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This work presents a method that allows the deformation of a terrain by modifying

its heightmap in an augmented reality environment. The hierarchical structure of A4-
8 meshes was used to represent terrains. This structure defines a parameter space to

calculate the coordinates of a field in the R3 Euclidean space. In particular, this paper

deals with the problem of modeling spherical terrains. An error metric dependent on
the observer and the geometry of the land used for its observation and modeling. The

results demonstrate that the use of A4-8 mesh combined with the tangible augmented

reality system is flexible to shape spherical terrains and can be easily modified to deal
with other topologies, such as the torus and the cylinder. The development of an efficient

and intuitive to use method for mesh generation, based on augmented reality markers,

is the main contribution of this work.
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1 Introduction

Mesh deformation is an important resource for the object modeling area, allowing the modi-

fication of a surface to suit a particular purpose. Due to its importance, several deformation

techniques have been developed, as seen in [1], [2] and [3], where some of these take into ac-

count the decomposition of highly detailed surfaces in hierarchical levels [4], [5]. Representing

a surface by multiple levels of detail allows changes to be made at any of these levels, resulting

in a fine control of the mesh.

A hierarchical structure that has favorable properties for representation and modeling of a

terrain at various levels of detail is a semi-regular 4-8 adaptive mesh (A4-8 mesh [6]). Through

this structure, it is possible to represent terrains with different resolutions, allowing punctual

control over the generated mesh. The A4-8 can also define a parametric space to calculate

coordinates on a R3 Euclidean space.

One of the possible ways to interact with 3D models is through fiducial markers in an

augmented reality environment. In this scenario, real and virtual elements are combined to

create the impression that they coexist in the same scene. To interact with virtual models

an interface called Tangible Augmented Reality (TAR) [7] can be used, where each virtual
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object is associated with a physical object and the user interacts with the virtual objects by

manipulating tangible objects.

This work proposes a method to deform spheric terrains through the combination of an

A4-8 structure and tangible markers. Local deformations are applied to a fraction of the

overall terrain, resulting in an application that allows both visualization and modification of

a terrain in real time. The A4-8 hierarchical structure provides the method with a precise

control over the surface to be modified.

2 Related Work

There are not many works that deal with the problem of deforming meshes through augmented

reality. Also, the focus of most studies involving object modeling and augmented reality is in

the deformation models in general, or the development of applications for remote areas such

as surgical operations simulation [8], clothes modeling [9] and accidents modeling [10].

A work that allows interactive modification of multiresolution polygon meshes through a

3D interface can be found in [11]. The authors propose an interface called inTouch, which

contains a projected 3D scene where the model is modified and a 2D menu for operations. The

interface has a multiresolution meshes editing subsystem, which takes as input the position

of the haptic device probe projected onto the scene and the direction of the applied force.

Fig. 1. 3D model created with inTouch [11].

When the mesh is modified at a particular resolution, a set of vertices is moved. The

change is then propagated to the higher detailed levels through mesh subdivision and to the

less detailed levels through smoothing. The mesh editing subsystem receives a triangle, a

contact point and a motion vector as input. In our method, the control point is a vertex and

the deformation is propagated only to the resolution levels which are higher than that point.

An example of work that uses augmented reality and a tangible user interface for modeling

3D objects, can be found in [12], where a system called 3DARModeler is presented. With this

system it is possible to create a 3D model through one or several primitive geometries, apply

textures, add animations, estimate real light sources and cast shadows on it. The difference

between this system and the one developed in this work, with respect to modeling, is that the

3D models used by the 3DARModeler are static. In this paper, the proposal is to dynamically

change the geometry of a surface at multiple levels of detail, providing greater user interaction

with the model and, also, overall control over the mesh.
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The model visualization through the inTouch interface always shows the most refined level

of the mesh. This can lead to problems when dealing with a large number of triangles in real

time. An important factor to be mentioned is that, in areas far from the observer, a high level

of resolution is not necessary to visualize an object. In this work, the level of detail depends

not only on the object’s geometry, but also the distance from the observer.

Another study that follows the same idea of the inTouch interface can be seen in [13].

The authors present a system for modeling 3D objects, called ArtNova, using haptic interface.

Unlike the aforementioned interface, this system has several dynamic visualization techniques,

such as vision-based navigation and automatic repositioning.

Also, in all mentioned works, the object to be deformed does not consist of thousands

of triangles as the meshes required to adapt an actual terrain representation. No work in

the literature, dealing directly with the interaction between user and 3D models composed of

thousands of triangles in multiresolution through tangible augmented reality has been found.

3 A4-8 Meshes

Among the various categories of regular meshes, it is necessary to choose one that not only

represent a terrain, but also can support simplification and refinement methods. The semi-

regular meshes of type 4-8 (vertices with valence equal to 4 or 8, except at the edges) fit the

desired profile to solve the problem addressed in this work. The semi-regular 4-8 mesh is a

hierarchical structure for subdivision surfaces, or a complex cellular homeomorphic to a [4, 82]

Laves tiling [6].

The semi-regular 4-8 meshes can be divided into adaptive and non-adaptive. In the case of

non-adaptive, there is only one hierarchy in the mesh, meaning that the modifications made

in a region of the mesh affect the resolution of the entire grid. In the case of adaptive ones,

there is a family of hierarchies, so that there is no interference between local modifications at

each level.

This work uses adaptive meshes in order to deform a terrain at different levels of detail,

independent of each other, and view it in different resolutions through simplifications or

refinements. An example of this structure can be seen in Figure 2, where it is shown a basic

block of the structure and two steps of consecutive refinement over it.

Consider a mesh M = (V,A,P), where V,A and P is the set of vertices, edges and faces

(polygons) that belong to this mesh. Consider also that the set of vertices with valence equal

to 4 is V4 and equal to 8 is V8. The quaternary subdivision refinement procedure of a mesh

M can be seen in Figure 3a and is described by the following steps:

1. Split all edges a ∈ A in their average points m;

2. Subdivide all faces f ∈ P into four new faces, connecting the vertex of valence 4, v ∈ V4

to the average point m of the opposite edge and connecting m to the average points of

the other edges.

The binary interleaved subdivision procedure is illustrated by Figure 3b and is achieved

through the following steps:

1. Split all edges a = (vi, vj) ∈ A that are made using two vertices of valence 8, vi, vj ∈ V8;
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(a)
(b)

Fig. 2. Structure of a 4-8 mesh, (a) shows the basic construction block in purple and (b) shows
two steps of refinement, the first generates the vertices in blue and the second, the vertices in red

(a) (b)

Fig. 3. (a) Quaternary subdivision prototype and (b) binary subdivision prototype.

2. Subdivide all faces f ∈ P into two sub-faces, connecting the vertex of valence 4, v ∈ V4,

to the average point m of the opposite edge.

An A4-8 mesh can be constructed using two approaches: top-down and bottom-up. The

top-down approach, also known as refinement method, characterizes itself for creating a mesh

in the lowest possible resolution and, progressively, increasing the resolution through the

creation and addition of new triangles to the mesh. The bottom-up approach, or simplification

method, creates a mesh in the highest possible resolution and, in a similar way, reduces the

resolution by uniting the mesh triangles.

In this work, the mesh is constructed using a strictly top-down approach in the tessellation

process. This way, it is possible for the final application to maintain its efficiency even with

modifications being done to the mesh in real time.

3.1 Triangle Bintree

This work uses the binary triangle tree structure, or triangle bintree [14], to represent a

terrain. Consider an A4-8 mesh M with a set of vertices V ⊂ R2 given by V := {~vi :=

(ui, vi) ∈ R2, i = 1, ..., n}, where n is the number of vertices. A triangle bintree is a binary

tree where, geometrically, every node of the tree represents a triangle.

The root triangle, T = ( ~va, ~v0, ~v1) where ~va, ~v0, ~v1 ∈ V, is define as a right isosceles triangle

in the coarser level, (l = 0). In the next level, l = 1, the children of the root are defined

through the insertion of an edge defined between the apex vertex ~va and the middle point

~vc ∈ V of the base edge (~v0, ~v1). The left children is T0 = (~vc, ~va, ~v0) and the right children is

T1 = (~vc, ~v1, ~va). Repeating this process recursively, the rest of the tree is obtained. Figure 4

shows a few levels of a triangle bintree.
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Fig. 4. Levels 0−4 of a triangle bintree.

It is important to note that the described structure needs to be adapted in a way that

the A4-8 mesh can represent a spherical terrain. When subdividing a triangle at the first or

last meridian, a middle point vertex must be created for both meridians. These vertices are

“connected”, meaning that any modification done to one of them must be applied to the other

in order to prevent cracks on the mesh. This procedure ensures that the plane is conformed

according to the cylinder topology.

Another important factor to be mentioned is that, for each vertex ~v ∈ V, two values

must be stored, w e ε. The first value, w, represents the height of a vertex defined as

w = g(f(u, v)) = g(x, y, z), where f is a mapping function f : R2 → R3 and g is a function

that uses the mapped vertex coordinates, x, y and z, to calculate a height value. The resulting

scalar is stored in a scalar matrix (heightmap Ma) at the vertex ~v coordinates u and v.

The second value, ε, represents the error value of each vertex ~v ∈ V. This value will be

detailed in Section 5.1. In a resumed way, the vertex error is defined as ε = εT , where εT
is the triangle error that has ~v as apex vertex. In practice, a triangle error value εT , for

T = ( ~va, ~v0, ~v1), is stored in a scalar matrix (error map Me) at the triangle T apex vertex ~va
coordinates, u and v.

4 Parametrization

A parametric surface in the Euclidean space R3 is defined by a parametric equation with two

parameters, named in this work as u and v. In particular, we want a mapping f : Ω → S,

where f is a mapping function, Ω is an open subset Ω ⊂ R2 and S is a surface S ∈ R3.

Orthographic projection was used as a function f to map Ω in S. More specifically, a

plane, represented by A4-8 mesh, in a sphere. Consider, the vertex set V of a A4-8 mesh is

Ω and all vertices ~v ∈ V are associated with coordinates u and v in the plane. Consider also,

that 0 ≤ u ≤ mu and 0 ≤ v ≤ mv.

To define a function f in terms of latitude and longitude of a vertex ~v ∈ V, it is necessary

to calculate the latitude of ~v using Equation 1 and its longitude using Equation 2.

latitude =
(v ∗ π)

mv
− π

2
. (1)

longitude =
(2u ∗ π)

mu
− π. (2)

Now consider that the radius of the sphere defined by S is r. The domain surface V and

S can be written using Equations 3 and 4, respectively.

V = {(u, v) ∈ R2 : 0 ≤ u ≤ mu, 0 ≤ v ≤ mv}. (3)
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S = {(x, y, z) ∈ R3 : x2 + y2 + z2 = r2}. (4)

A plane to sphere mapping function is defined in Equation 5.

f(u, v) =

 r ∗ cos(longitude) ∗ cos(latitude),
r ∗ sin(longitude) ∗ cos(latitude),

r ∗ sin(latitude)

 . (5)

From this point on in this work, ~v will be used as a notation for describing a vertex that

belongs to V, which is a vertex of the mesh in discrete domain. To differentiate, ~v will be

used when the vertex is in continuous domain, in other words, the vertex mapped by f(u, v)

which has coordinates x, y and z.

When the set of vertices to be deformed is defined, the values of height are calculated in the

continuous domain for each one of these vertices. The calculation is done through a function

g and the values obtained are stored in the heightmap. This way, the terrain deformation is

the modification made to the values of height w of the vertices inside a deformation area, in

the discrete domain.

4.1 Parameter Space Partitioning

To obtain a partition N ⊂ V endowed with all vertices ~v that when mapped to R3 are within

a certain distance of a control vertex ~vc ∈ R3, it is necessary to discretize the continuous

object that represents the area of deformation in R3. More specifically, it is desired to obtain

a partition of V having all the vertices ~v that, when mapped by f(u, v), reside within a certain

distance from a control vertex ~vc ∈ R3. In other words, a partition that has all vertices ~v ∈ V

that reside in a deformation area defined in Euclidean R3 space.

To obtain N, the Euclidean distance d in R3 between the vertices ~vT = [x, y, z]T and the

control vertex ~vc
T = [xc, yc, zc]

T is initially calculated for all vertices ~v ∈ V. Then, a function

is defined to classify the vertices ~vi as

I(u, v) =

{
1, if d ≤ rd
0, otherwise

, (6)

where I(u, v) is a function that uses the coordinates u and v of a vertex ~v to indicate if it

is inside or outside of a deformation area. The value rd is defined dynamically by the user.

This classification of the vertex according to the I function will be called property I(u, v).

If the function returns one, the vertex has the property, otherwise, it has not. If the vertex

has the property I(u, v), it is placed in the set of vertices that are inside the deformation area.

This set of vertices will be called Vd.

It’s Important to note that the set Vd is defined in the discrete domain, but the distance

is calculated in the continuous domain. This happens because, if the distance was calculated

in the discrete domain, the resulting deformation area would be distorted by the mapping

according to its location on the sphere.



R. A. Dembogurski, Rodrigo Luis De Souza Da Silva, and B. J. Dembogurski 89

5 Error Metric

This work uses the error metric presented by [14] in their algorithm named Real-time Opti-

mally Adapting Meshes (ROAM). To decide if a triangle must be refined or simplified, the

ROAM algorithm uses the concept of nested spaces. Being C the descendants of a vertex

~vi ∈ V, the error ε~vi ≥ e ~vj , ∀j ∈ C. This means that the error metric guarantees the mono-

tonicity of the error values, in other words, the “parents” in a coarser level always have a

higher error than their children, that reside in finer levels of the terrain. To use this error

metric, the geometric error and the view-dependent error must be calculated for each triangle

of the mesh.

5.1 Geometric Error

The ROAM algorithm uses the concept of a wedgie to define the geometric error. Consider

that T is a triangle of the triangle bintree and the same notation of neighborhood from Section

3.1 will be used. A wedgie is defined as the world volume that has the vertices (u, v, w), in a

way that (u, v) ∈ T and |w − wT (~v)| ≤ eT , for a certain wedgie thickness εT ≥ 0. The line

segment from (u, v, w − eT ) to (u, v, w + eT ) is called thickness of a segment for a vertex ~v.

The nested errors of the wedgies are calculated in a bottom-up manner. It is assumed

that εT = 0 for all triangles in the finest possible level. The wedgie thickness of a triangle T

is calculated based on the wedgie thickness of its children, εT0
and εT1

. Consider a triangle

T with a left neighbor T0 and right neighbor T1. The error εT can be calculated as

εT = max(εT0 , εT1) + |w(~vc)− wT (~vc)|,

where ~vc is the vertex obtained from the bisection of the edge opposite to the apex vertex

in the triangle T and wT (~vc) is given by

wT (~vc) =
(w(~v0) + w(~v1))

2
.

5.2 View-dependent Error

The view-dependent error, called geometric screen distortion, is simply the calculation of the

geometric distortion. This calculation represents the distance between the position where each

vertex of the surface S should be in the screen space and where the triangulation touches the

screen.

Be s(~v) the correct position in screen space of a vertex ~v given by f(u~v, v~v) and sT (~v) its

approximation by the triangulation T . The error in this point is defined as:

dist(~v) = ‖s(~v)− sT (~v)‖

In the entire image, the maximum error is given by distmax = max~v∈Vf
(dist(~v)), where

Vf is the set of vertices ~v of the mesh that, when mapped to the sphere, reside in the view

frustum (region in space that appear on the screen).

In practice, a superior limit is calculated for the maximum distortion. For each triangle

T in the triangulation, a local limit is calculated, projecting the wedgie in the screen space.

This limit is defined as the higher thickness size εT of all vertices ~v ∈ T projected to the

screen.
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6 Proposed Method

In order to deform a terrain through the modification of its height map, a method is proposed

with the following steps: Definition of the control point, definition of a deformation area and

propagation of heights and errors. The first stage defines where on the terrain the deformation

is made. The second stage uses the control point to define a dynamic area of deformation.

The last step is the most important, where error and height values are propagated to the

vertices of the terrain contained within the area of deformation. Figure 5 shows the steps of

the proposed method and their relation with the overall system. The system parts that are

independent from the method are shown in blue, the method steps are depicted in red and

the inputs controlled dynamically by the user are shown in green.

Fig. 5. Overview of the proposed method.

6.1 Control Point Definition

This work uses one control vertex ~vc, which defines the center of the propagation area of

height and error values, where the proposed method starts. It is obtained during the mesh

tessellation, representing the vertex of the mesh ~v ∈ V that, when mapped to the sphere, is

the closest one to the deformation object (pre-defined fiducial marker).

If the camera position approaches the area pointed by the user, it increases the model

scale and the mesh goes through a refinement process that can modify the control vertex ~vc.

Likewise, if the user moves the deformation object, ~vc changes dynamically.
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6.2 Defining the Deformation Area

The area of deformation is a set of vertices Vd ⊂ V that, when mapped to the sphere through

f(u, v), reside at a distance less than or equal to a radius in relation to a control point ~vc ∈ R3

(Section 4.1). This value is dynamically defined by the user through the user interface and will

be called, henceforth, radius of deformation, or rd. The area of deformation is constructed

according to a set of constraints described below.

Let V be the set of vertices of the A4-8 mesh. Subregions Vi ∈ V, representing partitions

of V endowed with some property I(Vi), can be constructed by the following restrictions:

1.
⋃n

i=1 Vi = V;

2. Vi is a connected region, i = 1, 2, ..., n;

3. Vi

⋂
Vj = ∅ | ∀ i, j where i 6= j;

4. I(Vi) = 1 for i = 1, 2, ..., n;

5. I(Vi

⋃
Vj) = 0 for i 6= j, where Vi and Vj are adjacent.

The first restriction means that the partition should be complete, in other words, all

vertices of Vi must be contained in V. The second requires that all vertices of the sub-

region are “connected”. The third constraint indicates that different subregions should be

disconnected. The fourth requires that all vertices ~vi ∈ Vi must satisfy the properties I(Vi).

The last restriction means that distinct sub-regions have different properties.

The restrictions shown above can be reinterpreted according to the problem addressed

here. A property called I(u, v) is defined for each vertex of the mesh according to Equation 6.

This way, it is desired to partition the terrain into two disconnected sets, a set Vd that has

vertices with the property I(u, v) and another complementary to it V̄d. Henceforth in this

paper, the vertices of Vd will be called internal and vertices of V̄d will be called external.

The formulation proposed above follows the same principle of the image segmentation

procedures, where usually one wants to separate the background and a region of interest.

This choice is due to the fact that the almost completely regular structure of the semi-regular

meshes allows the use of traditional algorithms of image processing.

6.3 Region Growing

The region growing technique was chosen as the implementation of the expansion function to

define the set Vd ([15]). The starting point is the control vertex ~vc and the expansion occurs

in all of its neighbors directions while there are vertices with the property I(u, v). Henceforth,

the set of neighbors of ~vc that have the property I(u, v) will be called Vdc .

Initially, the algorithm tests the neighbors of ~vc and the vertices with the property I(u, v)

are put in a set of vertices called Vdc . This set is passed to a recursive expansion function

so the set Vd can be obtained. This function expands Vdc from ~vc toward the direction of

each neighboring vertices ~vi ∈ Vdc . The neighborhood is covered in the A4-8 mesh, but the

distance test is done in Euclidean space R3. An example of the test of a vertex ~vi neighbor

of ~vc, through the distance ~dic between them, can be seen in Figure 6(a). The final set of

vertices Vdc can be seen in Figure 6(b).
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Fig. 6. (a) Beginning of the expansion process. The control vertex is ~vc in the discrete domain

and ~vc in continuous domain. The radius that defines the area of deformation is rd and ~dic is the
distance in R3 between the control vertex ~vc and of its neighbors ~vi. (b) The set Vdc , in green,

represents the vertices that have the property I(u, v).
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Fig. 7. Diagonal expansion example (a) and vertical/horizontal example (b). A single algorithm

pass, after all neighbors of −→vc are calculated, is presented in (c).

The recursive function is responsible for “walking” across the mesh in the direction of

each of the neighbors of ~vc. It is possible to separate the eight neighborhoods of a vertex in

two cases, diagonal direction and vertical/horizontal direction. A neighbor is in a diagonal

direction if both coordinates of the original vertex in the parameter space, u and v, change

in one step of the algorithm in that direction. For the vertical/horizontal direction, one step

of the algorithm modifies only one coordinate, u or v, of the original vertex.

The combination of these two cases mentioned above allows the algorithm to go through

the entire deformation area over the mesh. If the direction is diagonal, the recursion just

repeats the direction of expansion of the previous step (Figure 7a). In the case of the ver-

tical/horizontal direction, the recursion is called for the expansion direction of the previous

step and its two adjacent diagonal directions (Figure 7b). The situation after one step of the

algorithm for all internal vertices neighboring ~vc is shown in Figure 7c.

6.3.1 Border Treatment.

When a vertex ~vi ∈ Vdc is at the border of the mesh, meaning it has coordinates u = {0 or

mu} and/or v = {0 or mv}, the method needs to modify its routine to promote expansion. If

the vertex coordinate reaches u = 0 the next step of the algorithm will map this coordinate

to u = mu − 1 and, similarly, if the coordinate is u = mu the next step of the algorithm will

map this coordinate to u = 1. In the case of the v coordinate (latitude), if a vertex reaches a

border coordinate, the algorithm simply stops propagating.

The leap of one coordinate for the longitude case is deliberate, reflecting that for coordi-
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u v

(u = 0, v = 0)

(u = M  - 1, v = 0)u

(u = M  , v = 0)u

Fig. 8. Border treatment in the case of vertices trying to expand beyond the dimensions of the

terrain. For the latitude, if a vertex ~v goes beyond the dimensions of the terrain, the expansion is

interrupted in that direction. In the case of longitude, the coordinate of the vertex u is modified
so that it can continue expanding.

nates u = 0 and u = mu there is an overlap. If a vertex has a border coordinate u on the

terrain, any change made in the heightmap and error maps for this vertex must be repeated

at the other end of the heightmap to prevent cracks on the terrain. An example of border

treatment can be seen in Figure 8.

6.4 Error and Height Propagation

Determined the area of deformation, or set Vd ∈ V, it is necessary to propagate error and

height values for all vertices in the set Vd. The propagation algorithm can be defined as an

extension of the area determination algorithm, since both run through all vertices that have

the property I(u, v).

6.4.1 Height Definition and Propagation.

The function used in this paper to calculate the height values is the Gaussian distribution

function g(x) described by Equation 7. The function has a maximum at the control vertex

and a minimum at the border of the area of deformation. In this function, the standard

deviation is σ and the average is µ.

g(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 . (7)

The process involves a mapping from the discrete to the continuous domain and vice versa.

A vertex ~v ∈ V is mapped on the sphere and tested to see whether it is or not within the

area of deformation. If it is an internal vertex, the Euclidean distance in R3 of the vertex

~v, mapped by f , to the control vertex ~vc, is passed to the Gaussian function defined by

Equation 7 and a height value is obtained. This value is then associated with a scalar w

and stored in the heightmap at its coordinates (u, v). The new value of w is accessed on the

next tessellation step, where the mapping function will transmit the modification made on

the heightmap to the surface of the terrain.

6.4.2 Metric and Error Propagation

In the same way as the propagation of height values, it is desired to cover all vertices ~v ∈ Vd

for the error propagation. One restriction to be recalled is that the error metric must preserve
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the monotonicity, meaning that the parents have higher error value than their children.

To propagate error in the correct way, it is necessary to use an expansion function that

traverse the mesh in a hierarchical manner. This is possible using the concept of alternate

step. Consider a number of iterations i = 0, 1, 2, ..., n and a step size pa. Knowing that every

leaf node in the triangle bintree has error εT = 0 and that the error grows as we reduce the

resolution level until the root node is reached, it is possible to notice in the tree that the

position of the nodes is spaced in a homogeneous way for similar error values.

Consider, for instance, Figure 9a that shows the displacement of the vertices that have

error εT = 0 in a triangle in the highest level of resolution. It is possible to notice that one

can walk on the structure covering all vertices in this resolution, using steps pl of odd steps in

the vertical direction, followed by “walks” in both diagonal directions of the vertex reached

by an initial step.

u
v

T
e = 0

Initial

stepWalk
Increm

ent

(a)

u
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Fig. 9. Hierarchical expansion example. In (a) the first case occurs, vertical step and diagonal

walk. In (b) the second case happens, diagonal step and vertical walk, both on the zero value

iteration.

In a more specific way it is possible to state in this case, that the initial step of each

iteration i is given by Equation 8 and the step increment ic is given by Equation 9. In this

case where the resolution is maximum, the iteration is i = 0, the initial step pl = 1, the step

increment ic = 2 in the vertical direction and the step for the diagonal walk pd = pl.

pl = 2i. (8)

ic = 2 ∗ pl. (9)

To the level immediately below the maximum, the model modifies itself (Fig. 9b). The

initial step and the increment are obtained in the same way as in the previous case, following

Equations 8 and 9. The iteration is again i = 0, pl = 1 and ic = 2. In this case, although, the

initial step is done in the diagonal direction and the walk through the structure is done in

the vertical direction (the inverse of the previous case). The recursion walks vertically with a

step pa = ic, being pa = 2 for this resolution.

The combination of these cases allows that all vertices are traversed. An algorithm can be

easily extracted from these two cases, representing a hierarchical manner to cover the A4-8

mesh. The monotonicity is guaranteed this way, because the error can still be calculated with

a bottom-up approach.
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7 Results

All experiments were done on a computer with an AMD FX(tm)-6100 six cores processor,

8GB RAM and GeForce GTX 550 Ti with 2GB of RAM. The Microsoft LifeCam camera was

used as video capture device. A resolution of 640×480 pixels was defined for all visualization

windows. In order to validate the method, meshes with maximum resolution of 2049× 2049

and 8193 × 8193 vertices were chosen. The maximum number of triangles generated by the

tesselation process was defined as 70000.

Thinking of user interactivity with the spherical terrain, two viewing windows were defined.

Thus, the user can see the results of tesselation on a global and local scale. In the local view

window, the mesh is immersed in an augmented reality environment. In the overview window,

the same mesh is viewed in a purely virtual environment so that the user can visualize the

local frustum and the planet tesselation, enabling greater control over the modeling processes

as a whole.

(a) (b)

Fig. 10. Spherical terrain view. Local view window(a) and global (b).

The user is able to make basic operations such as translation, rotation and scale to better

visualize the terrain. To translate it, the user moves the fiducial marker using his hands.

The rotation can be done through keyboard shortcuts or hand rotation movements holding

the marker. To change the terrain scale, the user must use the mouse to change the marker

distance from the camera.

As the user modifies the distance from the terrain to the camera, the view-dependent error

changes, and the mesh adapts itself through refinement or simplification. Figure 11 shows an

example of mesh change due to terrain scale modification. The initial position of the terrain

can be seen in Figure 11b, mesh modifications when the camera approaches the terrain is seen

in Figure 11c and when it moves away in Figure 11a.

The deformation of a spherical terrain with the proposed method can be seen in Figure 19.

The image shows a sequence of frames, from left to right, where the user performs a movement

with the marker through the terrain surface causing deformation.

Here, the maximum image error distmax tested varied from 0.1 to 6.0. Experiments shown

that the ideal value, that promote balance between visualization quality and number of tri-

angles, is distmax = 4.0.

The radius of deformation rd used during testing ranged from 150km to 600km, being the

radius of the spherical terrain equal to 6372.79km. In all experiments, the area of deformation
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(a) (b) (c)

Fig. 11. Mesh modifications related to the distance between the camera and the terrain. Terrain
initial position (b), camera close to the terrain (c) and moved away from it (a).

Fig. 12. A sequence of frames spaced in time showing the mesh being deformed using the proposed

method.

(a) (b)

Fig. 13. Final terrain visualization generated with the proposed method. Global scale (a) and

local scale (b).
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change in the R3 space for three different radius of deformation defined as: 150km, 300km

and 600km

The average time that the application takes to render one frame with the terrain being

deformed was calculated for different resolutions. The camera was fixed in a single position

for all values contained in Tables 15 and 17. The chosen position was kept at a distance of

three times the radius of the sphere to its center, being approximately 19, 000km.

In the case of deformation, the worst case scenario was chosen to evaluate the method.

In other words, the longitude was set at 180◦, where the vertices have coordinates u = 0 and

u = mu for variables values of latitude. Latitude values begin at 0◦ and increase 30◦ until

they reach 180◦, in other words, from one pole to the other. The average time to render a

frame without deformation being applied to the terrain was 0.033 seconds.

The values in Table 15 represent the average time to render a frame with the terrain being

deformed for a maximum resolution of 2049× 2049 vertices. It is possible to affirm that, for

a radius of deformation rd = 150km, any region of the planet may be deformed without the

user noticing drops in the number of frames per second. For a radius of rd = 600km, the

application takes three times longer to render a frame with deformation occurring at the pole

than at the equator, but the number of vertices deformed at the pole is about 90 times greater

when compared to the equator region.

(a) (b)

Fig. 14. A complete deformation scenario. Terrain with edges drawn (a) and without (b).

Latitude Average time(s) Latitude Modified Vertices
0 0.064 0.096 0.117 0 32764 63471 126700
30 0.041 0.047 0.051 30 698 2789 11467
60 0.041 0.047 0.044 60 397 1593 6650
90 0.041 0.046 0.043 90 360 1431 5737
120 0.038 0.044 0.050 120 405 1629 6560
150 0.045 0.047 0.050 150 704 2916 11543
180 0.063 0.086 0.116 180 32759 63463 126888

rd(km) 150km 300km 600km

Table 1. Average rendering time of the terrain in seconds when a number of vertices are modified
at a certain latitude. Maximum resolution of 2049× 2049 vertices.

Table 16 shows the same values now for a resolution of 4097× 4097 vertices. It is possible

to notice that the same situation of the lower resolution repeats itself. The number of modified
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vertices increases much faster than the average time of rendering. This means that the method

is efficient to deal with the number of vertices as the resolution increases. Their amount is

enough to make the average rendering time increase significantly in the poles.

Latitude Average time(s) Latitude Modified Vertices
0 0.117 0.211 0.368 0 126955 253855 503383
30 0.043 0.050 0.067 30 2808 11356 45087
60 0.043 0.046 0.048 60 1672 6540 25920
90 0.041 0.043 0.048 90 1403 5660 22484
120 0.041 0.043 0.049 120 1627 6518 26389
150 0.044 0.047 0.065 150 2756 11267 45102
180 0.116 0.203 0.369 180 126959 253755 503400

rd(km) 150km 300km 600km

Table 2. Average rendering time of the terrain in seconds when a number of vertices are modified
at a certain latitude. Maximum resolution of 4097× 4097 vertices.

Table 17 lists values for the higher terrain resolution tested, 8193 × 8193 vertices. For

a deformation radius of rd = 600km, one realizes that the average time start to rise for all

tested latitudes. This means that, as the resolution increases, it is necessary to reduce the

deformation radius in order to exchange application performance and display quality.

Latitude Average time(s) Latitude Modified vertices
0 0.356 0.711 1.328 0 507744 1006861 2013967
30 0.052 0.053 0.114 30 11302 45437 180019
60 0.045 0.052 0.098 60 6532 25752 106635
90 0.035 0.047 0.082 90 5765 23056 89330
120 0.046 0.051 0.083 120 6511 26024 101521
150 0.045 0.059 0.107 150 11329 45625 179929
180 0.350 0.720 1.333 180 507805 1007216 2013721

rd(km) 150km 300km 600km

Table 3. Average rendering time of the terrain in seconds when a number of vertices are modified

at a certain latitude. Maximum Resolution 8193× 8193 vertices.

A complete deformation scenario can be seen in Figure 14. A planet generated with the

proposed method is shown in Figure 13. The implementation of the proposed method can

cope with deformations in real time even if the speed of rotation of the planet is set to a high

value. It is important to note that adaptive meshes are usually used only for visualization,

here the final application can both visualize and modify a terrain in real time.

7.1 Particularities

One the the relevant factors to deform a terrain is the calibration of the standard deviation

in the deformation function g(x) calculated by Equation 7. Like mentioned in Section 6.4.1,

standard deviation values that are too small or big can lead into undesired aspects of the

terrain, as it can be seen in Figure 18. Sample resulting deformations can be seen in Figures

18a and 18b, using standard deviation values of σ = 0.17 and σ = 0.75, respectively. The

average used in both cases was µ = 1.
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(a) (b)

Fig. 15. Terrain deformation using the Gaussian distribution function. The deformation achieved
with a value of σ = 0.17 and average µ = 1 can be seen in (a). In (b), σ = 0.75 and µ = 1.

Another important factor mentioned in Section 6.3.1 is the border treatment. To demon-

strate how the proposed method deals with vertices that lie in the meridian, consider Figure

19. Figures 19a and 19b show the deformation result before and after the border treatment

has been applied, respectively.

(a) (b)

Fig. 16. Border treatment. A terrain deformed in the border region without treatment can be

seen in (a). In (b) the same region, now with border treatment applied to it.

A planet generated with the proposed method is shown in Figure 13. This terrain was

modeled in less than three minutes. The implementation of the proposed method can deal

with deformations in real time even if the rotation speed is defined with a high value. It is

possible to state that the final interface is easy to be manipulated and the deformation process

is intuitive to the user that sculpts the terrain in real time.

8 Conclusion

Interactive systems providing real 3D modeling freedom are rare. In this work, we propose

an interactive method for 3D modeling of spherical terrains in real time through augmented

reality. The entire process is easy to be controlled by the user. Nevertheless, the generated

terrain can be quite complex, natural-looking, even if defined by a small number of user

actions.
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The proposed method proved to be efficient in dealing with different resolutions. The

increase of the average rendering time is lower than the increase in the number of modified

vertices for all tests. The hierarchical propagation allows that all vertices in an area of

deformation are visited, complying with the monotonicity constraint of the error metric.

The use of a physical marker to deform a mesh, provides an intuitive interface to create

shapes and patterns across the terrain. This interface allows easy surface modeling and

manipulation, without requiring prior knowledge in 3D modeling softwares such as Maia and

3D Studio.

The combination of known techniques with the A4-8 mesh structure produced the desired

results, it is possible to not only generate a terrain with a few movements, but also add detail

at any resolution. Although the visualization and modeling steps are done sequentially, the

application runs in real time for various resolutions. This means that a large but highly

detailed terrain can be generated with the proposed method.
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