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Video Quality Assessment (VQA) plays an important role for video communications

systems and services, mainly to determine, accurately, the ratio between the provided

quality and the resource demand. The objective VQA is a fast and viable methodology
to determine the video quality for video service providers, although it presents an unsat-
isfactory correlation with the scores of quality given by the Human Visual System (HVS).

The authors propose a novel full reference objective video quality metric considering spa-
tial and temporal analysis. The spatial analysis used an algorithm, based on fuzzy logic,

to classify the regions in three components. Temporal analysis was performed by means
of the perceptual weighted structural similarity index (PW-SSIM) between the frames

that contained the differences of pixels in the same spatial position and in subsequent

frames. To validate the proposed VQA algorithm, the correlation coefficients between
the objective measures and the subjective scores provided by the LIVE Video Quality

Database were computed, considering the following distortions: H.264 and MPEG-2 en-

coding and transmission of H.264 bit-streams over IP and wireless networks. The results
demonstrate that the proposed algorithm is a competitive alternative when compared

with the classical objective algorithms such as MOVIE.
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1 Introduction

Applications involving the transmission, reproduction, storage or processing of digital videos

in communication networks are present in many technological devices. They often cause

loss of information, introducing various artifacts in the video, such as blurring, blocking

and noise, which cause loss of visual quality. Estimate the quality of the digital videos

quickly and accurately has been a major challenge for communication systems and video

services. The video quality measurement is an important factor to establish the quality of

video communication and processing systems such as: broadcasting and mobile television.

It affects directly the video on demand and the video services providers, since they need

to monitor broadcasting quality, to compute optimal parameters that ensure a satisfactory

quality level.

Video quality assessment (VQA) methodologies are subdivided into two categories: ob-

jective and subjective. The objective methods, also called objective metrics or objective

algorithms, are designed from mathematical models that, in general, compare statistical fea-

tures of the video to estimate a quality measure. The objective metric can be briefly classified

according to the availability of the original video as: full reference, in which the video quality

is computed considering an original video as reference; reduced reference, whenever only the

features of the original video are available for comparison with the distorted video and no

reference, in which only the distorted video is used to evaluate the video quality. Subjective

methodologies assess the video quality via psychophysical experiments with human observers.

The observer watches the video sequences and evaluates the video according to a personal

concept of quality.

The subjective approach is the natural way to assess the video quality. Nevertheless,

subjective experiments are complex and time-consuming. Objective metrics are faster and

has lower cost than the subjective metrics, because their results may be applied automatically

to video systems.

Recently, studies developed objective metrics considering mainly the fact that the efficiency

of a metric is highly dependent on the attributes of the human visual system that it emulates.

In this sense, one of the spatial features that is intensively investigated is the visual attention.

The salience map model is often used as a visual attention predictor. Studies reported that

the Image Quality Assessment (IQA) algorithms, when combined with salience map models,

presented significant improvement on its performance [1], [2].

Another way to consider spatial characteristics as a visual attention predictor are the

classification algorithms. In general, the classification algorithms compare, individually, the

spatial characteristics of the pixels, which are generally given by the gradient vectors, on the

same spatial position in the reference and distorted videos [3]. Works reported that VQA

algorithms are enhanced when combined with classification algorithms [4]. The benefit of

the classification algorithms with respect to the salience map model is the low computational

complexity, which is a key feature when combined with the VQA algorithms. Nevertheless,

the computational or mathematical formulation of the visual attention is very limited, since

the visual attention is an imprecise measurement.

In this paper the authors propose an algorithm based on fuzzy logic to the task of clas-

sification of the image in the three components: edge regions, smooth regions and texture

regions. Fuzzy logic is a mathematical tool that allows, among other features, obtaining
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accurate measurements from a set of inaccurate measurements.

The principal contribution of this article is a full reference VQA algorithm that includes

spatial analysis, as an application of the proposed classification algorithm, and temporal

analysis. Temporal analysis plays an important role in VQA, since that the perception of the

distortions by the HVS is attenuated or evidenced depending of the level of temporal activity.

The subjective scores, available in the LIVE Video Quality Database were used to validate

the proposed VQA algorithm [5], [6]. The results indicate a competitive performance of the

proposed and the classical VQA algorithms.

The remainder of this paper is organized as follows. Section II briefly reviews the existing

three-component classification model and its application in IQA algorithms and cites the

VQA algorithms that obtained an improvement on the performance by means of the analysis

of temporal perceptual factors. The gradient vector computation on the image space and a

brief review of fuzzy logic are presented in Section III. Section IV describes the proposed three-

component classification algorithm that uses the fuzzy logic and its application to estimate

the spatial video quality. The aspects of the temporal perceptual information and its impact

on the overall video quality are described in Section V. The discussion of the performance

of the proposed VQA algorithm is presented in Section VI. Finally, Section VII presents the

conclusion.

2 Related Works

Visual attention is a cognitive ability of the Human Visual System (HVS) that involves search,

selection and focus of relevant stimuli [7]. The visual attention is little explored by computer

systems, since the knowledge of this feature is scarce, which makes it hard to estimate it with

analytical models.

One way to identify the visual attention is by means of classification algorithms. The

purpose of classification algorithms is to distinguish regions according to the visual interest

by the HVS. The classification algorithms have been used in image and video quality metrics

to obtain the importance, i. e. the visual interest, of the different regions and, thus, to

improve the objective measures. Regis et al [8] proposed an algorithm that uses the average

magnitude of the gradient vectors (MGV) to identify relevant areas on the video, i. e. the

MGV is used as a visual attention predictor, combined with a quality algorithm.

A model is presented in [9] in which the image is segmented is three regions: edge, smooth

and texture. Based on that model, Li et al [3] presented an algorithm to recognize the pixels

in the same three classes of regions. The classification algorithm presented in [3] uses the

MGV as input. The pseudo-code of this algorithm is presented in Algorithm 1.

Based on Algorithm 1, the works of [10] and [11] proposed image quality metrics in which

a quality index is computed for each segmented region and an overall quality index is obtained

as the average weighted among the scores for each region.

The motivation to use the vector-gradient approach as a prediction of visual attention is

the low computational complexity and simplicity, which are important specifications when

incorporated into the metrics of video quality [12]. Moreover, the vector-gradient approach

also provides a good approximation of the visual interest of the HVS, since the gradient vector

provides the rate and the direction of variation of the pixels luminance levels.

Another fundamental point in the objective VQA is the temporal quality analysis. The
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Algorithm 1: Pseudo-code for the classification algorithm proposed by Li [3].

Data: Original image f = (x, y, f(x, y)) and processed image h = (x, y, h(x, y))
Result: Classification of the pixels in three regions (edge, texture and smoothness)
begin

1) Apply the Sobel operator to the original and degraded videos to obtain the
magnitude of the gradient vectors (MGV) in each (x, y) position.
2) Determine the thresholds th1 = 0.12 · gmax and th2 = th1

2 , in which gmax is the
highest MGV in the image.
3) Assuming that ||f(x, y)|| e ||h(x, y)|| denote the MGV, in the position (x, y),
apply the following rules:

R1: If ||f(x, y)|| > th1 or if ||h(x, y)|| > th1,
then the pixel is classified in the edge region.

R2: If ||f(x, y)|| < th2 and if ||h(x, y)|| ≤ th1,
then the pixel is classified in the smooth region.

R3: If th1 ≥ ||f(x, y)|| ≥ th2 and if ||h(x, y)|| ≤ th1,
then the pixel is classified in the texture region.

ITU-T P.910 [13] defines the temporal perceptual information (TI) as a measure of the dif-

ferences of the pixels in the same spatial position but in successive frames. Vu et al [14]

incorporate the temporal variation by computing the MS-SSIM for two new frames, one that

is the difference between the current reference frame and the next reference frame, and an-

other that is the difference between the current reference frame and the next distorted frame.

In [15] the temporal quality variations are measured via the singular value decomposition,

assuming that the difference between the singular vectors is a good estimate for temporal

variations.

3 Gradient Vector and Fuzzy Logic Review

3.1 Gradient Computation

Let V = {(x, y, n, ν(x, y, n)) ∈ Z4 | 0 ≤ x ≤ I − 1, 0 ≤ y ≤ J − 1, 0 ≤ n ≤ N − 1, 0 ≤
ν(x, y, n) ≤ 2b − 1}, be a video signal with spatial resolution I × J , N the number of frames,

ν(x, y, n) the luminance level and b is the number of bits used to discriminate the luminance

levels.

The differential operation on a video V, defined as

Os : (x, y, n, ν(x, y, n)) −→ (x, y, n,∇ν(x, y, n)), (1)

associates, for each spatial coordinate (x, y), a gradient vector

~∇ν(x, y) =
∂ν(x, y)

∂x
~i+

∂ν(x, y)

∂y
~j (2)

with angle of direction

θ = arctan

(
∂ν(x, y)/∂y

∂ν(x, y)/∂x

)
rad. (3)
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The magnitude of the gradient vector is defined as

||∇ν(x, y)|| =

[(
∂ν(x, y)

∂x

)2

+

(
∂ν(x, y)

∂y

)2
]1/2

, (4)

that corresponds to the rate of change of the luminance.

Digitally, the magnitude of the gradient vector is computed by means of finite differences,

as

||∇ν(x, y)|| ≈
[
(V(x, y) ∗O1)

2
+ (V(x, y) ∗O2)

2
]1/2

, (5)

O1 =

 −1 0 +1

−2 0 +2

−1 0 +1

 , O2 =

 −1 −2 −1

0 0 0

+1 +2 +1

 ,
in which O1 and O2 are the Sobel operators and ∗ is the linear filtering operation [16].

3.2 Fuzzy Logic

Fuzzy logic is a logical system that generalizes the classical logic among sets for reasoning un-

der uncertainty, in which the elements of the system (inputs) are qualitatively interpreted [17].

A fuzzy set is an extension of the classical set, in which the elements have a member-

ship degree that indicates the inclusion of the element in the set. The membership degree is

expressed by a real number between [0, 1], in which 0 and 1 denote, respectively, the total

incompatibility or compatibility in the fuzzy set. The membership degree is measured accord-

ing a membership function. Mathematically, a fuzzy set A, in an universe of discourse U , is

completely determined by its membership function,

µA : U −→ [0, 1]. (6)

A membership function can be designed as an interview with those who are familiar with

the underlying concept and later adjust it based on a tuning strategy [17].

Using fuzzy logic, it is possible to manipulate imprecise measurements by means of lin-

guistic variables, linguistic terms and linguistic rules. A linguistic variable is defined as the

quadruple (N,T (N), U, F ) in which N is the name of the linguistic variable, T (N) is a set

of the linguistic terms that represent the state of N , U is the universe of discourse and F

is a function that associates for each T (N) a membership function µA. The purpose of the

linguistic variable is to provide a systematic method to the approximate concept of complex

phenomena [17]. The linguistic term is a qualitative way to represent the state of a linguis-

tic variable and to express concepts and knowledge in human communication, where as the

membership function is useful for processing numeric input data. The linguistic rules are a

way of the inference to combine the linguistic terms of two or more linguistic variables in

IF. . . THEN propositions.

In general, the algorithm of fuzzy rule-based inference consists of three basic steps and an

optional step [17]:

• Fuzzification: Calculate the membership degree to which the input data, given by mea-

surements or observations, for each fuzzy sets associated to the linguistic variable.
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• Inference: Calculate the conclusion based on its membership degree.

• Combination: Combine the conclusion inferred by all fuzzy rules into a final conclusion.

• Defuzzification: For applications that need a crisp value. It is used to convert a fuzzy

conclusion into a crisp one.

4 Fuzzy Spatial Video Quality

For the task of segmentation in three regions (edge, texture and smoothness), the authors

propose a fuzzy decision system considering the visual interest regions, described as follows.

Let R be the universe of discourse, in which z ∈ R in the interval 0 ≤ z ≤ 255, f

and h are the reference and the distorted video, respectively, and the linguistic variable

Visual Attention (VA) as (Visual Attention, T (Visual Attention),R, F ), that assumes the lin-

guistic terms T (Visual Attention) = {low,mid, high}.
Initially, it defines a function averagek(·) that computes the average value of the magni-

tude of the gradient vectors in a block of index k and size 8×8 pixels. The value of averagek(·)
represents an estimate of the visual interest in the k-th block.

In the Fuzzification process, the crisp values of averagek(·) are mapped according the

membership functions of the fuzzy sets, that are illustrated in Fig. 1. This process is performed

for all blocks of the videos.
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Fig. 1. Membership functions for the fuzzy sets low , mid and high associated to the linguistic
variable Visual Attention.

The OR fuzzy logical operator, defined in [18] as µA∨B = max (µA, µB), was used for

the fuzzification process. For example, considering the value z = averagek(f) = 55, then

µlow(z) = 0.9, µmid(z) = 0.1 and µhigh(z) = 0, the OR operator among these fuzzy sets

returns that z presents a greater membership degree to the low fuzzy set than others, therefore,

the visual attention in this block is low with degree 0.9.

In the step of fuzzy inference used the IF-THEN implication rules presented in Table 1,

in which the results of the fuzzification are compared. The AND operator is defined in [18] as

µA∧B = min (µA, µB). The propositions contained in TABLE 1 are performed between the

membership degree of visual attention in the original and degraded videos.

In the proposed fuzzy system, the module of the decision region (Fig.2) informs the class

to which the block k was marked according the output of the fuzzy inference.
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Table 1. IF-THEN database rules.

IF THEN

Rules VisualAttention(f) VisualAttention(h) Region
1 low low Smooth
2 low mid Texture
3 low high Edge

4 mid low Smooth
5 mid mid Texture
6 mid high Edge

7 high low Edge
8 high mid Texture
9 high high Edge

Finally, the algorithm PW-SSIM (Perceptual Weighted Structural Similarity Index), pro-

posed by Regis et al [19], was used to emit a video quality index for each region (edge, smooth

and texture). The PW-SSIM is described as

PW-SSIM(f, h) =

∑K
k=1 SSIM(fk, hk) · wk∑K

k=1 wk
, (7)

in which

wk =

√√√√ 1

P − 1

P∑
p=1

(µk (f)− ||∇fp||)2, (8)

is the local spatial perceptual information [19] in the k-th block and P is the number of

gradient vectors in a block (P = 64 in the case of a block size 8× 8).

     

     Fuzzy Inference

Input Crisp Data

Interface of

Fuzzification

Interface of

Rule Base

Decision Region

Fig. 2. Architecture of the fuzzy system.

The combination of the PW-SSIM scores results in the Fuzzy Spatial Video Quality Index,

defined as

FS-VQI =

3∑
i=1

PW-SSIMi · λi. (9)

in which λi are weights associated for each region and
∑3
i=1 λi = 1.
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5 Temporal Perceptual Quality

Many algorithms of image quality assessment are also used for predicting the video quality.

However, the video shows a temporal component which is not considered in such algorithms,

which present an unsatisfactory correlation with the mean opinion scores obtained from sub-

jective evaluations.

The rate of the temporal changes in the video is quantified by the differences of the pixels

in the same spatial position of successive frames [13]. A similar approach to the proposed by

Vu et al [14] was used to estimate the quality on the temporal component, using the MS-SSIM

index between the differences of the subsequent frames, are computed as follows:

Df,n = ||Fn+1 −Fn||,
Dh,n = ||Hn+1 −Fn||,

(10)

in which F and H are the original and distorted frames, respectively, and n is the frame

number.

In the proposed algorithm, the temporal quality is estimated by mean of the PW-SSIM

index between the differences of the frames (Df,n and Dh,n), i.e.

TP-VQI =
1

N − 1

N−2∑
n=0

PW-SSIM (Df,n,Dh,n) . (11)

The PW-SSIM index uses regions with large perceptual changes and presents a better

correlation than the MS-SSIM [19].

The overall quality index is the average between the spatial and the temporal perceptual

quality indices,

O-SSIM =
FS-VQI + TP-VQI

2
. (12)

6 Simulation Results

The performance of an objective VQA algorithm is validated by means of the correlation

between the objective measure, i.e. the predicted quality, and the mean opinion scores ob-

tained in subjective evaluations. The Pearson Linear Correlation Coefficient (PCC) and the

Spearman Rank-order Correlation Coefficient (SROCC) and Kendall Rank-order Correlation

Coefficient (KROCC) were used to validate and compare the proposed algorithm, assessing

the accuracy and the monotonicity of the objective model prediction with respect to human

subjective scores.

6.1 Optimal Weights

Experiments were performed to find optimal weights that maximize the correlations coeffi-

cients and minimize the root mean square error among the objective values and the subjective

scores, in which the weights λ1, associated to the edge region, were changed in an interval

[0.1, 0.9] in steps of 0.1 and the weights associated to the smooth and texture regions had

the same value. The experiment used the subjective evaluation performed by [20], in which

video sequences in CIF (352 × 288) format were encoded using the H.264/AVC standard.

Information about the subjective video quality database used in those experiments can be

found in [20].
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Fig. 3. Correlation coefficients and root mean square error used as criteria to find optimal weights.

The results of the experiments suggest that values around the triple (0.2, 0.4, 0.4) are

adequate. Fig. 3 shows the results of the correlation coefficients by Pearson, Spearman and

Kendall, and the root mean square error. It is noted that the weight λ1 = 0.2 is the best one

for KROCC (Fig. 3b), PCC (Fig. 3d) and RMSE (Fig. 3a).

6.2 Performance Evaluation using the LIVE Video Quality Database

The LIVE Video Quality Database (LIVE) [5], [6] was used to compare the performance of the

proposed algorithm with the classical objective metrics, considering videos with the following

degradations: H.264 and MPEG-2 compression, simulated transmission of H.264 compressed

bit-streams over error-prone IP and wireless networks. The videos from LIVE were: “Blue

Sky”, “River Bed”, “Pedestrian area”, “Tractor”, “Sunflower”, “Rush hour”, “Station”, “Park

run”, “Shields” and “Mobile & Calender”. For each video 15 test videos were produced, with

the degradations cited previously. They were evaluated using the Absolute Category Rating

(ACR) with a continuous scale. Information about the parameters used to distort the video,

the conditions of the subjective experiments and the processing of subjective scores can be

found in [6].

The PCC and SROCC were computed after performing a non-linear regression on the

objective video quality assessment algorithmic measures, using a four parameter monotonic

logistic function to fit the objective prediction to the subjective quality scores. The function
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is the following [6]

Q
′

k = β2 +
β1 − β2

1 + e−(Qk−β3)/|β4|
, (13)

in which Qk represents the level that a video quality assessment algorithm predicts for the

k-th video in the LIVE Video Quality Database.

The non-linear least squares optimization is performed using the MATLAB function

nlinfit to find the optimal parameter β that minimizes the least squares error between

the subjective scores (DMOSk) and the fitted objective scores (Q
′

k). The initial estimates of

the β parameter were [21]: β1 = max(DMOSk), β2 = min(Q
′

k), β3 = mean(Q
′

k) and β4 = 1.

The MATLAB function nlpredci was used to obtain the DMOS, after the least squares

optimization.

Tables 2 and 3 present the performance of the algorithms, in terms of PCC and SROCC,

for each distortion provided by the LIVE Video Quality Database. The boldface correlation

coefficients represent the two best performances.

Table 2. Pearson correlation coefficients.

Algorithms H.264 IP wireless MPEG-2 All

PSNR 0.5492 0.4645 0.6690 0.3891 0.5621
SSIM [22] 0.6656 0.5119 0.5401 0.5491 0.5444

MS-SSIM [23] 0.6919 0.7219 0.7170 0.6604 0.7441
Speed SSIM 0.7206 0.5587 0.5867 0.6270 0.5962
VSNR [24] 0.6216 0.7341 0.6992 0.5980 0.6896

VQM 0.6459 0.6480 0.7325 0.7860 0.7236
V-VIF [25] 0.6911 0.5102 0.5488 0.6145 0.5756

S-MOVIE [26] 0.7252 0.7378 0.7883 0.6587 0.7451
T-MOVIE [26] 0.7920 0.7383 0.8371 0.8252 0.8217
MOVIE [26] 0.7902 0.7622 0.8386 0.7595 0.8116

S-ViMSSIM [14] 0.7834 0.7503 0.7837 0.7515 0.7796
T-ViMSSIM [14] 0.8810 0.6890 0.8219 0.7909 0.8122
ViMSSIM [14] 0.8117 0.7322 0.8327 0.7978 0.8260

O-SSIM (Proposed) 0.8229 0.7623 0.8568 0.8034 0.7649

The correlation coefficients indicated that the proposed algorithm is adequate for wireless

transmission of H.264 bit-streams. On the transmission over IP networks the proposed al-

gorithm is equivalent to the MOVIE index. For distortion generated at the H.264 encoding

the Temporal-ViMSSIM (T-ViMSSIM) is the best one. Finally, the T-MOVIE showed the

best correlation for the distortion created by the MPEG-2 encoding. However, T-MOVIE

takes approximately five hours to compute the quality of a video with 250 frames and spatial

resolution of 768 × 432 [14].

7 Conclusions

The authors proposed an algorithm for Video Quality Assessment (VQA) that divided the

quality evaluation into in spatial analysis and temporal analyses. The overall quality assess-

ment is an average of these two analysis. A classification algorithm based on fuzzy logic,

which uses the magnitude of the gradient vectors in a block of size 8× 8 pixels was proposed

for spatial quality prediction. Unlike the pixel-by-pixel classification algorithms proposed in

the literature, the use of 8× 8 blocks enables to consider the spatial characteristics provided

by neighborhood pixels, that improves the classification. The PW-SSIM index between pixels



C. D. M. Regis, J. V. de Miranda Cardoso, Í. de Pontes Oliveira, and M. S. de Alencar 263

Table 3. Spearman correlation coefficients.

Algorithms H.264 IP wireless MPEG-2 All

PSNR 0.4585 0.4167 0.6574 0.3862 0.5398
SSIM [22] 0.6514 0.4550 0.5233 0.5545 0.5257

MS-SSIM [23] 0.7051 0.6534 0.7285 0.6617 0.7361
Speed SSIM 0.7086 0.4727 0.5630 0.6185 0.5849
VSNR [24] 0.6460 0.6894 0.7019 0.5915 0.6755

VQM 0.6520 0.6383 0.7214 0.7810 0.7026
V-VIF [25] 0.6807 0.4736 0.5507 0.6116 0.5710

S-MOVIE [26] 0.7066 0.7046 0.7927 0.6911 0.7270
T-MOVIE [26] 0.7797 0.7192 0.8114 0.8170 0.8055
MOVIE [26] 0.7664 0.7157 0.8109 0.7733 0.7890

S-ViMSSIM [14] 0.7713 0.6521 0.7340 0.7694 0.7690
T-ViMSSIM [14] 0.8580 0.6650 0.7951 0.7499 0.7984
ViMSSIM [14] 0.8559 0.6774 0.8111 0.7630 0.8211

O-SSIM (Proposed) 0.7812 0.7126 0.8349 0.7634 0.7576

in the same spatial position in subsequent frames is used to predict the temporal perceptual

quality. The proposed algorithm was validated using the LIVE Video Quality Database. It

showed satisfactory correlation and is an alternative to VQA.
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