
Journal of Mobile Multimedia, Vol. 9, No.3&4 (2014) 273-285
© Rinton Press

OBJECT SERIALIZATION WHITE FRAMEWORK IN J2ME AND ITS REFACTORING
IN BLACK FRAMEWORK

MOHAMMED MAHIEDDINE1u, MEHDIA AJANA EL-KHADDAR2v, SALYHA OUKID1w

1LRDSI Laboratory, University of Blida, Algeria
2SIM Laboratory, ENSIAS Rabat, Morocco

umo_mahieddine@hotmail.com
vmehdia.ajana@gmail.com

wosalyha@yahoo.com

J2ME mobile agents developers are very soon confronted with the problem of objects transfer over the
communication flows (streams) provided by J2ME which, by themselves, take into account only the
primitive types or simple String objects of JAVA. Serialization is the process of saving the state of an
object on a flow of communication, transferring it in the net, and restoring its equivalent from this flow.
Unfortunately J2ME software development cannot be used as standard JAVA because it has many strong
restrictions, which greatly restricts its use relatively to JAVA. For example, in the case of mobile agent
software development, J2ME does not provide tools for the serialization of objects. This research
addresses the lack of a standard development environment for mobile agents under J2ME. In this work we
propose a pattern-based white-box application framework, in order to achieve the serialization of complex
JAVA Objects and its re-factoring into a black-box application framework.

Key words: Design Pattern, White-Box Framework, Black-Box Framework, Re-
Factoring, Re-Engineering, Serialization, J2ME, Ubiquitous, Mobile Agent.

1 Introduction

J2ME [1] is a Java platform designed specifically for limited applications running on small devices
such as mobile phones, PDAs, and so on.

The Design technologies of Java applications for mobile devices under J2ME is still in its infancy,
but will play a significant role in the development of various applications in the nearest future. These
technologies will mature and integrate object-oriented programming, design patterns, and application
frameworks. This maturity will induce a considerable rise in the development of increasingly
consistent applications in the ubiquitous world [2].

Reusability is one of the means, available to the software developer, to optimize and rationalize the
design work. Indeed, reusability reduces the steps of design and testing of reused components, it also
simplifies the maintenance and the evolution of applications [3].

The process of Serialization [4] allows storing object-related data in a stream, and recreating the
state of the object after its transfer across a network.

274 Object Serialization White Framework in J2ME and its Refactoring in Black Framework

A design pattern [5] is a solution to a common problem that repeatedly appears in the software
design. This is not a complete design that could be directly converted into code, but a description or a
model describing the relationships and interactions between classes and objects, while indicating how
to solve a problem in different situations. The design patterns provide a variety of design techniques
facilitating the analysis, the design, the re-use, and the maintainability of the framework. Design
patterns allow the creation of reusable components and could make frameworks less rigid and less
sensitive, by eliminating unexpected dependencies between software components. Therefore design
patterns make maintenance tasks easier than in practice, and more stringent than the initial
development [3].

 A framework is a set of cooperative classes [6] that captures the expertise of a certain application
domain in a generic way. Significant applications in this area can be specialized by inheritance (white
box framework) or composition (black box framework) from this skeleton by implementing their
abstract methods and by adding new application features to them.

The tendency towards development by means of pattern-based frameworks is becoming more and
more essential since many years ago [6]. As for the expected benefits from the use of pattern-based
frameworks, they are important to reduce production costs as well as maintenance costs, and to
encourage reuse by users and developers.

Re-factoring [7] is the process of software change, so as not to affect its external behavior with
respect to its users, while improving its design and internal structure. The objective of pattern-based
refactoring is to improve the quality of software such as understandability, adaptability, and
reusability.

The success of a consistent and important application with J2ME as an agent system, in our view
point, depends much on the software architecture construction and structuring as well as the quality of
the chosen software design methods.

The standard JAVA is applied in the design of software mobile agents because by itself supports
the process of Serialization.

Unfortunately software development in J2ME has many strong restrictions, which cannot be easily
used as the standard JAVA or Android [8] which is basically a rewrite and much more powerful
alternative of J2ME.

For example, in the case of developing mobile agent software, J2ME does not provide tools for the
serialization of objects.

Object serialization proposed in [4] consists of transforming objects into a string or an array of
bytes or primitive type objects, which in practice is used to transfer them on a flow of communication
across a network connection.

Tom Höfte [6] has affirmed that for the case of complex objects, the serialization process is not
simple to achieve.

This research addresses the lack of a standard development environment for mobile agents under
J2ME. In this paper, we propose a reusable technique [3] for serializing complex objects in J2ME,
carried out by means of a pattern-based framework, while following optimized software design

M. Mahieddine, M. Ajana. El-Khaddar, and S. Oukid 275

techniques (maintainability, re-design and re-factoring) owing to the fact that good frameworks are
often prone to improvement. Our work is mainly based on the observation that the behavior of
serialization is not a natural behavior of objects, as that was the case in the solutions proposed by [2],
but rather, that of the streams in which related objects will be transferred for their serialization. This
observation has led us to attach the serialization behavior to streams and not to the objects themselves.

The paper is organized into five main sections as follows: in section 2 we present the basic idea we
have followed to reach the design of a framework for JAVA object serialization. Section 3 concerns
the description of the approach that led us to design of a white-box application framework. In section
4, we describe in detail the re-factoring of the white-box framework, leading to a black-box
framework. Finally we give a conclusion and some perspectives in section 5.

2 Basic Design

In this section we supply an overall framework terminology needed to handle serialization as a
comprehensive concept, and the essential basic design ideas needed in serialization framework
understanding are provided.

2.1 Current Practice and Research

We noticed that it is not a natural behavior for objects to serialize themselves, but they rather serialize
the streams in which they will be transferred [4].

The objective of the re-factoring operation is to enhance the OutputStream provided by J2ME,
which allows a transfer of only primitive data types such as bytes or String objects, and then a more
general stream: an ObjectOutputStream, which will be used for transferring Objects, as shown in
Figure 1.

A framework is a reusable design of a family of applications in a given application domain. This
design consists of a set of components (objects) that collaborate to carry out a set of responsibilities
that form an application. The objects and their collaborations are described by a number of classes
(usually abstract) of an object-oriented programming language. A variable aspect of a family of
applications in a framework is called a hot-spot. An abstract method (method without implementation)
represents the hot-spot of a framework. Therefore, the process of filling hot-spots consists of using
inheritance to define the required functionality according to the interface specified by the abstract
methods. A developer customizes the framework to a particular application by sub-classing (white-box
framework) and composing (black-box framework) instances of framework classes [6].

Figure 1 Upgrading of DataOutputStream of J2ME in ObjectOutputStream.

ObjectOutputStream
 (Object)

DataOutputStream
(byte, …)

276 Object Serialization White Framework in J2ME and its Refactoring in Black Framework

3 White-Box Application Framework of Serialization

In this section we describe our proposed process for the design of a white-box framework for object
serialization in J2ME, and we provide a closer look at the software components of the architecture.

The framework for implementing serialization that we developed in J2ME, will allow an almost
identical use of standard JAVA serialization, while providing a basic skeleton that developers can
specialize, subsequently, to serialize their objects in J2ME.

The solution proposed in [2], needs to be re-factorized for two distinct purposes. The first one is
for applying it to more complex objects, and the second one is for the purpose of maintainability, by
means of software reusability through a design pattern-based framework.

3.1 Application Framework Architecture

The solution proposed in [2] consists of attaching to each object class, a special method whose role is
to decompose the object into primitive types which can be sent in the J2ME OutputStream over the
communication network.

Figure 2 X class implementation from KSerialisable.

Figure 3 Class diagrams of ObjectOutputStream and ObjectInputStream.

These methods consist mainly of decomposing an Object into an array of bytes.

The weakness of this method is that it is not applicable to complex JAVA objects, in other words,
objects whose structure includes references to other objects. The solution we propose, in this paper, is

M. Mahieddine, M. Ajana. El-Khaddar, and S. Oukid 277

to design the class to be serialized (e.g. that we would like to send objects over the network) as a class
that implements the KSerializable interface. The latter, which comprises no method, is in fact a simple
container of each general object that we would like to serialize (see Figure 2).

The ObjectOutputStream and ObjectInputStream classes, which we designed as the basic input
stream and output stream for object serialization, should comprise the following methods (see Figure
3):

• WriteObject(KSerializable), and

• ReadObject()

Then, we simply create the ObjectOutputStream and ObjectInputStream classes specific to each
class of JAVA Object to serialize, which will be inherited.

The writeFlag (), and readFlag () methods allow you to write or read an indicator of an object in
the DataOutputStream and DataInputStream., meaning that we should create for each class of objects
to be serialized its own indicator (as a solution the class name itself was chosen).

For each class of objects to be serialized, we must create its own input stream and output stream,
for example in the case of X Class, we should create its XObjectOutputStream and XObjectInputStream
respectively as the output and the input stream, which will inherit respectively the writeObject () and
readObject () methods.

The streams created, in our case the XObjectOutputStream and XObjectInputStream, will inherit
the writeFlag (), and readFlag () methods of ObjectOutputStream and ObjectInputStream respectively
(see Figure 4).

Figure 4 Streams of writing and reading Objects of general X class.

The first resulting problem was how to recognize specific types of KSerializable objects we
receive through the output stream. We solved this problem using refactoring by adding the two
methods, writeFlag () and readFlag (), to the classes of streams of each particular serializable object,
as XObjectOutputStream and XObjectInputStream in our example of the class X. The role of these

278 Object Serialization White Framework in J2ME and its Refactoring in Black Framework

methods is to set a flag, which is used as an indicator of the particular class of the object to be
serialized.

The second problem we encountered was the problem of framework reusability. The problem is
how to incorporate in the framework, the code for reading each particular kind of object class without
using the case structure which needs to be refitted for each introduction of new class of objects to be
serialized. The refactoring we propose is to use a design pattern which uses the weakest coupling
possible, which led us to choose, for reasons of past expertise in the manipulation of this pattern, its
achievability, and that of the elegance of the produced design, the Observer design pattern [2].

The idea is to associate a Reader as an observer of the Receiver for each class of object to
serialize. The role of the Reader is, as an observer, once it is alerted by a good indicator to recover its
object.

The Receiver is in fact only an abstraction built around the output stream of the network
connection using the Connector class of J2ME.

Just now, for each instantiation of the framework for the case of serializing a particular object,
such as of the X class, we attach a XReader and XWriter specialized for the recognition of the indicator
that it provides, that is to say that it is provided by the X class in our example.

4 Black-Box Application Framework for Serialization

Stable frameworks usually result from several design iterations and a lot of work involving structural
changes. These changes will involve a series of re-factoring [7]. Good frameworks should always
"turn", e.g. evolve from white-box frameworks to black-box frameworks with time. Concerning our
framework, is was designed as a white-box framework and we re-built into a black-box framework
based on the Observable/ Observer design pattern.

We noticed that there were some parts that need to be re-factored or re-engineered in our white-
box application framework. Therefore we thought introducing greater reusability to the framework by
incorporating other possible JAVA interfaces, instead of some classes.

4.1. Framework Architecture

The first thing we could do on our white framework is to transform the abstraction that was not very
natural, for example the class ObjectOutputStream has the characteristic structure of an indicator. This
allows writing objects, while this is not a very natural characteristic for a stream, but it was done by
pure goal of genericity.

 In fact a general stream, in our case, is an abstraction for writing an object, not for writing an
indicator, as was the case in our white framework. This led us to make some changes in this first
framework. The same comment could have been for the case of the stream of reading.

Our process of re-factoring has led us, for reasons of reusability, to replace the
ObjectOutputStream class, by the ObjectOutputStreamable interface, that will contain the abstract
methods writeObject(KSerializable object), and readObject(). The role of special streams for each
object to serialize is to implement this interface, so they can define its methods according to their
needs.

M. Mahieddine, M. Ajana. El-Khaddar, and S. Oukid 279

For the same reasons we have, for example, moved the writeFlag (String flag), and String
readFlag () methods, to the FlagOutputStreamable and FlagInputStreamable interfaces, and therefore
they have become abstract.

By what follows, we provide the transformation of the inheritance of the white framework by the
composition required in a black framework (see Figure 6).

But in the process of re-factoring, after moving the method that handles the indicator toward the
interface, we are faced with the problem of how to encrypt the indicator. To resolve this problem, we
have provided a FlagOutputStream class, which implements this interface, and includes a reference to
the EncryptedInputOutputStream. The encryption side will be treated individually with more detail in
another paper.

4.2. Testing the Instanciation of the Framework

to is a pattern-based framework for mobile and intelligent agents in J2ME [2]. Being Given that we are
constrained to operate only by pseudo mobility in J2ME, we preferred to migrate, in the to framework,
the messages sent by the agents and not the agents themselves. In to, there are three kinds of messages.
Since all these messages inherit from the GMessage class, this class should be the one which
implements the KSerializable interface (see Figure 5). So, as explained in the case of any class X, we
shall construct, for each of these messages, a special stream derived from J2ME OutputStream for its
serialization, and a second derivative of J2ME InputStream for its deserialization, as shown in Figure
7. The problem was to integrate all these classes, with the server, originally built, and that we no more
would re-factorize it as it always gives satisfaction. This is due to its architecture based on delegated
classes, and the proxy pattern that is the basis for the design of the proxy server.

Figure 5 DMessage implements KSerializable through GMessage.

The integration of this part in the Framework to, led us to maintain the old Server class of to, but
the problem that arose because of the new integration was how to preserve the architecture of the

280 Object Serialization White Framework in J2ME and its Refactoring in Black Framework

framework, without falling into the gear of the case structures that should be incorporated for
processing each message through its specific streams, and possibly other elements to migrate than
other developers could develop later. This problem, as was explained above, was solved using the
design pattern Observer/Observable. We split the Client abstraction, in two distinct abstractions, one
modeled by a special delegate class called Sender and the other by a class called Receiver that will be
the Observer of the Client and the Server, and which will be responsible for dealing each with a single
direction of the double bond of the network transfer with the Client. We then delegate, for each class of
messages, a particular object of the Writer class (as AMessageObjectWriter, DMessageObjectWriter
and KMessagaObjectWriter), which has the role to be notified by the Sender, to perform the
serialization of the message. (see Figures 6, 7, and 8).

Figure 6 Class diagram showing the serialization of DMessage.

M. Mahieddine, M. Ajana. El-Khaddar, and S. Oukid 281

Figure 7 Flow of Serialization and De-serialization of the DMessage of to.

Figure 8 Diagram of sequence showing the dynamic of the serialization of DMessage.

282 Object Serialization White Framework in J2ME and its Refactoring in Black Framework

When the information transferred to the stream arrives at the ServerConnexion (a delegate of the
Server, having the task to deal with the connection to the Server), it will notify the Receiver, which by
its turn notifies all of its Observers (as AMessageObjectReader, DMessageObjectReader and
KMessagaObjectReader) (see Figures 9 and 10).

The role of a Reader is to perform the de-serialization of an object, and that after it is notified;
along with the other Readers by the Sender, using the indicator (flag) attached to each particular class
of objects to be transferred over the network.

Figure 9 DMessage Sender side.

Figure 10 DMessage Receiver side.

5 Conclusion

The field of mobile phones is rising in crescendo nowadays. In our viewpoint it is time to start
adapting high level design techniques for the field of designing and programming of small-scale
models [2].

M. Mahieddine, M. Ajana. El-Khaddar, and S. Oukid 283

Our work is part of a pioneering work in the design through "heavy" software design tools in the
field of mobile phones, particularly in the design of software agents [2]. It should be noticed that in the
literature, the design of software using design patterns, frameworks, and re-factoring for mobile
devices in J2ME, is always in an embryonic state. In this work we have initially proposed a pattern-
based white framework for object serialization in J2ME.

We then showed how to solve the problem of genericity resulted from the architectural solution
that we proposed, using the Observer design pattern.

At the end, we detailed the process of refactoring used to upgrade this white framework towards a
black framework. The proposed black-box framework of serialization, was used to migrate the to
agents on mobile devices (see Figures 11, 12, and 13). This later starts to become stable and general, it
has all qualities of a pattern-based framework, however, it will always be subject to improvement
every time it shows any weakness. The subsequent refactoring and reengineering of the proposed
black-box framework could be achieved easily since it was designed using the Observer design
pattern, and the natural relationship between design patterns and refactoring make the design more
reusable and extensible.

Figure 11 Application of a remote DMessage on Mobile Phone Result.

284 Object Serialization White Framework in J2ME and its Refactoring in Black Framework

Figure 12 Application of a remote DMessage on an agent of the Environment.

Figure 13 Resulting Environment after the application of a remote DMessage on an agent.

M. Mahieddine, M. Ajana. El-Khaddar, and S. Oukid 285

References
1. Sun Microsoystems Inc. Java 2 platform, micro edition (j2me), http://java.sun.com/j2me/, 2008.

2. Mazari, R. Study and Design of a pattern-based framework for intelligent and Mobile Agents
under J2ME, Magister in System and Knowledge Engineering, Computer Science Department,
Faculty of Sciences, Blida University, Algeria, July 2010.

3. Khomh, F. and Gueheneuc Y.-G. Do Design Patterns Impact Software Quality Positively?, CSMR
’08, Proceedings of the 12th European Conference on Software Maintenance and Re-engineering,
2008.

4. Höfte, T. Vector and Object Serialization for J2ME-MIDP, http://www.it-eye.nl/weblog/2005/,
2005.

5. Srikanth, J., R Savithri, R. A New Approach for Improving Quality of Web Applications Using
Design Patterns, International Journal of Electronics Communication and Computer Engineering,
Volume 3, Issue 1, 2012.

6. Kirk Douglas, S. Understanding Object-Oriented Frameworks, Phd thesis, University of
Strathclyde, Glasgow. August 2005.

7. Fowler, M. Refactoring: Improving the Design of Existing Code, http://www.refactoring.com,
2008.

8. Meir, R. Professional Android 4 Application Development (Wrox Professional Guides), Amazon,
2012.

