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The work at hand presents a method to assess the quality of human sleep within a

non-laboratory environment. The monitoring of patients is performed by means of a

Kinect device. This results in a non-invasive method which is independent of immediate
physical contact to subjects. The results of a study which was carried out as proof of

concept are discussed and compared with the polysomnography-based gold standard of

sleep analysis. When medical data are concerned, confidentiality is always an issue. This
is no less important when monitoring people in their own homes, especially when they

are in a situation as vulnerable as sleep. To meet the upcoming challenge of protecting
people’s privacy while still offering analyses of their data we introduce a blurring method

to the acquired data and evaluate the use of our sleep detection test on such de-identified

data sets.
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1 Introduction

In recent years, the market for wearable technology designed to assist consumers in health

care and fitness has virtually exploded. Since the so-called ‘quantified self movement’ has

taken off, various companies have launched smaller and more powerful sensors and consumer

electronics devices which allow for tracking of fitness, physical activity, health, diet and other

personal metrics.

Although sleeping is a significant component of human activity it involves being relatively

inactive. Nevertheless, the quality of sleep is a vital factor in the overall quality of human

performance during daytime. Usually, the analysis of serious sleep disorders requires invasive

lab-based monitoring. However, such measurements may also be partly replaced by actigraphy

as a basic means to measure sleep quality. An overview of the consumer electronics devices

that analyze frequency of wrist movement over time or similar information is found in [1].

While wearable devices like the above-mentioned are popular tools to monitor sports and

everyday motions during waking hours, reservations against wearing such devices during sleep

are a common phenomenon due to their causing impairments on the quality of sleep. In this

work we focus on measuring the sleep phases by means of consumer electronics hardware but

without immediate physical contact to the subjects. To demonstrate this technology achieves

competitive accuracy, we compare our evaluations of Kinect recordings with the results from
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328 Sleep Detection Using De-identified Depth Data

a professional sleep laboratory.

Naturally, there is an increasing awareness of privacy issues when personal data are in-

volved. This is important when monitoring people in their own homes, particularly when

they not conscious of their surroundings. In order to tackle the problem of protecting peo-

ple’s privacy we introduce a blurring method to our video and depth data. Our evaluations

show that this method obscures the identity of subjects in the data but does not impair our

sleep detection method to a significant level.

2 Previous Work

The standard approach to studying sleep and the detection of specific sleep disorders is a

polysomnographic monitoring of patients in a clinical sleep laboratory. This multi-parametric

test results in a comprehensive recording of the biophysiological changes that occur during

sleep. A survey on standardized specifications and techniques for characterization of natural

sleep is given in the scoring manual of Iber et al. [2]. A revision of existing methods for scoring

sleep stages as well as new techniques to gather information from the polysomnographic

readings are presented by Silber et al. [3] as part of a visual sleep scoring initiative. Standards

of practice and clinical diagnostics by means of cardiorespiratory polysomnography are found

in the contribution of Penzel [4].

As alternatives to study sleep in the clinical laboratory alone, there is also a wide range

of options to record data with professional equipment but within the the patient’s domestic

environment. A study to compare home polysomnography with the in-lab approach in the

diagnosis of sleeping disorders was done by Porter et al. [5]. Their evaluation showed that

unattended polysomnography was still problematic in a number of cases since diagnosis de-

pends on the quality of data obtained under unattended conditions. However, since there is

an ongoing trend towards monitoring sleep in an environment comfortable for patients, the

necessity to meet the obstructions of self-monitoring sleep quality is vital. The increasing va-

riety of mobile devices for self-recording personal metrics can help alleviate by offering more

consumer friendly options of data acquisition.

Metsis et al. [6] propose as system which uses several non-invasive sensors to monitor sleep

patterns. They pursue a data driven machine learning approach to process and analyze data

thus obtained. As opposed to this multi-modal data-driven learning technique the method we

introduce uses of a single Kinect device to achieve results of comparable quality as classical

polysomnography.

Kay et al. [7] describe how exterior conditions influence the sleep quality in human subjects

and introduce a system Lullaby which helps patients self-monitor their sleep. This system is

designed as a mobile sleep lab which helps the patients track down the negative influence such

as light or noise their sleep might suffer from. The tracking is done by a Fitbit sensor along

with an infrared camera. Sadeh and Acebo [8, 9] describe the important role of actigraphy,

i. e. the monitoring of rest and activities by means of a wearable actimetry sensor, in sleep

medicine. They summarize how sensitive actigraphy is in detecting unique sleep patterns

corresponding to certain sleep disorders and other phenomena like medical problems or drug

use. An overview of systems which allow for consumers to monitor their personal metrics is

presented in [10].

Algorithms for scoring sleep stages from readings of actigraph sensors are described in the
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works of Kripke et al. [11], [12]. The authors develop a method to identify sleep-stages from

wrist activity readings and critically evaluate the performance of these systems compared to

standard polysomnographic scoring with slight disadvantages to the cell phone accelerometers.

Smartphone applications naturally play an important part as a means of self-assessing

sleep quality. Natale et al. compare sleep estimation for healthy adults with a smartphone

accelerometer to that of an actigraph accelerometer [13]. They found that the overall agree-

ment between the scorings of the two types of devices was satisfactory. For an overview of

current trends in personal sensor informatics based on emerging technologies associated with

smartphones which enable the provision of pervasive health informatics services, refer to [14].

The well established methods for face detection and recognition allow systems to automat-

ically link images to known personal information and background. These techniques being

readily available makes protecting privacy an urgent necessity. Face detection is a means of

localizing and extracting face regions in images from the respective background. A critical

survey on existing face detection algorithms is given by Hjelmas and Low in [15]. Similarly,

an overview of techniques of face recognition, i. e. determining the identity of the person in

the input image, can be found in the works of Jafri and Arabnia in [16].

As a natural consequence of the availability of automated recognition methods, the task

of avoiding face recognition to protect privacy has been tackled before. One method to

de-identify data in order to avoid unintentional and unwarranted invasion of the privacy of

individuals caught in videos is presented by Agrawal and Narayanan in [17]. The authors

present automated methods to obscure the identity of subjects in such data exploring ex-

ponential space-time blur and line integral convolution. Neustaedter et al. [18] critically

evaluate video blurring, an image masking method used to secure privacy for telecommuters

and employees who have to attend video conferences from home.

3 Materials and Methods

3.1 Polysomnography

The basic tool and the reference method for sleep medicine diagnosis in the sleep laboratory

is attended cardiorespiratory polysomnography. Cardiorespiratory polysomnography records

physiological signals to quantify sleep and sleep disorders to achieve a diagnosis according to

the International classification of sleep disorders revision 2 [19]. These multi-sensor readings

are evaluated by experts in the field, that is, sleep assessment is done according to a specific

set of rules which were defined in a manual for the recording and evaluation of sleep [20]. This

manual specifies the recording and evaluation of the electroencephalogram (EEG), the elec-

trooculogram (EOG), and the submental electromyogram (EMG). A few years ago the manual

had been expanded and revised to include the recording of respiration, cardio-circulatory func-

tions, and movement parameters. Age-specific aspects such as pediatric sleep and respiration

in children were included in this revision too [2]. The new manual is based on a systematic

literature review and a evidence evaluation [3, 21, 22, 23].

In our experiments, we use the results of polysomnographic sleep detection as gold standard

for evaluation of our own results.
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3.2 Kinect-Based Setup

For our Kinect based setup, we mounted the system to panel that could be placed under the

ceiling and directly over the bed. Thus, the bed and the surrounding area was within the

visible range of the sensor. Especially at the edges of observed objects, the depth information,

i. e. images of resolution 640× 480 per frame (see [24, 25] for further specifications) obtained

by the Kinect sensor is very noisy. We computed two measures to quantify the amount of

relevant motion in the data - as opposed to noise - and use these to evaluate our methods for

noise reduction on a five minute test sequence where no motion was present whatsoever.

First, we computed visual motion summaries (see Figure 2). These show the average

motion D for every pixel pi,j over a fixed time period of T frames.

D(pi,j) =
1

T

T−1∑
t=1

|pi,j(t)− pi,j(t+ 1)| (1)

The results for every pixel of the input image sequence are color coded, starting from black

(D = 0) to white (D = max(D(pi,j)) for all indices i, j in the image, i.e. i = 1, . . . , n and

j = 1, . . . ,m ).

Second, we computed the average change N per frame (see Figure 1):

N (t) =
1

nm

n∑
i=1

m∑
j=1

|pi,j(t)− pi,j(t+ 1)| (2)

While D gives an overview on the spatial distribution of motion in the input image sequence,

N gives this information on the temporal domain.

Considering the five minute test sequence, the results of the two measures are shown in

Figure 1 and Figure 2 for N and D, respectively. While the blue curve in Figure 1 illustrates

the high amount of noise, it gets clear that most of the noise is actually caused by the edges of

the bed and other furniture as can be seen in Figure 2 a). Another source of noise in the data

is the floor of the room. The reason for this is the high distance from the floor to the Kinect

device as compared to the distance of the bed to the device. To deal with the noise-induced

disturbances in the data we combine two strategies: On the one hand, we smooth the data

by filtering. This is achieved by applying a simple, temporal box filter to the time series of

each pixel of the depth map. The width of the filter window was 3 frames in our experiments.

On the other hand, we only consider the relevant part of the image for further analysis by

cropping the image to contain the bed itself only.

The benefit of each of these steps as well as their combination is also illustrated by the

two above-mentioned Figures. In the absence of any motion in the scene, the average noise

per frame is in the range between 15 and 20 millimeters. By applying the described box filter

the noise is reduced to 2.5 millimeters per pixel. The restriction of the image to the bed

alone reduces the noise from the original 15 or 20 millimeters to 5 millimeters. Finally, the

combination of cropping to the relevant area (bed) and filtering reduces noise to a total of

1 to 2 millimeters per pixel. The motion summaries for the modified data are also shown in

Figure 2 b)-d).

For all experiments described in the following sections we used the image data thus cropped

and filtered. The amount of present motion per frame was measured using the function N ,
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Fig. 1. Illustration of the Kinect sensors noise of a five minute test sequence. Average noise from
the original depth image (blue). Average noise if the analysed region is restricted to the bed

(green). Noise of the filtered depth sensor sequences light green and light blue respectively.

a) b)

c) d)

Fig. 2. Visual Motion Summary. a) raw data b) filtered data c) cropped area d) cropped, filtered
area.

while the sampling rate of the Kinect sensor was set to a low temporal resolution of 5 frames

per second. Since we are interested in the overall amount of motion of the subjects, this

sampling rate has proven to be sufficient. Note also that the temporal uncertainty caused by

the delay of at most 3 frames introduced by fixing the width of the filter window does not

have an impact on our results since a delay of just over half a second is insignificant compared

to several hours of testing evaluated as 30 second slots (see Section 3.5).
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Fig. 3. Overview of our image simplification. The image is split into 2 × 2 squares that are

reshaped to vectors. All resulting vectors are regarded as data matrix for the PCA. By truncating
dimensions from the image representation in PCA space and the according back projection we get

a simplified image.

Fig. 4. Example for simplified images. Original image, 16 PCs, 2 PCs 1 PC. 32 × 32 block size

Fig. 5. Example for simplified depth images. Original data, 16 PCs, 2 PCs 1 PC. 16 × 16 block
size

3.3 Image Simplification Using PCA

In this section we describe our image simplification technique, that we use to make persons

unrecognizeable while still keeping track of the motion that is performed. To this end we

employ a simple PCA based approach. First, we split the image into N quadratic blocks of

size n × n. Second, Each of this blocks is transformed to a vector of size n2 × 1. Thus, the

image is now transformed to an n2 × N data matrix. Third, we apply a standard principal

component analysis (PCA) to this data. Fourth, we truncate the data in PCA space to

the first M principal components (with M ≤ n2). Fifth, we obtain our simplified image by

transforming the truncated data back to the data space and reshaping the data back to the

original pixel positions. An overview is given on a simple example in Figure 3, where a 4× 6

image is cut into 2 × 2 blocks, while only the 2 first principal components are left for the

reconstruction of the image.

Figure 4 shows a sequence results of gray scale images. We show the original (left) image
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and the modified versions based on 16, 2 and 1 principal components. Similar we show a

sequence based on depth images in Figure 5.

3.4 Sleep Detection by Kripke

In the experiments of Kripke et al. [11], subjects were monitored by an actimetry sensor

called actigraph. The actigraph is a device similar to a wrist-watch and can be worn by a

patient to measure gross motor activity, e. g. during sleep. In the following, we will briefly

describe the algorithm introduced in [11].

Actigraphic activity counts are performed once every 30 seconds. The score xi ∈ {0, 1}
given at each time t = j, xj = 0 for inactive, xj = 1 for active. The scores per epoch are

collected and evaluated by

B(t) = s

te∑
t̂=ts

bt̂xt̂. (3)

In our case we fixed ts = −10 and te = 3, and s was an overall scaling parameter for

normalization. Refer to Table 1 for the parameter list of the bts used in both Kripke’s and

our algorithm. When the overall result is B(t) ≥ 1, the epoch t = j is scored wake, otherwise

sleep. Note: Kripke et al. [11] did 49 training recordings to optimize for the parameters on

the list. In the end, the findings are summarized by a secondary algorithm, scoring ’sleep’

only when there have been at least 10 epochs of sleep before epoch t = j. Note: this was not

done for the final set of |te − ts + 1| epochs of the study.

3.5 Adaptations of Kripke’s Algorithm

We modified the original method by using different weights for the input signals:

H(t) =

te∑
t̂=ts

ht̂ · xt̂ (4)

Thus, the input signal from the Kinect which was recorded and preprocessed as described

in Section 3.2 was classified. The algorithm to detect the status of the subjects is a binary

classification of ’sleep’ (positive) or ’wake’ (negative). The algorithm used for this is based on

the one introduced by Cole and Kripke [12] (see equation 3) where D ≤ α means the subject

is awake, D ≥ α and the weights bt̂ are given in Table 1. In addition to these two parameter

groups, there was one test using constant weights:

C(t) =

4∑
t̂=−4

c · xt̂. (5)

Table 1. Parameters for both algorithms

Kripke

b−10 b−9 b−8 b−7 b−6 b−5 b−4 b−3 b−2 b−1 b0 b1 b2 b3
.0064 .0074 .0112 .0112 .0118 .0118 .0128 .0188 .0280 .0664 .0300 .0112 .0100 .0000

Gaussian

h−10 h−9 h−8 h−7 h−6 h−5 h−4 h−3 h−2 h−1 h0 h1 h2 h3
.0044 .0104 .0224 .0440 .0790 .1295 .1942 .2661 .3332 .3814 .3989 .1295 .0044 .0000
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3.6 Derived Characteristics

The following quantities were computed to describe the nights:

• Tnight [min]: The total duration of the recorded interval in minutes. Note that, in the

results tables in Figure 7 and Figure 8, this value differs for each scoring method with

respect to the ground truth. This is due to the fact that the Kinect recordings were

started before the ground truth measurements. This has no influence on the tested sleep

efficiency or any other result.

• Tawake [min]: The number of minutes the patient was identified as awake during the

recorded time interval.

• Tsleep [min]: The number of minutes the patient was identified as asleep during the

recorded time interval.

• T0 [min]: The time the patient fell asleep for the first time with respect to the time

Tnight.

• efficiency [%]: The percentage of minutes per night which the patient actually spend

sleeping.

3.7 Binary Classification

The recorded raw data were scored according to the algorithms discussed in Section 3.4 and

Section 3.5. The scoring results, xθ, were classified with respect to the ground truth. Note

the following distinction:

• A result xθ at time θ is classified a true positive, TP , if the subject was asleep at time

θ and was identified as asleep by the algorithm.

• A result xθ is classified a false positive, FP , if the subject was awake at time θ but was

scored asleep by the algorithm.

• xθ is called a true negative, TN , if the subject was awake at time θ and this state was

scored correctly.

• xθ is a false negative, FN , if the subject was awake at time θ but was predicted asleep

by the algorithm.

With the classifications in hand, the evaluation of the algorithm’s performance is done

according to the accuracy measure:

accuracy =

∑
TP +

∑
TN∑

TP +
∑
TN +

∑
FP +

∑
FN

(6)

The results of the evaluation are discussed in the following sections.

3.8 Collected Data

To evaluate our approach we measured two nights in a sleep laboratory environment. To this

end, we recorded the subject with our setup and in parallel with the full equipment of the

sleep laboratory. Annotations performed by the lab assistants on the basis of their data are

used as ground truth reference. Overall, we captured more than 16 hours of data during the

two nights.
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a) b)

Fig. 6. Visual Motion Summary. a) first night b) second night.

Table 2. Classification results for the first night.

Classifier Tnight [min] Tawake [min] Tsleep [min] T0 [min] efficiency [%]
ground truth 408 96.5 311.5 69 76.4
Kripke 463.5 88 375.5 12.5 81
Gauss 464 79.5 384.5 12 82.9
constant 466.5 79 387.5 11 83.1

4 Results Sleep Detection

4.1 Motion Summaries

In our discussion of the results we shall distinguish between spatial and temporal sleep detec-

tion respectively motion detection. The spatial motion summary illustrates in which regions

of the bed the patient showed the most activity, e. g. if he moved the head or the feet.

The temporal motion summary is a curve illustrating, at which times the subject displayed

significant instances of activity. This results in a scoring whether the patient was asleep or

awake.

Figure 6 is a summary of the accumulated visual findings of activity in the Kinect record-

ings made of the subject’s bed during the two nights which were investigated in the lab (see

also Section 3.2). The regions of the bed where the subject’s head - which is placed at the

left-hand side - hands and feet - which are at the right-hand side - were located are clearly

visible: The bright areas in the pattern indicated that the subject moved the upper part of

his body, especially the head and wrists most. Note that, although the subject slept under

a duvet, the Kinect recordings sufficiently display a significant amount of movement of the

subject’s feet during the night.

The temporal hypnograms displayed in Figures 7 and 8 show the different phases of the

first respectively second night’s rest recorded in the experiments. Note that the hypnogram

of the first night displays a significant amount of movement, even periods of restlessness. This

is due to the subject wearing a complex clinical sensor setup which was a cause of discomfort.

On the one hand, this was inevitable because of the necessity of sensor data acquisition for

comparison with the Kinect’s sleep detection performance. On the other hand, the influence

of the setup disturbs the natural sleep patterns which were subject to the test in the first

place. The hypnogram of the second night is more reliable because the subject was able to

actually sleep normally.
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Fig. 7. Temporal hypnogram of the first night.
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Fig. 8. Temporal hypnogram of the second night.

Table 3. Classification results for the second night.

Classifier Tnight [min] Tawake [min] Tsleep [min] T0 [min] efficiency [%]
ground truth 443.5 26 417.5 27.5 94.1
Kripke 470 42 428 0 91.1
Gauss 469.5 42.5 427 1 91
constant 469 45.5 423.5 0 90.3
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Table 4. Evaluation of the classifications for the first night.

Classifier TP TN FP FN accuracy [%]
Kripke 817 191 131 22 86.8
Gauss 815 169 153 24 84.8
constant 824 170 152 15 85.6

Table 5. Evaluation of the classifications for the second night.

Classifier TP TN FP FN accuracy [%]
Kripke 1025 71 41 27 94.2
Gauss 1025 69 43 27 94.3
Konstant 1009 63 49 43 92.1

4.2 Sleep Efficiency

The efficiency of the subject’s sleep during the night was tested by computing the ratio

between the cumulative length of the intervals of restlessness and the total duration of the

rest phase,

efficiency =
Tawake

Tnight
. (7)

This value was computed only for the time interval starting from the point were the subject

fell asleep for the first time. Thus, possible troubles falling asleep are not included in this

particular efficiency analysis. Comparing the computations for the ground truth data as well

as each of the classifiers shows the values of efficiency were similar for the different methods.

For the first night, the results differ stronger, especially with respect to the ground truth. In

fact, the reason for this is the following: initially there had been some additions to the sensor

setup which, unfortunately brought about a significant amount of noise to the recording.

After the measuring assembly was was reduced to the described setup, the data output was a

lot more stable, while their was also substantially less nuisance for the subject by the sensors.

4.3 Classification Evaluation

We classified the data from the recordings according to different weights such as in Table 5

and compared the results with the data from the sleep laboratory. Refer to Tables 4 and 5

for details.

5 Results of the Face Recognition on Modified Data

In order to test the effectiveness of the blurring procedure, we had a number of different

experiments. The first series of experiments dealt with the effect of the blurring algorithm

on image data of test subjects that were made unrecognizable by the PCA method described

in Section 3.3. The image organizer and viewer software Picasa is generally able to detect

human faces in images of adequate quality and also to link those faces to known other pictures

of the same subject. Thus, we employed Picasa as a state of the art facial recognition system

in this work.

Our experiment setup was as follows. From a group of six male test subjects each individual

was asked to sit down in front of a camera. Each subject was required to tilt and turn their

heads in a standard procedure, such that their expression could be seen from a variety of

angles. All video frames were converted to a total number of 648 images from which a set
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of training and test images were created. The training data remained unchanged, while the

images used for testing where blurred by the method described in Section 3.3 using varying

block sizes and numbers of principal components for reconstruction. Note that the choice

of this training set and test set was done extremely for the benefit of the classifier. This

was done against the backdrop of wanting the classifier to have a maximal chance for success

in the test runs, while consequently excluding the possibility of unwanted recognition in the

practice runs. The blurring of n×n matrix blocks was tested in practice for three parameters

(n ∈ {8, 16, 32}). Since the procedure is parameterized also by the number of principal

components used in the reconstruction, there were three types of results which were further

divided into groups according to this parameter M (compare to Section 3.3). The value of

M ranges from 1 to n2.

For the face recognition by Picasa there are two additional parameters which need to

be set. One is the face recognition threshold and the other is the cluster threshold. The

face recognition threshold defines the required precision for the recognition of an individual

subject. The number of candidates is naturally influenced by this definition. The cluster

threshold influences the process of grouping subjects. Both these thresholds were fixed to the

standard value of 85%.

A preliminary training of the software on the training set resulted in a recognition of 584

out of 648 images. Note that the rest of the images did not have any human faces in them

at all. For the actual test, a training set was created in Picasa for each data sequence. All

blurred images from each sequence were processed by Picasa. The number of recognized faces

is a function in the number of principal components and in the parameter n employed in the

blurred reconstruction of the images from the video sequences.

Even though the choice of the training and test set was fortunate for the classifier it

failed to detect or recognize the displayed subjects when using a certain number of principal

components in the reconstruction. Specifically, we distinguished two notions of success for

the recognition tests with Picasa. A stronger notion of success for the classifier means it can

not only detect faces where there are human individuals in the image but also recognize the

identity of at least one of the faces. A weaker notion of success is given by only generally

detecting the present faces as human expressions. For the parameter n = 8, we found there

is always at least a weak success regardless of the paramer M : Even for M = 1 principal

component, Picasa is able to still detect the presence of human faces in the images, while

for M > 3 the software begins to recognize the individual faces for the first time. But since

any success classifying should be avoided in practice to make for a real de-identification, our

evaluations will, in the following, only be performed on the two other parameter options

n ∈ {16, 32}. For the blurring parameter n = 16, only the number of M = 1 principal

components left all faces undetected, while for M ≤ 5 at least the recognition failed for all

faces. The results of this particular recognition tests are summarized in Figure 11. A complete

de-identification took place for M = 1. For n = 32, the choice of parameters M ≥ 4 would

result in the detection of a number of faces but not in any recognition. The recognition task

was only successful for M > 16. A total de-identification was achieved for M ∈ {1, 2, 3}.
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Fig. 9. Temporal hypnogram of the first night. The de-identified data were processed by our sleep

detection method (cf. Figure 7)
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Fig. 10. Temporal hypnogram of the second night. The de-identified data were processed by our

sleep detection method (cf. Figure 8)

6 Results of the Sleep Detection from Modified Depth Data

The final objective is testing the sleep detection method also on the blurred depth data. This

means applying the blurring procedure to the depth data employed for the sleep detection (see

Sections 3 and 4) and investigating how the results differ from the ones presented earlier. The

evaluation of the classification after blurring is compared to the evaluation before blurring.

Typical resulting hypnograms can be seen in Figures 9 and 10. The examples show the

results of a PCA blurring with parameters n = 16 and M = 1 for the data of both nights.

The accordance with the sleep detection results on unchanged data is very high. In fact, it is

less than 1, 5% worse. To be precise, for the first night, 86, 8% on the original vs. 86% on the

blurred data, for the second night, 91, 1% vs. 89, 7%.

7 Conclusion and Future Work

In this study we investigated the possibility of monitoring human sleep without the profes-

sional equipment and expense factors involved in the clinical analysis scenario. Our tests
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Fig. 11. For the blurring parameter n = 16, a complete de-identification of the data took place

with our method for M = 1. The number of the recognized faces as a discrete function in the
number of principal components is shown in blue, the other two sets of values, namely the number

of recognized faces according to the choice of weights are green (Kripke) and red (constant).

already achieved fairly good results and proved the effectiveness of unattended sleep detec-

tion in the subjects’ home by means of a Kinect or similar device. While our study, above

all, serves as prove of concept, future work should focus on a number of convincing tests and

the consideration of a reasonably large group of test subjects.

Future work will focus on comparing the presented approach against different data-driven

analysis techniques to identify sleep and wake stages from sensor readings. To this end, we

plan to employ segmentation techniques [26] to segment the stream of data in the temporal

domain. On the basis of short motion segments the search for similar, annotated sequences

in a large database, can be performed efficiently [27]. This facilitates a more unsupervised

assessing of sleep patterns with the help of annotations and analysis based on the evaluation

of existing data by experts in the field. Another strand of future research could be the

exploration and visualization of motion summaries [28] that provide users as well as experts

with condensed information on the activities performed. Another idea worth pursuing is

to discuss variations in sensor placement for activity data. The comparison of the Kinect

findings with the respective results could offer more scientific insight on the quality of contact

vs. non-contact sensor sleep assessment.

Particularly for the study of clinical patients and other experimental subjects, data must

be made anonymous. Finding means to represent data in a more abstract way is crucial

to help preserve each subject’s anonymity and dignity. This especially requires developing

techniques to reduce the quality of data in the sense that individuals cannot be recognized

but without losing other information.

Being a binary classification, the approach discussed in the paper at hand is a rather

simplified method. However, there are various stages of sleep such as sleep characterized by

Rapid - or Non-rapid Eye Movement and also different waking stages which, for instance, are

easily documented by classical electroencephalography but have yet been neglected by the

binary scoring. Finding ways to include these phenomena in the sleep analysis will help asses
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variations of natural sleep patterns and also detect certain abnormalities. New developments

such as the Kinect2 might help improve such techniques further, as could other novel devices

which also track eye activity.
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