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In information systems, processes requested by clients have to be performed on servers
so that not only QoS (quality of service) requirements like response time are satisfied but
also the total electric power consumed by servers to perform processes has to be reduced.

Furthermore, each process has to be reliably performed in the presence of server faults. In
our approach to reliably performing processes, each process is redundantly performed on
multiple servers. The more number of servers a process is performed on, the more reliably

the process can be performed but the more amount of electric power is consumed by the
servers. Hence, it is critical to discuss how to reliably and energy-efficiently perform
processes on multiple servers. In this paper, we discuss how to reduce the total electric
power consumed by servers in a cluster where each request process is passively replicated

on multiple servers. Here, a process is performed on only one primary server while taking
checkpoints and sending the checkpoints to secondary servers. If the primary server is
faulty, one of the secondary servers takes over the faulty primary server and the process

is performed from the check point on the new primary server. We evaluate the energy-
aware passive replication scheme of a process in terms of total power consumption and
average execution time and response time of each process in presence of server fault.

Keywords: Energy-aware server cluster; Fault-tolerant server cluster; Process replication;

Energy-aware passive replication (EPR); Digital ecosystems;

1 Introduction

In information systems [4], a client issues a process request to a server in a cluster of servers.

Here, the process has to be performed on the server so that not only QoS (quality of service)

requirements like response time are satisfied but also the total electric power consumed by

servers to perform the process has to be reduced [3]. Furthermore, each process has to be

reliably performed in presence of server faults. In our approach [7, 8, 9, 10, 11, 12, 13] to
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reliably performing processes, replicas of each process are redundantly performed on multiple

servers in a server cluster. The more number of replicas of a process are performed, the

more reliably the process can be performed. However, the more amount of electric power is

consumed by the servers. Hence, it is critical to discuss how to reliably and energy-efficiently

perform processes on multiple servers.

The authors discuss energy-efficient clusters where each process is actively replicated [1] on

multiple servers in papers [7, 14, 15]. Here, replicas of a process are redundantly performed

on multiple servers in a cluster. Even if some servers stop by fault, each process can be

successfully performed as long as at least one server is operational. Here, the more amount

of electric power is consumed by multiple servers while the reliability and availability can be

increased. The authors discuss the algorithms in order to reduce the electric power consumed

by servers. Here, once a replica of a process successfully terminates on one server, the other

replicas are forced to terminate in papers [14, 15]. Furthermore, the total power consumption

of servers to redundantly perform processes is reduced in the approach that the starting time

of each replica is made different from the others [15].

In this paper, we discuss an energy-aware passive replication (EPR) algorithm, i.e. how

to reduce the power consumption of servers with the passive replication [1] of a process in

a cluster of servers. A replica of a process is performed on one primary server and is not

performed on the other secondary servers. The primary server takes a checkpoint on the

replica, i.e. local state of the replica is stored in a log. The primary server sends local state of

the replica taken at the checkpoint to the other secondary servers in the cluster. On receipt

of the checkpoint from the primary server, each secondary server saves the checkpoint in the

log. On the other hand, if the primary server is faulty while the replica is being performed,

one of the secondary servers takes over the faulty primary server and restarts a replica of the

process on the local state taken at the checkpoint. Compared with the active replication, a

replica of a process is performed on only one primary server at a time. If a primary server

is faulty, one of the secondary servers takes over the faulty primary server and the replica

restarts by rolling back to the checkpoint. This means, it takes a longer time to perform

each process if a primary server is faulty. Thus, the total electric power consumed by servers

can be reduced in the passive replication compared with the active replication. However, it

takes time to recover from a primary server since a replica of the process has to restart at a

checkpoint. We evaluate the energy-aware passive replication (EPR) algorithm of a process

in terms of the total power consumption and the execution time and response time of each

process.

In section 2, we present replication ways of a process on multiple servers. In section 3,

we briefly present the power consumption model of a server. In section 4, we discuss how to

select a primary server and secondary servers in a server cluster. In section 5, we evaluate

the algorithm for energy-efficiently, passively replicating processes.

2 Process Replication

2.1 Active replication

Suppose a cluster S is composed of multiple servers s1, . . ., sn (n ≥ 1). The servers s1, . . .,

sn and a client cs are interconnected in an underlying network N . Each messages is delivered

to every destination process with no message loss. Processes are assumed to be less reliable
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in the sending order through the network N . A process issued by a client is performed on a

server in the cluster S. In this paper, a term process means an application process which is

performed on a server. We assume each server suffers from stop-fault, no Byzantine fault [5]

and a client cs is not faulty in this paper. A process is replicated on multiple servers in order

to be tolerant of server fault. There are two ways to replicate a process; active and passive

types of replications [1], [2].

In the active replication [2], a client cs issues a process request pi to multiple servers . . .,

st, . . ., su, . . . in the cluster S as shown in Figure 1. On receipt of the process request pi from

the client cs, a replica pti of the process pi is created on each server st. Then, the process

replica pti is performed on the server st. On termination of the process replica pti, the server

st sends a reply to the client cs. Once the client cs receives a reply from one server st, the

process pi commits since servers may only stop by fault. Here, the client cs can ignore replies

from the other servers. As long as at least one server is operational, the process pi can be

successfully performed in the cluster S. If servers might suffer from Byzantine fault [5], the

client takes the majority of replies from servers. In this paper, servers are assumed to only

stop by fault as presented.

    

time 

 

 
 

reply 

Fig. 1. Active replication.

Since a process is performed on more number of servers in the active replication, the

more amount of electric power is consumed by the servers while the process can be reliably

performed in presence of server faults [12]. In the papers [14, 15], the authors discuss how

to reduce the total electric power consumption of the servers in the active replication of a

process. Once a process replica successfully terminates on one server, process replicas being

performed on the other servers are meaningless. Hence, every meaningless process replica

is forced to terminate [14]. The electric power consumed by servers to perform meaningless

process replicas after one process replica successfully terminates on one server can be reduced.

Furthermore, every pair of process replicas do not start on servers at the same time [15]. That

is, the starting time of each process replica is differentiated. By this way, the total amount

of computation of process replicas, i.e. total electric power, can be reduced.
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The semi-active replication [21] is discussed to perform non-deterministic processes on

multiple servers. Here, replicas on secondary servers are performed while receiving checkpoints

from a primary replica but do not send messages.

2.2 Passive replication

A process is performed on only one server in the passive replication [1] while performed on

every server in the active replication. A client cs first selects one server, say st in the server

cluster S for a process request pi as a primary server. The client cs issues the process request

pi to the primary server st. On receipt of the process request pi, a replica pti of the process

pi is created and performed on the primary server st. On termination of the process replica

pti, the primary server st sends a reply to the client cs. Here, the process pi commits.

For each request process pi, a replica group CSi ( ⊆ S) of servers including the primary

server st are selected in a cluster S of servers. Here, the replica group CSi includes a number

rdi (1 ≤ rdi ≤ n) of servers. The client cs selects one server as a primary server and the other

servers are secondary servers in the replica group CSi.

A primary server st may be faulty. A primary replica pti stops due to the stop fault

of the primary server st. While the process replica pti is performed on the primary server

st, checkpoints of the process replica pti are periodically taken on the primary server st as

shown in Figure 2. Let cpkti denote the kth checkpoint (k ≥ 1) taken for a process replica pti
on a server st. At the checkpoint cpkti, the local state of the process replica pti is saved in

the log Lti and transmits the checkpoint cpkti to every secondary server in the replica group

CSi. On receipt of the checkpoint cpkti from the primary server st, a secondary server su
saves the local state of the primary replica pti taken at the checkpoint cpkti in the log Lui.

If the process replica pti successfully terminates on the primary server st, the termination

notification message Tnotif(pti) is sent to the client cs and then the process pi commits.
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Fig. 2. Passive replication.

If the primary server st is faulty after taking the kth checkpoint cpkti while the process

replica pti is being performed, one of the secondary servers, say su takes over the faulty
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primary server st. In this paper, we assume the client cs finds the primary server to be faulty

according to the timeout mechanism. Then, the faulty server st is removed in the replica

group CSi. The client cs selects a secondary server, say su in the replica group CSi as a new

primary server. A process replica pui of the process pi is created on the primary server su
by restoring the local state of the process replica pti in the checkpoint cpkti stored in the log

Lui. On the primary server su, the process replica pui is restarted on the local state saved

at the the kth checkpoint cpkti most recently taken on the server st. The primary server su
periodically takes checkpoints cpk+1

ui , cpk+2
ui , . . ., cp

ncp
i

ui of the process replica pui and sends the

checkpoint cphui (h ≥ k + 1) to every secondary server in the replica group CSi as discussed

in the primary server st. A process replica is thus performed on only one server and only

checkpoints are taken on the secondary servers. On the other hand, a process replica pui is

restarted by rolling back to the kth checkpoint cpkti. This means, it takes a longer time to

recover from the fault of a primary server in the passive replication than the active replication.

3 Power Consumption Model

We consider the simple power consumption (SPC) model [7, 8, 9] of a server to perform

processes. In the SPC model, the electric power consumption rate Et(τ) [w] of a server st
at time τ is either the minimum rate minEt or the maximum rate maxEt depending on a

number of processes concurrently performed. Figure 3 shows the power consumption rate

of a server with a one-core CPU which is obtained by measuring the power consumption

of the server to perform processes for every one hundred [msec]. Here, only one process is

performed on a server in the experimentation 1 (Exp.1). In the experimentations 2 (Exp.2)

and 3 (Exp.3), multiple processes are concurrently performed on a server. Thus, if no process

is performed on a server st at time τ , the power consumption rate Et(τ) of the server st at

time τ is minEt. On the other hand, if at least one process is performed on a server st, the

power consumption rate Et(τ) is maxEt independently of the number n (≥ 1) of processes

concurrently performed. For example, minEt is about 90 [W] and maxEt is 120 [W] in

a computer with a single CPU in our experimentations as shown in Figure 3 [7, 8, 9, 16].

Types of power consumption models to perform types of processes are discussed in papers

[10, 11, 16, 18].

The more number of processes are concurrently performed on a server, the longer it takes

to perform each of the processes. Let minT ti show the minimum time to perform a process

pi on a server st, i.e. it takes minT ti [sec] to exclusively perform the process pi without any

other process. Let minT i show the minimum one of minimum computation time minT 1i,

. . ., minTni of the process pi on serves s1, . . ., sn in a cluster S, minT i = min {minT 1i, . . .,

minTni}. That is, it takes minT i = minT ti [sec] to exclusively perform the process pi on the

fastest server st in the cluster S. The maximum computation rate maxF ti of the process pi is

minT i / minF ti on the server st. The computation rate Fti(τ) shows how much computation

of a process replica pti is performed on a server st at time τ [9, 11, 13]. Fti(τ) ≤ maxF ti.

Suppose a process replica pti starts at time st and ends at time et. Here,
∫ et

st
Fti(τ) dτ =

minT i [sec]. The computation rate Ft(τ) of a server sτ at time τ is equally allocated to each

current process replica pti. Let CP t(τ) be a set of processes concurrently performed on a

server st at time τ . Ft(τ) =
∑

pti∈CPt(τ)
Fti(τ). It is noted Fti(τ) = Ftj(τ) for every pair

of process replicas pti and pui in the fair process scheduling. maxF t indicates the maximum
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Fig. 3. Simple power consumption (SPC) model.

computation rate of a server st. If only a process pti is performed on a server st at time τ ,

Ft(τ) = Fti(τ) (≤ maxF t). Here, the computation rate Ft(τ) is the maximum computation

rate maxF t = maxF ti = minT i / minF ti. The more number of processes are concurrently

performed at time τ , the smaller computation rate Ft(τ) is. Ft(τ) = αt(τ) · maxF t. Here,

αt(τ) is the degradation factor which has the following properties:

(i) 0 ≤ αt(τ) ≤ 1.

(ii) αt(τ) = 1 if CP t(τ) = 1.

(iii) αt(τ1) ≤ αt(τ2) if CP t(τ1) ≥ CP t(τ2).

For example, if only one process pi is performed on a server st, Ft(τ) = maxF t, i.e. αt(τ) =

1. If a pair of processes pi and pj are performed on a server st, Ft(τ) = 0.9 · maxF t where

αt(τ) = 0.9. Due to the process switch overhead, it takes a longer time to perform each of

the processes, i.e. 1 / 0.9 = 1.11 times longer than the exclusive execution of each of the

processes.

The energy−efficiency EF t of a server st is defined to be a ratio maxEt / maxF t. The

energy-efficiency EF t shows how much amount of electric energy [W] a server st consumes to

perform a computation unit. “EF t < EFu” means that a server st is more energy-efficient

than another server su. For a process pi, the estimated power consumption EP ti of a server

st to perform a process replica pti is αt · EF t · minT ti. Here, αt is the degradation factor

αt(τ) of the server st at current time τ . The degradation factor αt(τ) depends on the number

of processes performed on a server st at time τ .

4 Server Selection Algorithms

A client cs issues a request process pi to a primary server in a server cluster S = {s1, . . ., sn}

in the passive replication as discussed in the preceding section. We would like to discuss how

a client cs selects a primary server st and secondary servers for a request process pi issued by

a client cs in the cluster S.
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4.1 Replica groups of servers

A primary server st and (rdi − 1) (rdi ≤ 1 ) secondary servers to be in a replica group CSi

are selected in the cluster S for a request process pi as follows:

[Server election algorithm]

(i) Select a primary server st where the estimated electric power consumption EP ti to

perform a process replica pti is the minimum in a cluster S of the servers.

(ii) Randomly select a number (rdi − 1) of secondary servers in the server cluster S.

Here, a replica group CSi is composed of a primary server st and secondary servers

selected in the selection algorithm. The client cs issues a request process pi to the primary

server st. As discussed in the preceding section, one of the secondary servers takes over a

primary server st if the primary server st stops by fault. In addition to a primary server st,

secondary servers have to be selected in the replica group CSi. Servers whose maximum power

consumption rates are smaller can be selected as secondary servers. However, every pair of

replica groups CSi and CSj for processes pi and pj , respectively, include a more number of

common secondary servers. In addition, a process pi is not performed on a secondary server

in the replica group CSi as long as a primary server st is operational. Even if an energy-

efficient server su is selected to be a secondary server in the replica group CSi, a process

replica may not be performed on the server su. In addition, just checkpoints are taken on

secondary servers to distribute overheads to every secondary server. Hence, secondary servers

are randomly taken in the cluster S in this paper.

A process replica pti is performed on the primary server st as presented in the preceding

section. Each time the primary server st takes the kth checkpoint cpkti (k ≥ 1) of the process

replica pti, the server st sends the checkpoint cpkti to every secondary server in the replica

group CSi. In addition, the server st sends the information on the checkpoint cpkti, i.e. the

checkpoint number k to the client cs. The client cs recognizes which checkpoint cpkti a primary

server st has most recently taken when the client cs detects the primary server st to be faulty.

On receipt of the kth checkpoint cpkti from the primary server st, each secondary server su
saves the local state of the process replica pti in the log Lui as presented before. Then, the

secondary server su sends the checkpoint number k to the client cs.

4.2 Selection of a primary server

In this paper, we assume the client cs detects that the primary server st gets faulty. For

example, the client cs periodically sends an AY A (Are you alive) message to the primary

server st. On receipt of the AYA message, the primary server st sends an IMA (I am alive)

reply to the client cs. If the client cs had not received an IMA reply from the primary server

st, the client cs recognizes the primary server st to be faulty. If the client cs thus detects the

primary server st to be faulty after taking the kth checkpoint cpkti, one secondary server su is

selected to be a new primary server in the replica group CSi as follows:

[Selection a primary server in secondary servers]

(i) Select a secondary server su where the checkpoint cpkti is saved in the log Lui and the

estimated power consumption EP ti to perform the process replica pui is the minimum

in the replica group CSi.
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Here, the faulty primary server st is removed in the replica group CSi. The new primary

server su periodically takes checkpoints cpk+1
ui , cpk+2

ui , . . ., cp
ncp

i

ui while performing the process

replica pui. As discussed here, secondary servers are randomly selected in the cluster S in this

paper. Here, while a process replica pti can be energy-efficiently performed on a primary server

st, a process replica pui may not be able to be energy-efficiently performed on a secondary

server su if the primary server st gets faulty.

4.3 Revised selection algorithm

Another idea is that servers are classified into a number ri (≤ rdi) of classes Ci1, . . ., Ci,ri

so that each server su in a class Cil is more energy-efficient than each server sv in a class

Cim for l < m, i.e. EFu (= maxEu / maxFu) < EF v (= maxEv / maxF v). Then, servers

are selected in each class Cil to be members of a replica group CSi for l = 1, . . ., ri. For

example, the number r = ⌈rdi/ri⌉ of servers are included in each class Cil. Then, one of (rdi
− r) servers are included in each class Ci1, . . ., Ci,rdi−r. Thus, for each process pi, a replica

group CSi includes servers whose energy-efficiency is similarly distributed.

A primary server is selected for each request process pi in classes Ci1, . . ., Ci,ri of a replica

group CSi as follows:

[Server selection algorithm 2]

(i) First, a primary server st is selected in the first class Ci1 of the replica group CSi.

(ii) Now, suppose a sever st of a class Cil is a primary sever in a replica group CSi. Here,

the other servers in the classes Cil, Ci,l+1, . . ., Ci,ri are secondary servers.

(iii) If the primary server st is detected to be faulty, the server st is removed in the class

Cil. Then, a secondary server su is selected in secondary servers of the class Cil in the

replica group CSi.

(iv) If the class Cil is empty, a secondary server su is selected in the class Ci,l+1.

Here, a process pi is first performed on a server which is most energy-efficient in a replica

group CSi. If a primary server is faulty, a server which is less energy-efficient takes over the

primary server and a process replica is performed. Since the fault probability ft of each server

st is not large, a process can be energy-efficiently performed.

5 Evaluation

A client cs issues a request process pi to a cluster S of servers s1, . . ., sn (n ≥ 1). We evaluate

the energy-aware passive replication (EPR) algorithm in terms of total execution time and

response time.

5.1 Environment

We assume a replica group CSi includes ten servers s1, . . ., s10 in the evaluation, i.e. n = 10.

It takes time to exchange messages among a client cs and servers. Let dst and dtu be

the delay time between a pair of a client cs and a server st and a pair of servers st and su,

respectively. Here, we assume the underlying network N is symmetric, i.e. dst = dts and dtu
= dut for every client cs and every pair of servers st and su. In this paper, we also assume the

underlying network N is synchronous, i.e. the maximum delay time is bounded by some value

is reliable, i.e. no message loss. Here, maxdtu and mindtu be the maximum delay time and

the minimum delay time between a pair of servers st and su, i.e. mindtu ≤ dtu ≤ maxdtu.
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maxdst and mindst are the maximum delay time and the minimum delay time between a pair

of a client cs and a server st, i.e. mindst ≤ dst ≤ maxdst. In the evaluation, we assume the

maximum delay time among servers and a client is the same maxd and the minimum delay

time among serves and a client is also the same mind.

Tti shows the execution time [sec] of a process replica pti on a server st. minT ti stands

for the minimum execution time [sec] of a process replica pti. That is, it takes minT ti [sec]

to exclusively perform a process replica pti without any other process on a server st. The

more number of processes are concurrently performed on a server, the longer time it takes to

perform each of the processes as presented in the preceding section. In this paper, we assume

the degradation factor αt(τ) of each server st is 1 at every time τ for simplicity.

Suppose a process replica pti is performed on a primary server st. The primary server st
periodically takes a checkpoint cpkti of the process replica pti. We assume each process replica

pti takes totally a number ncpi of checkpoints, cp1ti, . . ., cp
ncp

i

ti (ncpi ≥ 0). This means, a

checkpoint of each process replica pti is taken on a server st every Tti / (ncpi + 1) [sec]. In

the evaluation, we assume each process pi takes the same number ncp of checkpoints, i.e. ncpi
= ncp (≥ 0).

A server st might stop by fault. Each time a primary server st takes a checkpoint cpkti,

i.e. local state of the process replica pti, the primary server st sends the checkpoint cpkti to

every secondary server su in the replica group CSi of a cluster S. On receipt of the kth

checkpoint cpkti, a secondary server su saves the local state taken at the checkpoint cpkti in the

log Lui. Here, a process replica pui of a process pi can be restarted on a local state in the

checkpoint cpkti on a secondary server su. That is, the local state of the process replica pti in

the checkpoint cpkti is restored in the process replica pui on the secondary server su. Here, k

of (ncpi + 1)the of the total computation of the process pi completes in the process replica

pti on the primary server st. The remaining part of the process pi has to be performed on the

secondary server su, i.e. [( ncpi − k + 1) / (ncpi + 1 )] · minTui [sec]. Here, the secondary

server su is a new primary server of the process pi and the other (rdi − 1 ) servers are

secondary servers. The process replica pui is performed on the server su while periodically

taking checkpoints in the same way as the previous primary server st. Here, the primary

server su takes totally a number (ncpi − k) of checkpoints. If the primary server su gets

faulty, one of the secondary servers is selected to be a new primary server as presented here.

In this paper, we assume each server st suffers from stop-fault with probability ft for each

unit time [sec]. The client cs detects the fault of the primary server sc and informs of it to

every secondary server in the replica group CSi. We assume it takes 2 · maxdtu [sec] for a

secondary server su to know the primary server st to be faulty since the primary server st
gets faulty. In the evaluation, we assume every server st has the same fault probability f , i.e.

ft = f . We also assume a client cs is not faulty.

In the evaluation, a process pi is issued to a replica group CSi of servers s1, . . ., sn where

n = 10. Here, we assume the minimum execution time minT i of the process pi is 50 [msec].

The execution time Tti of a process replica pti on a server st is randomly given in 50, 51,

. . ., 60 [msec]. The maximum delay time maxd and minimum delay time mind are 5 and 1

[msec], respectively. For every pair of servers st and su and a pair of the client cs and each

server st, the delay time dst and dtu are randomly given one of 1, 2, 3, 4, and 5 [msec].
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5.2 Evaluation results

Figure 4 shows the total execution time of the process pi for fault probability f = 0.05 and

f = 0.005. The total execution time of a process pi means the summation of execution time

to perform a process replica pti on each server st. Here, there are ten servers in the replica

group CSi, n = 10 for the total number ncp ( ≤ 9) of checkpoints taken in the process pi. For

example, “ncp = 2” means a process pi takes totally two checkpoints. For f = 0.05, the total

execution time is about 100 [msec] and 65 [msec] for ncp = 1 and ncp = 5, respectively. For

f = 0.005, the total execution time is about 55 [msec] and 50 [msec] for ncp = 1 and ncp = 5,

respectively. Thus, the more frequently checkpoints are taken, the shorter the total execution

time of a process is. The total power consumption consumed by the servers depends on the

total execution time of a process as discussed in the preceding section.

Figure 5 shows the response time of the process pi for the number ncp ( ≤ 9) of checkpoints

and n = 10 with fault probability f = 0.05 and f = 0.005. The response time means how

long it takes for a client cs to receive a reply from a server since the client cs sends a request

process pi to a primary server in a replica group CSi. For example, the response time is

about 140 [msec] and 100 [msec] for ncp = 1 and ncp = 5, respectively, for fault probability f

= 0.05. For f = 0.005, the response time is about 140 [msec] and 100 [msec] for ncp = 1 and

ncp = 5, respectively. Thus, the more frequently checkpoints are taken, the shorter response

time is as the total execution time. Each secondary server saves the checkpoint in the log.
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Fig. 5. Response time for number ncp of checkpoints.

On receipt of a checkpoint from a primary server. For example, suppose there are ten servers

in a replica group CSi. If a primary server takes a checkpoint, nine checkpoints are taken by

nine secondary servers. Hence, totally ten checkpoints are taken. Figure 6 shows the total

number of checkpoints taken by the servers with fault probability f = 0.005, 0.05, 0.1. The

total number of checkpoints linearly increase as the number ncp of checkpoints per a server

increase. The total number of checkpoints taken by the servers is measured for each number

ncp of checkpoints taken by a process ( ncp = 1, . . ., 9). Each secondary server consumes the

electric power to take a checkpoint. As discussed here, the more frequently checkpoints are
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taken, the shorter response time is. However, the more amount of electric power is consumed

by servers to take checkpoints. There is trade-off between the electric power consumed by

performing process replicas and taking checkpoints and response time.
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Fig. 6. Total number of checkpoints.

As shown in Figure 4, the total execution time to perform replicas decreases as the number

ncp of checkpoints for each process to take increases. On the other hand, the total number

of checkpoints taken by all the replicas of a process increases as ncp increases as shown in

Figure 7. Suppose it takes one [msec] to take a checkpoint at each server. Figure 7 shows the

total execution time to perform replicas of the process pi and take checkpoints on servers in

the cluster CSi for fault probability f = 0.05 and 0.005. In this figure, if a process takes two

checkpoints, the total execution time, i.e. total power consumption can be minimized for f

= 0.005. For f = 0.05, the total execution time is minimum for ncp = 6. The total execution

time for ncp = 2 is about 10% longer than ncp = 6. Thus, the number ncp of checkpoints for

each process to take can be fixed for a given fault probability f by using Figure 7.

6 Concluding Remarks

In information systems, processes requested by clients have to be reliably and energy-efficiently

performed on servers in a cluster. A process is replicated on multiple servers to increase the

reliability. However, the more amount of electric power of servers is consumed to perform

replicas of the process on multiple servers in a cluster. In this paper, we discussed how to

reduce the total electric power consumed by servers in the passive replication of a process.

Here, a process is performed only on one primary server and the primary server sends peri-

odically sends checkpoints of the process to secondary servers. One of the secondary servers

takes over the primary server if the primary server is faulty. In this paper, we discussed the

energy-aware passive replication (EPR) algorithm to select a primary server and secondary

servers in a cluster. We also discussed how a primary server is selected in secondary servers if

a current primary server is faulty. We evaluated the energy-aware passive replication (EPR)

algorithm in terms of total execution time and response time. The more number of check-
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Fig. 7. Total execution time [msec] vs. number ncp of checkpoints.

point are taken for a process, the shorter total execution time and response time in presence

of server fault. On the other hand, servers consume electric power to take checkpoints. We

are now designing a power consumption model to passively replicate a process on multiple

servers while taking checkpoints and recovering from primary server faults. We are also eval-

uating the total power consumption of servers to perform processes and take checkpoints by

measuring the total electric power by the power meter [24].
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