf

∑Mf

i=1((ufk)τΦfi )((ufk)τΦfi )τ )

⇔ λfk = (ufk)τ 1
Mf

∑Mf

i=1(Φfi )((Φfi )τ ((ufk)τ )τ )

⇔ λfk = (ufk)τ ( 1
Mf

∑Mf

i=1(Φfi (Φfi )τ )ufk

⇔ λfk(ufk)τ = (ufk)τ ( 1
Mf

∑Mf

i=1(Φfi (Φfi )τ )ufk(ufk)τ

⇔ λfk(ufk)τ = (ufk)τ ( 1
Mf

∑Mf

i=1(Φfi (Φfi )τ )ufk(ufk)τ

⇔ λfk(ufk)τ = (ufk)τCf

⇔ (λfk(ufk)τ )τ = ((ufk)τCf )τ

⇔ λfk(ufk) = (Cf )τ ((ufk)τ )τ ⇔ λfk(ufk) = (Cf )τufk
⇔ λfk(ufk) = (Af (Af )τ )τufk ⇔ λfk(ufk) = Af (Af )τufk

⇔ λfk(ufk) = Cfufk (3)

The size of covariance matrix Cf , nm × nm, is too large to determine n ×m eigenvectors and
eigenvalues. Turk et al. [18] suggested a computationally feasible method to find these eigenvectors.
Let a matrix Hf = (Af )τAf , then size of Hf is size M × M � nm × nm; let νfi denote the
eigenvectors of Hf .

We have (Af )τAfνfi = µfi ν
f
i ⇔ Af (Af )τAfνfi = Afµfi ν

f
i ⇔ Af (Af )τAfνfi = Afµfi ν

f
i

⇔ CfAfνfi = µfi A
fνfi (4)

From Equation(4), Afνfi is the eigenvector of Cf = Af (Af )τ [18]. Therefore we can obtain ρf

eigenvector of Cf by calculating the ρf (ρf � nm) eigenvectors (νfi ) of matrix Hf and multiplying
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Fig. 8. Estimation of emotion using decision fusion.

Af to νfi . After obtaining eigenfaces from the training data of each emotion, we map facial thermal
training data to feature spaces by ωfi (train) = (ufi )τ (Γf −Ψf ), i = 1, ρf .

We use the idea that if the input frame is much similar to some emotion training set, the recon-
structed data will have less distortion than the data reconstructed from other eigenvectors of training
emotions [15]. For each testing facial thermal frame Γtest, firstly we project it onto the eigenfaces of
each class.

ωftest = (Uf )τ (Γtest −Ψf ), where Uf = (ufi ), i = 1, ρf .
Secondly, for each emotion, we find the feature which is most similar to the testing projected vector
by calculate the angle between vector of training feature space and testing projected vector.

βf = argmax
i

ωftestω
f
i (train)

‖ωftest‖‖ω
f
i (train)‖

; i = 1, ρf . (5)

Thirdly, we find reconstruction of the testing data by the obtained feature in each class.
Γfreconst = Ufωf

βf + Ψf

Finally, we choose an emotion in which the reconstructed testing data and the original data are the
most similar.

γ = argmax
f

ΓtestΓ
f
reconst

‖Γtest‖‖Γfreconst‖
; f = 1, 7 (6)

The second valuation to estimate human emotion uses n-EMC over thermal data. n-EMC is mod-
ified from EMC [19]. The difference between EMC and n-EMC is formulation to calculate the differ-
ence between the within-class and between-class variance.

In mathematics, with n-EMC, instead of finding the eigenvectors, ufk and eigenvalues λfk of co-
variance matrix Cf = 1

Mf

∑Mf

i=1(Φfi (Φfi )τ = Af (Af )τ where Af = [Φf1 ,Φ
f
2 , ...,Φ

f
Mf

], we find

eigenvectors, ufk and eigenvalues λfk of matrix S = ‖SB − SW ‖2 where

M =
∑
f∈F

Mf (7)

Ψf =
1

Mf

Mf∑
i=1

Γfi ; Ψ =
1

M

∑
f∈F

Mf∑
i=1

Γfi (8)
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SB =
1

M

∑
f∈F

Mf‖Ψf −Ψ‖2‖Ψf −Ψ‖τ2 . (9)

SW =
1

M

∑
f∈F

Mf∑
i=1

‖Γfi −Ψf‖2‖Γfi −Ψf‖τ2 . (10)

For each testing facial thermal frame Γtest, firstly we project it onto the eigenfaces of each class.
ωftest = (Uf )τ (Γtest −Ψf ), where Uf = (ufi ), i = 1, ρf .

Secondly, for each emotion, we find the feature which is most similar to the testing projected vector
by calculate the angle between vector of training feature space and testing projected vector.

βf = argmax
i

ωftestω
f
i (train)

‖ωftest‖‖ω
f
i (train)‖

; i = 1, ρf . (11)

Finally, we choose an emotion which has maximum of βf

γ = argmax
f

βf ; f = 1, 7 (12)

To estimate human emotions, we use decision fusion method of PCA, t-PCA, EMC and n-EMC.
Figure 8 shows the general procedure to estimate human emotions using decision fusion.

When using decision fusion of PCA (t-PCA), we used the estimation of emotion module as de-
scribed in figure 6. To determine the best class of emotions, after using PCA (t-PCA), the voting
method with weights is used. The weights are set to fusion data and visible image, respectively. We
determine the emotion class f of input image by choosing j satisfied minimum of following equation:

f = argmin
(
w1 ∗MSEV Ij + w2 ∗MSEFUj

)
(13)

where MSEV Ij and MSEFUj are mean square errors calculated at class j of visible image and fusion
data. We set w1 = 4

3 and w2 = 2
3 in experiment.

To estimate human emotion using decision fusion of EMC (n-EMC), we used the estimation of
emotion module as described in figure 7. To determine the best class of emotions, after using EMC
(n-EMC), the voting method with weights is used. The weights are set to fusion data and visible
image, respectively.

We determine the emotion class f of input image by choosing j satisfied maximum of following
equation:

k = maxi
fV Ih ∗ FV Ii
‖fV Ih ‖ ∗ ‖FV Ii ‖

, i = 1, n (14)

g = maxi
fFUh ∗ FFUi
‖fFUh ‖ ∗ ‖FFUi ‖

, i = 1, n (15)

f = argmax (w1 ∗ k + w2 ∗ g) , (16)

where n is a number of the training images of class j; fV Ih and fFUh are testing image h of visible
image and fusion data, respectively; FV Ii and FFUi are vector i of eigenface of visible image and
fusion data, respectively. We set w1 = 2

3 and w2 = 4
3 in experiment.
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Fig. 9. Sample thermal and visible images of seven emotions.

Fig. 10. Sample sequence of thermal images.
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Fig. 11. Facial emotion estimation results using EMC.

4 Experiments and analysis

4.1 Database

The KTFE database [17] includes 152GB visible and thermal facial emotion videos, visible facial
expression image database and thermal facial expression image database. This database contains 30
subjects who are Vietnamese, Japanese, Thai and Chinese from 11 year-old to 32 year-old with seven
emotions. The example of visible and thermal images is shown in Figure9.

From draw data of KTFE database, we extract manually visible images and sequences of thermal
images based on self-reports of participants, expressions and changing of facial temperatures. Caus-
ing the time-lag phenomenon, the sequence of thermal images are designed from a frame which we
extracted the visible image to a frame which is after the participant emotion is neutral. Figure 10
shows a sample sequence of thermal images.

4.2 Experimental results

In our experiments, we separate the training and testing data as 60% and 40% of total visible images,
sequence of thermal images, and fusion of visible image and thermal image sequence.

Figure 11 shows the results of facial emotion estimation of EMC with visible images (vi EMC),
sequence of thermal images (ther EMC) and fusion of visible images and sequences of thermal images
(fu EMC). Following [20], accuracy of estimating human emotion using thermal images is lower than
using visible images. Because emotions of thermal images are always not clearer than emotions
of visible images. Therefore, with EMC methods, good for classification, the results using visible
images are better than results using thermal images. However, with our new results, accuracy of
estimating human emotion using sequences of thermal images is better than using visible images.
When using fusion information, the average accuracy increases of 2.77% in compare with using only
visible features, especially for happiness. In general, average accuracy of each emotion increases
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Fig. 12. Facial emotion estimation results using n-EMC.

when we use fusion information. The results prove the necessary of fusion information.

Figure 12 shows the results of facial emotion estimation of n-EMC with visible images (vi n-
EMC), sequence of thermal images (ther n-EMC) and fusion of visible images and sequences of
thermal images (fu n-EMC). With n-EMC, the average accuracy using visible images, sequences of
thermal images and fusion of visible images and sequences of thermal images increases 3.15%, 2.41%,
2.35%, respectively compared with EMC. Similar to the results using EMC, the accuracy using fusion
data is better than using other data.

Fig.13 shows the results of facial emotion estimation of PCA with visible images (vi PCA), se-
quences of thermal images (ther PCA) and fusion of visible images and sequences of thermal images
(fu PCA). With PCA, accuracy using thermal images is better than accuracy using visible images. Al-
though, emotions of thermal images are not clearer than emotion of visible image, PCA works better
than EMC, which is good to classify each emotion. In general, with PCA, using fusion data gives the
best results comparing using thermal images, visible images and sequence of thermal images.

Fig.14 shows the results of facial emotion estimation of t-PCA with visible images (vi t-PCA),
sequences of thermal images (ther t-PCA) and fusion of visible images and sequences of thermal
images (fu t-PCA). With t-PCA, the average accuracy using visible images, sequences of thermal
images and fusion of visible images and sequences of thermal images increases 2.03%, 1.31%, 0.48%
respectively in compare with PCA. Especially, for disgust with visible images, accuracy improvement
is 11.97%. Our method, t-PCA, yields an average improvement of 2.33% in performance of facial
emotion estimation compared with using only visible features.

In conclusion, comparing the results of visible images, sequences of thermal images, and fusion
data, the accuracy of estimating emotion using fusion data is better than the accuracy of estimation
emotion using only visible images, thermal images and sequences of thermal images.
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Fig. 13. Facial emotion estimation results using PCA.

Fig. 14. Facial emotion estimation results using t-PCA.
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5 Conclusions

In this paper, we have proposed the fusion of visible features and thermal features for estimating hu-
man emotions. Specially, two classification methods, t-PCA and n-EMC, are proposed to perform
decision-level fusion. Our experiment on KTFE spontaneous database show that our methods yield
and average improvement of 2.74% in performance of facial emotion estimation compared with using
only visible features. Our method has several advantaged points. First, to the best of our knowledge,
this is one of the first methods using sequences of thermal images. Emotion is complex action of
human. To understand it clearly, using a single image cannot figure out the exact emotion. Besides,
using thermal information with single frame cannot give the right emotion. Therefore, it is necessary
to use sequences of thermal images. Second, with t-ROIs, we fill the gaps of thermal image, eyeglass
problem. Third, using the weight discriminant features help our method decrease the running cost and
increase accuracy rate. Because there are some frames more important than others, the weights set
for frames are necessary. Fourth, using wavelet transform for visible image gives several advantages
such as to reduce the unnecessary details, and so on. The fusion features, obtained from important
visible features and necessary thermal feature, are better than only visible and thermal features. Two
proposed classification methods, t-PCA and n-EMC, are successful to improve estimation accuracy.
We also suggest decision fusion with weighted similarity measure for the conventional methods (PCA
and EMC) and the our proposed methods (t-PCA, n-EMC) to increase the estimation accuracy. Exper-
iments are tested in fusion database, specially designed from KTFE database. The results prove that
the fusion of visible images and thermal image sequences performs better than either of the data. As a
future work, we plant to improve the t-ROIs considerably, and also investigate more sophisticated fu-
sion techniques for visible images and thermal image sequences and sequences of visible and thermal
images.
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