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Vehicular Ad Hoc Network (VANET) can be viewed as a special case of an ad hoc net-
work formed by moving vehicles communicating through short-to-medium range wireless
transmission. This emerging wireless technology allowed for a wide range of applications
varying from safety and accident avoidance to leisure and entertainment. The VANET’s
special features, such as high node mobility, made the design and validation of its pro-
tocols a challenging task. A realistic simulation environment is then required. Since
the vehicles mobility is driven by the human mobility characteristics and is controlled
by the geographical restrictions of the roads, the work presented in this paper is aimed
to having a realistic mobility model that incorporates both the social aspects of human
mobility together with the geographical restrictions that governs the movement of the
mobile nodes. The model is based on using realistic data sets rather than randomly
generated data.
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1 Introduction

Vehicular Ad-hoc Networks (VANETs) can be considered as a special case of ad hoc networks

where nodes are moving vehicles communicating together through short-to-medium range

wireless transmission. Vehicles dynamically organize themselves into an opportunistic network

where communication are intermittent and packets are routed using ”store-carry-forward”

approach. In such approach, messages are routed opportunistically from a mobile node to

another until reaching the destination. Consequently, users’ mobility has high influence on

the devices connectivity and the overall network performance.

VANETs have attracted researchers’ attention lately because of the need to provide safer

roads by extending the drivers’ view through wireless data exchange. VANET applications

have varied not only to provide safety and reduce the number of accidents, but also to include

Convenience (traffic management) by providing efficient driving though dissemination of traf-

fic flow information and available parking. Moreover, applications domain became broader to
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comprise commercial applications providing leisure and comfort such as coverage extension,

localized advertising and shopping, peer to peer gaming and file sharing. The diversity of

VANET applications imposes different requirements on the network protocols.

Validation of Vehicular ad hoc network protocols is generally performed through simula-

tion, as the use of a real test bed is still impractical. A VANET simulator should accurately

simulate the communication protocols as well as the vehicles mobility. Most of the existing

simulators, like ns-2, OPNET...etc, have accurate and well tested models for communication

protocols, however realistic representation of vehicles’ mobility is still needed.

Network simulators, in general, either rely on mobility traces or synthetic models for mod-

eling vehicles’ movements. Mobility traces are based on real measurements, while synthetic

models are based on mathematically modeling the vehicles’ movements. In general, synthetic

models are preferred over mobility traces since the real traces of movement are limited and

always tied to specific scenarios thus cannot represent the generic movement activities of the

nodes [25].

In this paper, we present a Geo-Social mobility model that incorporates both the so-

cial aspects of human mobility together with the geographical restrictions that governs the

movement of the mobile nodes. The model is based on using realistic data sets rather than

randomly generated data. Within this paper the terms mobile node and vehicle will be used

interchangeably, the same for node, anchor and possible destination.

The outline of the paper is as follows: Section 2 presents the related work. Section 3

presents the motivation and the paper contribution. Section 4 describes the simulator on

which the work is based and the suggested mobility model in details. Finally the conclusion

is given in section 5.

2 Related Work

A VANET simulator is composed mainly of two components: a communication simulator

and a traffic simulator. The communication simulator is responsible for simulating network

communication protocols, while the traffic simulator is responsible for simulating the nodes

mobility at macroscopic as well as microscopic levels. Most of the existing simulators, like ns-

2, OPNET...etc, have accurate and well tested models for communication protocols, however

realistic representation of vehicles’ mobility is still needed.

2.1 Evolution of Mobility Models

During the previous two decades many studies have been conducted to analyze the mobility

characteristics of humans. Models sophistication have evolved through the years starting

from the simple random moving towards the complex hybrid ones. The earliest mobility

models were random; the vehicles destinations and speed were randomly assigned during the

simulation like in the random waypoint model [20]. However, if one would take a closer look,

one would realize that vehicles are driven by persons, which means that the movement of the

cars is dramatically affected by people’s behavior and is far from being random. The next

generation of mobility models have been produced considering one or more of the human

mobility metrics [23], namely temporal dependecies, or spatial dependencies, or both. Based

on the temporal dependency both the Gauss-Markov [16] model and the Smooth Random

[6] model were produced. Both models assume that at a certain time interval; the direction,



N. Basta, A. El-Nahas, H.-P. Grossmann, and S. Abdennadher 109

speed and location depends on previous time intervals. The latter eliminates sharp turns and

sudden stops by defining preferred set of speed with a high probability instead of uniform

distribution of speeds.

Considering the spatial dependencies where the nodes move in groups and are influenced

by the surrounding nodes, many variations of models were produced [29]. The most important

one is the Reference-Point group mobility model [9] which enables the random motion of the

group and the individual motion of a node in its group. Every group has a logical center and

all mobility characteristics depend on the logical center motion. The nodes are distributed

within the geographical scope of the group. For the Structured-Group mobility model [7] the

movement of the groups is not random but rather towards a common destination or a goal.

In the Cluster Based mobility models [2], nodes are arranged in groups called clusters. In

this model nodes can be of three types either cluster head, or gateway or normal node. These

nodes called cluster-heads collect the data sent by each node in that cluster. Cluster head

maintain IP addresses of cluster members and members maintain the IP address of the head.

Recently Complex vehicular traffic models were produced. They include complex traffic

behavior by considering traffic rules like topological map, vehicle speed, obstacles, and de-

sirable points. An example of this type of models is the Free Way mobility model [3] which

includes spatial and temporal dependencies and imposes geographical restriction. The Man-

hattan mobility model [3] predicts the mobility patterns of mobile nodes on bidirectional

streets. The simulation area is composed of horizontal and vertical streets which imposes the

geographical restriction of networks. The model also simulates the spatial and the temporal

dependencies.

Society is something that precedes the individuals and obviously affect their mobility to

socialize and to move in groups. Accordingly, vehicles mobility is dramatically affected by

the human social behavior, which urges the need to integrate the individuals’ social mobil-

ity model along with the geographical one to produce a model that is capable of providing

a realistic modeling of the human mobility. Behavioral mobility modeling started to gain

popularity lately. Social mobility modeling, thus, became a recent trend in modeling nodes’

movements in a wireless network in general and VANETs in particular. The Community

based mobility model [25] captures the behavior of individuals moving in groups and between

the groups. It considers the type of the relation between the members of the group. The

Home Cell Community Based mobility model [8] is based on the previous model but adding

the feature of the node attraction towards locations and not only towards each other. A

major advance in this group of models is the Time Variant Community mobility model [18]

that takes into consideration the time factor when forming the communities and managing

the attraction towards locations. Socila-based mobility models are further discussed in details

in the following subsection.

2.2 Social-Based Mobility Models

Although many mobility models have been produced to model the human mobility and predict

the movement of the mobile nodes, most of the work done so far is too simple to completely

mimic the human mobility with all of its aspects. Each new paper has been advancement over

the previous models, but yet the work is not complete. Below, the most significant mobility

models that consider the social aspect of the human mobility, are presented.
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2.2.1 Community Based Mobility Model

In this model, the social network is represented as a weighted graph where the nodes are the

moving individuals and the weighted edges represent the strength of the social tie amongst

them. The model takes care of the fact that the social tie between the different nodes differs

according to the time of the day. An example that explains the previous theory is; On Monday

morning one is more likely to socialize with one’s coworkers but on the weekend one’s social

network is the family and friends. To reflect the previous facts, an [N*N] symmetric matrix,

called the interaction matrix is fed to the simulator as input. Each value is a number between

0 and 1 representing the social tie between the two nodes represented by the row and the

column within the matrix.

The interaction matrix is then used to generate another matrix by setting a threshold

value. All the entries in the interaction matrix above the threshold are set to 1 and the

values below the threshold are set to zero forming a binary matrix called the connectivity

matrix. The idea behind this is; two individuals are interacting if they have a relatively

strong social tie. The detection of the communities is done by removing the edges with the

highest centrality [19] one by one until a certain threshold value is reached. This is done

because if two communities are connected with few edges then all the paths through the

nodes in one community to the nodes in the other community must traverse one of these

edges which will then be characterized by its high centrality.

The simulation area is then subdivided into squares, with each community randomly

assigned to one of the squares. To drive the movement of the nodes each one is assigned a

destination and the square containing this destination point is now associated with the node.

The first goal is assigned randomly, the subsequent ones are chosen by calculating the square

with the highest attractiveness to the node in question. The attractiveness is represented

as the summation of the social ties of the node with all the other nodes associated with the

candidate square divided by the number of nodes associated with that square. The square

with the highest attractiveness is the winner to be the next destination for that node.

To simulate the fact that the movement patterns and communities differ according to

the time of the day; each interval of time the social network is changed. The interval of

time as well as the social network is input to the system. Thus the communities are to be

reconstructed and then randomly associated with squares each interval of time [25].

By analyzing the previous work, it can be noticed that many important features of human

mobility are ignored. One of the most significant features is the attractiveness towards places.

In this model the destination is chosen based on the attractiveness toward acquaintances

residing in the location ignoring the location itself which contradicts what happens in real

life. A simple counter example is; after work one wants to go back home to have some rest

even if none of the family members is at home at that time.

Another ignored human mobility feature is the presence of hierarchy in the periods of the

repetition of actions. In other words, some actions are repeated daily like going to work and

others monthly like going to the bank. Having fixed periods totally neglects the previous fact.

A major disadvantage that cannot be disregarded is the overhead caused by reloading a

different social network each time interval and rebuilding the clusters and associating each

with a random square which will increase the effect of the randomization on the simulation

results.
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2.2.2 Social Network Theory-based Mobility Models

This model is very similar to the one presented in [25]. The main difference lies in the way the

next goal is chosen. This model gives two different mechanisms for choosing the destination

of the node. The first mechanism is similar to the one presented in [25] which chooses the

new goal to be in the grid that exerts the maximum attractiveness on the node in question.

The second mechanism involves a randomization factor that is a property of the grid squares

and represents the probability of the selection of each square to be the next goal [24].

Although this model has included many traces of human mobility, including the temporal

regularity; it has not tackled any aspect of the micro mobility of the nodes. Moreover,

the geographical boundaries that control the human movement and may in fact also affect

the social aspect were almost totally ignored. Furthermore, the spatial regularity was not

simulated and the attractiveness towards a place was based on the nodes residing at that

place ignoring the attractiveness towards the location itself.

2.2.3 N-Body: Social Based Mobility Model for Wireless Ad Hoc Network Research

Based on the same concept that was presented in [25]; another mobility model, The N-Body

Mobility model [32] is produced. The model also takes as input an [N*N] social matrix and

reflects the strength of the social tie in terms of groups formation and attraction towards a

certain destination through the implementation of mutual forces between the nodes of the

model. It uses the inter-nodal forces to manage the mobility of the nodes within the groups

in order to mimic the flock movements [28].

The N-Body model differs from earlier work since the correlated movements are completely

and quantitatively controlled by inter-nodal forces. The dynamics of the model are based on

the Gay-Berne potential [5] which mimics the speed matching, group entering and collision

avoidance behavior of group movements.

During the simulation, nodes are placed randomly on the simulation area and goals are

randomly selected for each node. When the nodes start moving, they are attracted by two

types of forces; the destination and the neighboring nodes, which will cause the nodes to

deviate from their trajectory towards the goal. When the nodes reach the goal, they pause

before moving to the next goal.

Nodes with very high inter-nodal attraction forces tend to stick together forming a group.

The attraction to the destination of a node is inversely proportional to the distance between

the node and that destination. Thus, nodes with different goals that form one group move

together visiting all the goals of the different nodes starting with the goal with the highest

attraction [32].

Although this model managed the micro mobility of nodes within the group, it ignored

the spatial and temporal regularity that characterizes the human mobility. Moreover, the fact

that all the nodes forming a group stick together to visit the goals of the group members one

by one cannot be applied to real VANET, since the car chooses the destination and moves

towards that destination regardless of the acquaintances that it might encounter on the way.

2.2.4 A General Social Mobility Model for Delay Tolerant Network

The model takes as input a social network that should be reflected in the movement of the

nodes without inducing any social relation based on the structure of the model. The social
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network is represented as a symmetric N*N matrix of random numbers, where each value is

a number in [0,1] that represents the strength of the social tie between the two nodes and

thus the frequency of their meetings. Each value is associated with a set of active ticks to

represent the periods of time where the probability of meeting of the two nodes is higher. This

idea is to simulate the concept of active relationship. An example is; on Monday morning

the probability that an individual meets their coworkers is higher than meeting their friends.

Each node is also associated with a social sphere representing the frequently visited locations

to simulate the concept of spatial regularity; where the nodes visit few places regularly.

Anchors are randomly distributed on the simulation area. Nodes interactions occur only

at the anchors, which represent the locations visited by the nodes. The nodes pause at the

anchor for a certain time ”Dwell time” which is a property of the place itself and differs

according to the type of the place. An example; if the location represents work then the

dwelling time is eight hours but for a restaurant is it two hours only. After the dwelling

time expires, the node selects the next location to move to. The goal is a point within the

boundaries of the anchor.

The selection of the next target is based on the node attraction towards the location itself

and towards the nodes related to that location. The strength of the attraction is not constant

but heterogeneous and periodic.

Although this model has been a great step in the domain of social mobility model; many

points still need further investigation and improvements. The model used random data in

various parts of the simulation. There is a crucial need to use real input data for the model

representing the social network instead of random data in the following parts:

• The weight of the social tie between the nodes of the input social network

• The length of the period where the relationship is active and the interval between active

periods should be extracted from real traces.

• Location information should be integrated to get the actual social sphere of the nodes

and the real shape of the anchors

• The anchor function that relates the node to the different anchors should be based on

GPS traces which makes it possible to approximate the collocation probability (i.e. the

ratio between number of times a node was located at an anchor and the total number

of simulation periods)

• The dwelling time at different anchors should be related to the nature of that anchor

(work, caf, shopping mall...etc)

• The speed distribution among nodes should be based on real traces, rather than random.

The temporal regularity was realized by having periods of fixed length, however in real life,

periods of different periodicity exists. Some actions are done daily like going to work, others

are weekly and others are monthly. Hierarchical periods should be implemented to simulate

this fact.

In this model, the concept of active relations was integrated to simulate the fact of the

variation of the one’s social sphere according to the time of the day. However, a mobility
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profile was not included; the set of locations that are important at a specific time should be

defined [12].

Although this model was a big step in the simulation of the social mobility it totally

ignored the geographical restrictions that govern the vehicles movement on the road. A

graphical model should be integrated with the social model taking into consideration the

following:

• Including obstacles on the road.

• Vehicles should have variable speed that changes according to many factors.

• The micro mobility represented in the interaction between the vehicles that move in

groups to avoid collision and manage the speed etc.

• Having macro anchors with micro anchors within their boundaries to represent the exact

goal of the vehicle.

• Defining the mobility of the node within the anchor boundaries.

• Placing the anchors on the simulation area tailored to a certain scenario rather than

randomly.

• Considering stationary infrastructures in addition to moving nodes.

Furthermore, a geographical tool is needed to customize the parameters, including a visual-

ization of the simulation area and the placement of the anchors, setting the anchors functions,

setting the dwelling time and assigning the home anchors of the nodes.

2.2.5 A New Group Mobility Model for Mobile Adhoc Network based on Unified Relationship

Matrix

Most of the social based mobility models represent the social tie between the mobile nodes

through a connectivity matrix that is fed to the simulator as input. The values within the

matrix are numbers in [0...1] representing the strength of the social relationship between

the nodes. The work in this paper is based on reinforcing the existing techniques of defining

social relations between mobile nodes by forming an additional matrix, the unified relationship

matrix (URM). It has the role of representing not only the social relation between the nodes

falling under the same group type (friends, family, colleagues...etc.) but also the inter-type

relations between nodes belonging to different groups. An example of this case is a party

having attendees tied by the friendship relations and represented by the matrix Lfriends, and

others tied by the family relation that is represented by the matrix Lfamily. Some of the nodes

falling under the friends group have acquaintances that are members of the family group this

relation is represented by the matrix Lmix. In this case the unified relationship matrix that

includes both the inter-type and intra-type relations will look as follows:

LURM =

∣

∣

∣

∣

Lfriends Lmix

LT
mix Lfamily

∣

∣

∣

∣

.

Within the model, four rules govern the movement of the groups along with the individual

nodes that are either forming groups or moving independently on the simulation area. The first
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rule is concerned with the movement of the individual nodes that is based on the attraction

velocity towards other nodes. The second rule is dedicated to avoiding collisions between

neighboring nodes by maintaining a small distance among the adjacent vehicles. The third

rule is concerned with groups formation and the calculation of the group velocity in terms of

the velocity of its members using the URM. The fourth rule is based on the third rule and

outputs the new position of the group considering its attraction towards the different existing

groups that is obtained from the URM. The speed of the group movement is a function of the

speed of the nodes that are members of that group.

As for the individual nodes, the decision to join a certain group happens upon reaching

their goal. Three options are then available; either to remain within the same group, or to

join another group or to escape outside all groups areas. The choice between both the first

and second options together and the third option is based on the sociability factor of the node.

A threshold is generated using a random distribution. If the sociability factor is greater than

the threshold then the new goal of the node is chosen outside all groups areas. If not, the

attraction of the node towards the different existing groups is then calculated. The node joins

the group that exerts the highest attraction upon it [14].

The work in this paper has reinforced the existing social mobility models by introducing the

unified relationship matrix to manage the groups’ movement dynamics. Albeit the undeniable

contribution of the study, it has completely ignored the physical aspects that characterize the

human mobility and thus cannot be sufficient to produce a satisfactory and realistic mobility

model.

2.2.6 A Fuzzy Realistic Mobility Model for VANET

A new type of mobility models has been proposed. It is based on the fact that both the

mobility of the nodes and the environment are not precise. The locations for instance can’t

be described by sharp coordinates and may be distributed over a large area. To solve this

imprecision, a fuzzy mobility model has been introduced.

The input of the fuzzy system is the current location and time, the output is the next

destination. The moving nodes in the system have been grouped according to their type

(personal, public...etc.). The mobility behavior of the vehicles depends on their group. For

each group, and for each location, all possible destinations have been prioritized according to

the probability of visiting them at that time of the day. This prioritization is a property of

the node group.

The fuzzy system is composed of several parts; the fuzifier, the rules system, the inference

engine and the defuzzifier[31]. The input of the fuzzifier is the time and the location expressed

precisely in terms of hour and x,y coordinates respectively. The fuzzifier changes the input

to be fuzzy, for example, by mapping the time to morning, afternoon or evening. The fuzzy

states are fed to the inference engine whose output is sent to the defuzzifier to output a precise

decision for the next destination of the node [1].

Although the model handles one of the most important problems of the mobility simulation

which is the imprecision of the input, it totally ignored the geographical aspects such as the

obstacles and used the Dijkstra’s shortest path algorithm to select the path from the source

to the destination. Another limitation is in the grouping of the vehicles and choosing the

destination based on the group type. The groups are too generic and members of one group
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Table 1. Mobility Models Comparison

model Temporal
reg.

Spatial
reg.

Geog.
re-
strict.

Social
model.

Realistic
time
re-
press.

Micro
mobil-
ity

Comunity based mobility
model 2.2.1

yes no no yes no no

Model based on social net-
work theory 2.2.2

yes no no yes no no

N-Body 2.2.3 no no no yes no yes
A general social mobility
model 2.2.4

yes yes no yes Not
fully

no

Mobility Model based on
URM 2.2.5

yes yes no yes Not
fully

no

A fuzzy realistic mobility
model 2.2.6

yes yes no yes yes no

Proposed Geo-social
model 4

yes yes yes yes yes yes

could have different preferences. So the generalization is a huge limitation for the performance

of the model.

3 Motivating Remarks and Contribution

After analyzing the previous models, we can notice that none of the existing models is yet

complete in the way it models the vehicles mobility. The word complete signifies how close it

is to simulating the actual human mobility. The more the model considers characteristics of

human mobility the more it is close to be realistic. Although efforts have been deployed in

this area of research, the models produced so far lack one or more of the significant human

mobility traces as shown in table 1.

As obvious from the above analysis, some ignored the temporal regularity others the spatial

regularity others the geographical restriction...etc [23].

Examining the related work suggests the need for a socio-geographical mobility model

that simulates the human mobility characteristics and is to be integrated with any VANET

simulator. The suggested model should consider the social context; in which there is a direct

reflection of the input social network on the mobility of the nodes. the active social relation

concept; when there is a high probability to meet at that time period. the spatial regularity;

which reflect the human behavior to visit certain location regularly. The social sphere is that

set of places frequently visited. Finally, the temporal regularity since human visits to places

are periodic.

The contribution of the work presented in this paper is summarized in the following points:

1. Integrating the social mobility aspects with the geographical model to have a more

complex and sophisticated model that mimics the human mobility with most of its

characteristics.

2. Predicting the mobility traces of the nodes given the social network that relates the



116 Geo-Social Mobility Model for VANET Simulation

nodes together.

3. Minimizing the reliance on random data as input to the mobility model and using real

traces.

4. Putting the social relation in a mathematical framework by predicting the social tie

between the nodes given some characteristics and information about the nodes.

5. Enhancing the map representation in the simulator with additional data allowing intel-

ligent routing and enabling the loading of any selected area from Open Street Map to

the simulator.

4 The Geo-Social Mobility Model

The first goal of this work is to incorporate the social mobility aspects in the simulator

and blend them together with the geographical mobility restrictions so that both work in

harmony to control the vehicles movements in a way that mimics the real life scenarios with

all its variations. A brief discussion of the simulator used in our work, followed by a detailed

discussion of our proposed approach are given below.

4.1 The VANET Simulator

The purpose of the VANET Simulator is to have realistic mobility traces that mimic the

behavior of the vehicles with its variant scenarios. It takes also into consideration the roads

networks and the variant speed and acceleration, the different traffic light and rules...etc.

Despite the fact that the proposed mobility model can be integrated with any simulator,

one had to be chosen for deployment and testing purposes. SUMO was found to be the

most suitable simulator to serve the purpose of this work since it allows the loading of digital

maps from free sources like the OpenStreetMap. It has a fine handling of the vehicles micro

mobility aspects and their traces are ns-2 compatible. It has documentations and online

available examples and is still under development and improvement.

The SUMO is a microscopic and discrete time mobility generator. The roads network can

be manually generated through an interface or imported into the simulator from a digital map

like the Open street Map. The mobility generator is purely microscopic where each vehicle

has its own identifier and is characterized by its departure time and route in the network.

Vehicles can be generated in many ways; for large scale networks, they are generated through

the origin to destination matrix, where the source node and the destination node of each

vehicle is identified. The other possibility is to identify the entire route of each vehicle,

which is more applicable in the public transport simulation scenarios. The vehicles routing

is done through a traffic assignment employing a routing procedure such as shortest path

calculations under different cost functions and allows dynamic link weight assignment during

the simulation . The SUMO has very advanced microscopic features, including the traffic

lights implementation, the lane changing simulation and the management of the vehicles

speed[21].

4.2 Geo-Social Model

The proposed Geo-social model will mainly affect the choice of the source and the destination

of the vehicles, in the VANET simulator, to be driven by both their attraction towards their
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acquaintances and towards locations of interest according to the time of the day rather than

being chosen randomly. An example is that one is more likely to meet work colleagues in the

morning and personal friends in the evening. As well as one is more likely to go to work place

in the morning and to social clubs in the evening.

The main factors that affect the human mobility are both the temporal regularity and the

spatial regularity. The temporal regularity is simulated by defining the social sphere S for

each vehicle that is taking part in the simulation. The social sphere contains the frequently

visited locations by that vehicle along with the purpose of the visit. Thus, for each vehicle

Vi:

Si = A1, A2, A3...An (1)

Were Aj is an anchor or in other words a possible destination on the map and n<number

of all anchors of the map. When the next destination is to be chosen for the vehicle Vi,

the attraction towards each anchor in its social sphere Si is calculated, and the anchor with

maximum attraction value is chosen.

For an Anchor Aj in the social sphere of vehicle Vi, the attraction function Tij at a time

t is as follows.

Tij(t) = (1 − x)Stij(t) + xSlij(t). (2)

Where Stij(t) denotes the attraction of Vi towards its social acquaintances that have the An-

chor Aj as their next destination and has the possibility to meet them at that destination. The

meeting possibility is calculated by taking into account the cars speed which indirectly reveals

the traffic condition, the distance to the destination and the pause time at the destination.

Slij denotes the attraction of the vehicle Vi towards the anchor Aj because of the properties

and the characteristics of the anchor itself. The constant x is to specify which component is

more influential in the overall visiting likelihood and is proportional to the visiting regularity

measures of Vi such as visiting periodicity for that anchor.

To calculate the attraction towards acquaintances, the simulator will be given as input

a data-set representing a social network, from which a social graph is to be inferred. The

nodes of the social graph will represent the vehicles drivers and the edges will represent the

social tie between the different vehicles drivers in terms of type (friendship, family...etc) and

strength (a decimal number between 0 and 1). The next step is to translate the social graph

to an [N*N] connectivity matrices, where N is the number of available vehicles. Each type of

social relation will be represented by a different matrix. Which means there will be a matrix

representing the friendship tie, another representing the family tie and a third representing

the work colleagues tie...etc. Within each matrix a ’0’ is added if no relation of that type

exists between the two nodes otherwise a numerical value is added signifying the strength of

the relation, as shown in Figure 1. Let F be the matrix representing the family relation, R

the matrix representing the friends relation and W representing the coworker relation. Since

by intuition two people may be tied by one or more different social relation, like being friends

and coworker at the same time, the social relation between two vehicle b and c is calculated

as follows:

Abc(t) = F [b, c] +R[b, c] +W [b, c]. (3)

However, the equation 3 is not yet complete. It does not simulate the fact that different

social relations are not equally important at all day times. Since for example, people are more
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Fig. 1. Social network transformed into connectivity matrix

likely to meet their colleagues in the mornings during the working days and their friends in

the evenings. To reproduce this scenario the equation 3 is to be modified in such a way that

each matrix is multiplied by a certain factor that either increments or decrements the values

of the social tie, according to the time of the day, which means that this constant for each

matrix will vary with the time. The equation will then be as follows:

Abc(t) = (Cft ∗ F [b, c]) + (Crt ∗R[b, c]) + (Cwt ∗W [b, c]) (4)

Where Cf, Cr and Cw are constants whose values vary with time and are tuned using real

data sets collected in 4.4.

The social attraction of a vehicle Vi towards a location Aj in its social sphere Si is calcu-

lated to be the summation of the social attraction between the vehicle Vi and all its acquain-

tances having Aj as their next destination:

Stij(t) = Ai1(t) +Ai2(t) +Ai3(t)...Ain(t) (5)

where the numbers from 1 to n denote the vehicle Vi acquaintances having Aj as their next

destination and Ain denotes the social attraction between two vehicles Vi and Vn and is

calculated as shown in equation 4.

To calculate the second part of equation 2 which is the attraction of the vehicles towards

locations Sl, the concept of the social sphere is re-used. The social sphere Si of a mobile

node V i contains the frequently visited locations of that node. It also contains information

about the purpose of the visit to the locations and/or the type of the location. The attraction

towards each location in the social sphere is calculated according to the time of the day and

the properties of the location itself. For this to happen, the map representation is extended

to contain more information about the possible vehicles destinations. To simplify the task,

the locations on the map were classified into one or more of the predefined six classes; Resi-

dential Area,Institution, Daily Necessities,Socializing and Entertainment, Cultural, Physical

Area. For each class, the locations properties have been specified such as the pause time, the

periods were the visit probability is higher...etc. The classification procedure and the classes

description will be discussed in details in section 4.6.

The social sphere of each vehicle is described in a tabular form as shown in table 2.The

first row represents the different nodes ID, which is unique for each destination. The second
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Table 2. Vehicle Social Sphere

Loc ID 4 7 22 31
Attraction 0.22 0.44 0.14 0.2
Purpose work home sport leisure

row describes the frequency F of the vehicle to visit each location as compared to all its visits.

It is calculated as follows:

Fij(t) =
NbofvisitsofVitolocationAjinSi

TotalnbofvisitstoalllocationsinSi

(6)

Thus, the location attraction Slij(t), which signify the probability of a vehicle i to visit the

place j, will be:

Slij(t) = Fij(t). (7)

As previously mentioned, the map locations are classified according to the possible pur-

poses of visits to these locations, some locations can then fall under more than one class at

the same time. An example is hospitals; they are work places for the doctors but service

institutions for the patients. The third row in the table signifies which of the classes are to

be taken into consideration and thus identify the correct characteristics of the place for each

vehicle.

As well as social relations, also locations attraction, varies with time. One goes to work in

the mornings but back home in the evenings. To simulate this fact, a constant is multiplied

with the function Fij(t) in equation 7 to increment the probability of the visits to some places

rather than the others according to the time of the day and the location classes. The constants

will be attribute of the classes the location belongs to. If a location falls under more than

one class then the purpose of the visit will identify the correct class and thus the correct

attributes. Thus the location attraction Slij(t) will be:

Slij(t) = Cxt ∗ Fij(t) (8)

Where x represent the class of the location and Cx is a constant that varies according to the

time of the day t.

Finally by combining the equations 8, 5 and 2, the attraction value Ti to each location in

the social sphere Si of the vehicle Vi is calculated at time t. To choose the next destination

of the vehicle the maximum value of all the calculated attraction values is taken and the

equivalent location is chosen to be the next destination.

4.3 Predicting the Mobility given the Social Network

By intuition, one can infer that the human mobility is influenced by many tangible and non

tangible factors that affect the choice of the next destination. The question that arises is;

which factors will be taken into consideration?, and which of them will be dominating? In

other words, how to combine all of the factors and quantify them so that the simulator decision

reflects the input data? This step is realized through the definition of an attraction function

that measures the attraction of the vehicle towards all the possible destinations and favors

the destination that exerts the highest attraction value on the moving vehicle. As explained

in details in the previous section, the function contains variables representing time, location
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attraction, acquaintances attraction and some other factors, along with constants that should

be tuned to have an accurate significance of parameters affecting the human mobility aspects.

The attraction function needs as input the social network and the corresponding social sphere

of each node of the social network to reproduce the mobility traces of the nodes. Thus the

second goal is fulfilled and the mobility traces are produced through this function and relying

on the input social data.

4.4 Reliance on Real Data as Input

To meet the third goal of this work; the social network, the corresponding social sphere and

the mobility traces are to be based on real data. In more details, the simulator will be

given as input a social network, through which it will be able to build a labeled social graph

with the edges defining the type of the social relation between the vehicles. This stage is

dramatically affected by the availability of data sets from which social network information

is to be extracted. The lack of large data sets has driven previous models to use random

data, which resulted in models that do not fully represent the human behavior. To avoid the

previous problem, this work insists on building the social network based on real data, taking

advantage of the emerging usage of smart phones. The purpose of the experiment is to build

a social network amongst the participant and map it to their mobility traces in order to find

the relation between the social ties of the individuals and their mobility activities.

The social data collection experiment took place in the city of Ulm, Germany. Android

phones were given to the participants on which a tracking application was running. The

participants were chosen with great care to incorporate the different types of social relations.

The experiment was launched in May 2013 and lasted for one month. The timing was chosen

to be a regular month away from the summer vacations or the special occasions to reflect the

normal repetitive behavior of the human mobility. The number of registered participants was

89, of these, 64 have registered a level of participation that is greater than 90%. The level

of participation was measured according to the time the tracking application was on during

the whole period and the quality of answering the questionnaires that were sent during the

experiment period.

The application for collecting the mobility traces is called ”Tracker” and was programmed

in java. At the client side the location information is recorded in a local database at time

intervals that were fixed a priori. The location data is in the form of longitude, latitude,

accuracy and timestamp. When the phone was online via WIFI, the location information was

sent to the server on which the data processing took place. For each participant, the frequently

visited locations were marked. By the end of the experiment marked locations were sent to

the user to label them, in terms of the purpose of visiting the place and probably the name

of the location if not recognized by the server. The users were requested to define their

acquaintances from the participants of the experiment and the type of the relation through

his friends list. The meetings with these acquaintances were detected and recorded by the

server. The scenario of people meeting frequently without having actual social bound was also

considered by comparing the traces of all the participants and when several participants are

at the same place at the same time a meeting is recorded. Shown in Figure 2 one graphical

interface of the tracking application.

As previously mentioned the social network graph is a labeled graph, with the nodes rep-
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Fig. 2. The Graphical Interface of the Tracking Software

resenting the participants in the experiment and the edges representing the relation between

them, if any. The label on the edges represent both the strength and the type of the relation

between the nodes. The type of the relation is extracted from the gathered friends list of the

users, since in this list the type of relation is requested. The strength of the relation that a

node A has with another node B is calculated from the gathered data to be the number of

the meetings between the Nodes A and B divided by the total number of meetings reordered

for node A with all other nodes.

4.5 Putting the Social Relation in a Mathematical Framework

The strength of the relation between the mobile nodes is represented by the numbers in

the connectivity matrices. In the previous step these numbers were calculated from the

mobility traces to be affected by the number meetings. As a matter of fact, there exist many

alternatives to calculate these values, according to the available set of data. In the absence of

the mobility traces, it is possible to rely on questionnaires to rate friends closeness. But this

is not always significant, since close friends can have less number of meetings due to distance

factors. Another way to do it is by having information and statistics about the participants

forming the input social network; one can infer the probability of them to meet. The idea

presented in this section is inspired by the work done in the SUPSI lab in Switzerland.

The idea is based on the fact that people with common interests or common characteristics

tend to have higher probability to meet and socialize. Thus, the more two people have in

common, the higher is the probability of them to be in contact. An example is; two people

working in the same department and speak the same language tend to have more contact

then two who doesn’t share any common language. However, different characteristics have

also variant impact on the contact probability, which means that not all the properties are of

the same significance.

Since the idea is to map social information into a numerical value signifying the meeting

probability of the two nodes, then each property is to have a mathematical equation that maps

it into a numerical meeting probability . An example is the language property, its equivalent
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mathematical equation is as follows [13]:

D = 1− Σ
sharedlanguages

allspokenlanguages
(9)

The D designates the social distance of two people and indirectly implicates the meeting

probability. The greater the distance the weaker the social tie and thus the less the probability

of the meeting. The weight of a property represents how significant is the property in affecting

the meeting probability of the participants. Let Diab be the mathematical equation that maps

the property i that is shared between the individuals a and b into a numerical value. Let

Wi be the weight or the significance of the property i on the meeting probability. Let n be

the number of common properties between two individuals a and b. The meeting probability

Mab will be calculated as follows:

Mab =
w1 ∗D1ab + w2 ∗D2ab + w3 ∗D3ab...+ wn ∗Dnab

n
(10)

However, the experiment by SUPSI was run only in the campus, which restricts the par-

ticipants to be belonging to one social group and omit the variation in the data set. Moreover,

they restricted the weight of each property to either 1 for the significant characteristics or to

0.2 for the less significant ones which leads to non accurate results. Standing on that ground

we decided to use the experiment run in Ulm, that is intended to collecting social information

and its related mobility traces, to evaluate and to investigate more characteristics and produce

the equivalent mathematical equations in order to have an alternative way for building the

connectivity matrices. A questionnaire is given to the participants about the languages they

speak, sports they practice, job position...etc. The effect of sharing each common property

will be compared against the recorded contacts between the participants that share it and a

mathematical equation will be developed to map each property to a meeting probability. The

results will be then compared with those who were previously detected at the SUPSI labs and

a conclusion is to be drawn.

4.6 Generic Location and Map Representation

The main components of a VANET simulator are the mobile nodes or the vehicles, the mobility

model that governs the movements of the vehicles to mimic the real life behavior of cars and

finally the simulation area on which the vehicles move. Since the purpose is to have a realistic

VANET simulator, then as much as it is important that the vehicles and the mobility model

mimic reality, it is as well needed that the simulation area produces a real geographical

environment for the simulation. The map representation within the simulator is then of vital

importance to produce realistic mobility traces of a certain location. Since we are not only

concerned with having a geographical based mobility model but rather socio-geographical,

then mapping between the available social data and the location where it was produced is

needed. The already existing VANET simulators rely on having a representation of a certain

country or location where all the traces are forced to be produced [27, 17, 11]. Many of

them used the GDF map where the road topology is imported from a Geographical Data File

(GDF) [10]. Unfortunately, most GDF file libraries are not freely accessible. Others used the

TIGER map in which the road topology is extracted from the TIGER database [30]. The

level of detail of the maps in the TIGER database is not as high as that provided by the GDF
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standard, but this database is open and contains digital descriptions of wide urban and rural

areas of all districts of the United States only.

Other simulators like the MATsim [4] and SUMO have the feature of importing the map

from digital sources like the OpenStreetMap. However, for an advanced social based mobility

model, simple location description is not enough. The geographical map should support the

social model by providing more location information assisting the mobile nodes in selecting

the destination in such a way that mimic the human brain when taking the decision to visit

a place. Extending the representation of the map locations with information and statistics

is thus crucial to achieve a realistic social based mobility model. The representation of the

places include the type of the location (work location, leisure...etc) and the pausing time at

the place which differs according to the type of the place. An example of the pausing time

is; people tend to stay at work 8 hours but at a restaurant around 2 hours. As previously

mentioned the attraction of the vehicle towards a certain location is reflected by the type of

each possible destination and according to the time of the day one place is favored than the

other, which is reflected in the attraction value.

The technique presented in this work is based on the Open Street Map. The OSM uses

a tagging system to represent the place name and properties along with the co-ordinates of

the place to stand for its exact location. The maps are updated through ground surveys,

aerial photography or government resources [26]. The Open Street Map offers the feature of

exporting a selected area as an XML file, in which the locations are described by tags. This

feature have been used to produce a software that integrates any Open Street Map extracted

XML file with the VANET simulator, classifies the locations according to their type and adds

more information about the places based on the classes they belong to, such as the pause

time that the vehicles need to spend at each location and the parking areas around the place

classifies according to their distance from the desired destination.

The main challenge of this technique was the identification and classification of the loca-

tions, since the different points on the Open Street Map are represented using user-defined

tags. There is no fixed metadata, as these tags are defined by different users. However, a

large set of predefined tags is available and can be reused for describing a new point on the

map. The paper mentioned in [15] provides an insight on the tagging techniques used by the

users. The difficulty was then to handle the semi controlled vocabulary and use it to identify

and classify the points on the map.

Another challenge arises from the intention to extend the different locations with additional

data, like the type and the pausing time. In this matter we relied on surveys to identify the

locations of interests that can be possible destinations for the vehicles, the time where the

probability to visit these locations is high, as well as the pause time at the place itself.

As the system is vehicular based, the place itself is not the destination but rather the

parking lot attached or near to that place. The parking places for a certain destination are

then to be identified and classified according to their distance from the destination and sent

to the simulator decision engine to decide which will be the next destination for the vehicle.

The approach to overcome the previously mentioned challenges is based on building the

system’s own dictionary out of the most commonly used tags. The Open Street Map tags

are in the form of <key: value>. An example of the possible tags describing buildings on

the map is: <building: apartment>, <building: hotel>, <building: hospital>, <building:
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school>...etc. The dictionary is divided into six classes of tags, through which the locations

classification and properties attachment takes place. Each possible location tag that is to be

detected by the software is listed under one or more of the dictionary classes[22]. The six

classes are:

1. Residential: Representing the homes and living areas.

2. Institutions: Formal locations providing indirect service like universities, offices...etc.

3. Daily necessities: Locations that provide direct service like markets, shopping malls,

post office...etc.

4. Socializing and Entertainment: Are locations that evolve social interaction like clubs,

pubs, cinemas...etc.

5. Cultural: involving museums, libraries, churches...etc.

6. Physical Areas: Examples of this category are swimming pools, sports ground, sports

center...etc.

By examining the previous categories, one will notice that there is no obvious borders

separating them. In other words, one place may fall under many categories and thus have

different properties. The choice of the right properties to be applied, like the pausing time,

is based on the purpose of the visit to the place. An example is the bank, it may be a daily

necessity when one visits it to withdraw money, and may also be an institution if one works

at the bank. The pausing time of the vehicle will be chosen to be eight hours or ten minutes

based on the purpose of the visit that will be specified from the gathered social data. The

dictionary is then be filled with the most commonly used tags that are extracted and placed

in the dictionary under one or more of six categories, based on intuition.

The Open Street Map selected area will be integrated with the VANET simulator by giving

the extracted XML file as input to the software. The software will parse the file, analyze the

different tags and compare their values with the dictionary. If there is a hit, the location

is registered and the corresponding categories are added. This operation is repeated until

the XML file ends. The software then outputs the data registered into files with the format

required by the simulator to draw the map.

Several tests were run to rate the performance of our maps parser and locations classifier.

Several areas in different countries were randomly selected and given to the software to ex-

tract the possible destinations and classify them. By analyzing the output, as shown in the

samples below, our technique has proven great success in all of the test cases. The minimum

performance was 95% of locations detection out of all possible vehicles destination. Below are

two examples of test cases run in two different cities; Munich and London.

An area from the city of Munich in Germany was randomly selected from the Open

Street Map with the following bounds: minimum latitude = 48.1498300, minimum longitude=

11.5509300, maximum latitude= 48.1533500, maximum longitude= 11.5563400. The area is

approximately 0.18 km2. The output XML file was then given to the software as input,

after being manually analyzed to compare the results of the software against the manually

extracted data. The area contains a large number of tagged locations. Some of these tags
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are descriptive, in other words, they explain the functionality of the place. Others are non-

descriptive and one can never guess the functionality or the type of the place by simply reading

the tag. An example of such tags is <building=yes name=Gebude D>. Total of 259 tags were

manually extracted from this area, of which 128 were non-descriptive tags. In this example

out of the 128 non-descriptive tags a total of 124 locations contain tag <building= yes>. The

total number of descriptive tags in the selected area was 131. These tags include the possible

vehicular destination tags along with traffic signs, traffic lights, highway tags...etc. Only 25 of

them were found to be possible vehicles destination. All 25 locations were correctly detected

and classified by the software. So the accuracy of the classifier remains 100% in this example.

To deal with the non descriptive tags, the assumption that the tag <building= yes>

always signifies a residential area was made. The reason on which the assumption was based

is that the residential areas or the residential buildings are, in most of the cases, poorly tagged

since they are of interest to a fewer number of people when compared to the commercial and

service buildings. By manually checking these 124 locations through Google earth and other

maps, 61% of them were actually found to be residential buildings and thus our assumption

is proven to be valid.

Another area from London, UK was randomly selected with the following bounds: mini-

mum latitude= 51.5160940, minimum longitude= -0.0770950”,maximum latitude= 51.5171450,

maximum longitude= -0.0750510. The area is approximately 0.03km2. In this area a total of

58 locations with non-descriptive tags were found. Example of the non-descriptive tags in the

selected London area: <tag k=”area” v=”yes”> <tag k=”level” v=”0”> <tag k=”name”

v=”Rumours”> <tag k=”source” v=”photograph”>.

Out of the 58 locations a total of 34 locations contain the tag <building= yes> and were

considered to be residential areas. The total number of locations with descriptive tags in

the selected area was 73, 41 of them were possible vehicles destinations. The number of the

locations the software was able to detect is 40. The non detected tag was <Shop=tattoo>.

So the overall accuracy of the classifier is 97% in this example.

5 Conclusion

After analyzing the previous models, the problem became very obvious. None of the exist-

ing models is yet complete in the way it models the vehicles mobility. The word complete

signifies how close it is to simulating the actual human mobility. The more the model con-

siders characteristics of human mobility, the more it is close to be realistic. Although efforts

have been deployed in this area of research, the models produced so far lack one or more of

the significant human mobility traces as obvious from the above analysis. Some ignored the

temporal regularity, others the spatial regularity and others the geographical restriction...etc

[23]. Examining the related work suggests the need for a socio-geographical mobility model

that simulates the human mobility characteristics and is to be integrated with any VANET

simulator. The purpose of this work is to blend together the social aspects of the human

mobility with the geographical aspects that restrict the movement of the vehicles. This is

done by enhancing the SUMO simulator that only reflects the geographical aspects of the

vehicles mobility, with the social aspects that will direct the cars movement. Thus, making

it eligible for testing the unicast social based routing protocols and many other applications

and protocols aiming at building an intelligent and efficient VANET network. Moreover, the
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geographical model is extended and enhanced to support the integration of the social aspects.

Hence, the simulator has the possibility to produce mobility traces for any geographical area

by giving it the map data files as input and post process the locations information to extend

the specification and the properties of the locations with data that supports the social pro-

file. This work focuses on avoiding the usage of random data and builds the theory based on

gathered information of a social network and its equivalent mobility traces. The work pre-

sented contributes in putting the social relations into a mathematical framework and bases

the theory for predicting the mobility of the vehicles on the available data.
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27. M. Piórkowski, M. Raya, A. L. Lugo, P. Papadimitratos, M. Grossglauser, and J.-P.

Hubaux, “Trans: realistic joint traffic and network simulator for vanets,” SIGMOBILE
Mob. Comput. Commun. Rev., vol. 12, no. 1, pp. 31–33, Jan. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1374512.1374522

28. C. W. Reynolds, “Flocks, herds, and schools: A distributed behavioral model,” in Computer Graph-
ics, July 1987, pp. 25–34, sIGGRAPH ’87 Conference Proceedings.

29. A. G. Ribeiro and R. Sofia, “Mobility models based on social behavior,” (agr,rsofia)@inescporto.pt.
30. U. C. B. T. system database. [Online]. Available: http://www.census.gov/geo/www/tiger.
31. J. Vernon, “Control systems principles: Fuzzy logic systems; n,” http://www.control-systems-

principles.co.uk/whitepapers/fuzzy-logic-systems.pdf.
32. C. Zhao and M. L. Sichitiu, “N-Body: social based mobility model for wireless ad hoc network

research,” in 2010 7th Annual IEEE Communications Society Conference on Sensor, Mesh and
Ad Hoc Communications and Networks (SECON). IEEE, Jun 2010, pp. 1–9.


