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This paper considers the problem for recovering a drawing order of static handwritten
images with single stroke. Such a stroke may include the so-called double-traced lines (D-

lines). The problem is analyzed and solved by employing the graph theoretic approach.
Then the central issue is to obtain the smoothest path of stroke from a graph model of
input handwritten images. First, the graph model is constructed from an input images

by image processing techniques. Then, we locally analyze the structure of graph. In
particular, the method to identify D-lines is developed by introducing the idea of ‘D-line
index’. The method enables us to transform any graphs with D-lines to semi-Eulerian
graphs. Then, the restoration problem reduces to the problem of globally computing

the maximum weight collection of perfect matchings. For solving such a problem, we
propose a method using a probabilistic tabu search algorithm. The effectiveness and
usefulness of the proposed method are examined by some experimental studies.
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1 Introduction

Recovering drawing order of static handwritten images is a key technology for the wide range

of applications – such as off-line character recognition, character structure analysis, and design

of character fonts, etc. Thus such a recovering problem have been studied extensively, and

various algorithm for solving the problems have been developed. Such algorithms may be

mainly classified as (i) local tracing, (ii) global tracing, and (iii) hybrid tracing methods.

A typical example of local tracing methods in (i) is a heuristic rule method [1]. Applying

some heuristic rules at any points where some stokes intersect, direction of drawing order is

decided one after another. Such a local tracing algorithm usually have low computational cost,

but is very sensitive to noises. In order to improve the robustness on noises, the global tracing

methods in (ii) has been developed [2, 3]. By employing the graph theory, the recovering

problems are formulated as some combinatorial optimization ones on a graph. Then, it
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74 Recovering Drawing Order of Single-Stroke Handwritten Images Using Probabilistic Tabu Search

has been shown that such problems reduce to the Traveling Salesman problem or Chinese

Postman problem. However, this approach may lead to computational explosion as the given

handwritten image becomes complex. Moreover, in order to resolve the issues of above two

methods, hybrid tracing methods in (iii) using graph theoretic algorithm have recently been

studied (see e.g. [4, 5, 6]). These methods consists of two steps processes as follows: First,

graph structure is locally analyzed at every crossing points on given handwritten image. From

such information on the graph structure, we judge the types of corresponding edge and vertex

based on some template models. Then, the labeling information of stroke is obtained and

we get the drawing order of handwritten images. However, this approach fairly depends on

the local structures of the given image. Thus, it is not guaranteed to obtain the smoothest

drawing order of the possible ones.

In this paper, we develop a new method for recovering drawing order of static handwritten

images with single stroke. Such a stroke may include the so-called double-traced lines which

is referred as ‘D-lines’. The problem is analyzed and solved by employing the graph theory.

Then the central issue is to obtain the smoothest path of stroke from a graph of a given

handwriting image. First, an undirected graph is constructed from an input handwriting

image by employing some image processing techniques. Then, the drawing order is recovered

by analysing the obtained graph. In particular, the method to identify D-lines is developed

by introducing the idea of ‘D-line index’. The method enables us to transform any graph

models including D-lines to semi-Eulerian graph models. Then, the smoothness of Euler path

is formulated by the weight of collection of perfect matchings in a continuity graph. Thus,

the restoration problem reduces to maximum weight perfect matching problem of graph. For

solving such a problem, we propose a method using a probabilistic tabu search algorithm.

The effectiveness and usefulness are examined by some experimental studies.

This paper is organized as follows. In Section 2, we briefly present the method to obtain

a graph model from input handwritten image. In Section 3, we show how double-traced lines

can be identified. Then, in Section 4, we develop a method for finding the smoothest drawing

order of the possible ones by employing a probabilistic tabu search algorithm. We examine

the performances of the proposed method by experimental studies in Section 5. Concluding

remarks are given in Section 6.

2 Constructing Graph Model

In this section, we briefly present the method to obtain a graph model from input handwritten

image with single stoke whose start and end points are not identical. Here, we assume that

the input images are stored as binary image data, where any blurred and scratched points are

removed.

Now, let I and Is be an input handwritten image and a corresponding skeleton image,

respectively. Also, let G be an undirected graph with a set of vertex V (G) = {v1, v2, · · · , vn}

and a set of edge E(G) = {e1, e2, · · · , em}. Then, the graph G is constructed from the input

I as follows: First, we obtain the skeleton Is from input I by employing some thinning

algorithm. As seen in a lot of classic problems with thinning algorithm, the skeleton Is may

be distorted due to small irregularities in the input I. We thus apply some smoothing filter

to the input I before applying thinning algorithm in order to remove the artifacts. In order

to obtain the skeleton Is from the input I, we here used the Zhang-Suen’s thinning algorithm
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(a) Stroke with intersection at narrow point (b) R-edges and S-edges

Fig. 1. Extracting C-vertex.

together with Stentiford preprocessing (see e.g. [7, 8]).

Next, undirected graph G is constructed from the skeleton Is. Then, our task is to

extract a set of edges E(G) and a set of vertices V (G) from the skeleton Is. Each edge

ei ∈ E(G), i = 1, 2, · · · ,m is a segment in skeleton. Each vertex vi ∈ V (G), i = 1, 2, · · · , n

corresponds to a geometrical feature point at which an edge terminates or two or more edges

are connected. Such two types of geometrical feature points are referred as ‘T-vertex’ and

‘C-vertex’ respectively in the sequel. T-vertex corresponds to a terminal of a line of the

skeleton. Then, we may readily extract T-vertices since they consist of only a pixel having

one 8-connected neighbor. Extracting C-vertex may however not be easy due to the thinning

process (see Fig. 1). For example, let us consider the case where a stroke in input I intersects

at some narrow point (see Fig. 1 (a)). Then, in the constructed skeleton Is, the corresponding

intersection point may be stretched into a set of small segments (see Fig. 1 (b)). Thus, the

skeleton around C-vertex is constituted by two kinds of edge: ‘Real edge (R-edge)’ and

‘Spurious edge (S-edge)’. Here, R-edge is an edge corresponding to real stroke in the input

I. S-edge is an extra edge yielded by thinning process. Since S-edge never exists in input I,

S-edge may distort the structure of handwriting image in I. We thus need to differentiate S-

edges from R-edges. The identification of S-edge can be done by the so-called double threshold

method (see [9] for details). Then, a cluster of the connected S-edges with associated vertices

is transformed into a C-vertex. Hence, all the T-vertices and C-vertices in the skeleton Is are

stored as a set of vertex V (G) and the set of R-edges is stored as a set of edge E(G).

3 Identification of Double-Traced Lines

Now, suppose that a undirected graph G is modeled from an input image I by the method

in Section 2. If the graph G is a semi-Eulerian, there exists a walk on G which traverses

all of the edges exactly once from a T-vertex (i.e. start vertex) and another one (i.e. end

vertex). Such a walk is referred as ‘Euler path’. It is well known that the problem of finding

an Euler path on a semi-Eulerian graph can be computed in polynomial time (see e.g. [10]).

Moreover, we may often face the situations in which a line is drawn twice. Such a stroke

which is traversed twice is called as ‘double-traced line (D-line)’. In such cases, the graph G

obtained from input I never become semi-Eulerian. We thus need to detect all the D-lines in

order to construct a semi-Eulerian graph from G.

Figure 2 shows a set of stroke including D-line, where the numbers and arrow marks denote

the drawing order. Moreover, the corresponding graphs are shown in Fig. 3, where Fig. 3

(a) is the graph corresponding to Fig. 2 (a) and Fig. 3 (b) is one corresponding to others
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Fig. 2. Six types of possible D-lines.
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Fig. 3. Graph structures of D-lines in Fig. 4. The left and right figures illustrate the graph
structures corresponding to Fig. 4 (a) and Fig. 4 (b)-(f), respectively.

in Fig. 2. We then see that only the structure of Fig. 2 (a) is different from the others in

Fig. 2. However, the graph corresponding to Fig. 2 (b)-(f) is quite same. Thus, it may be

difficult to differentiate the drawing order among Fig. 2 (b)-(f) from the local graph structure

around D-line. For solving such a difficulty, we first identify all the D-lines and then detect

the corresponding drawing order. In order to identify D-lines, we introduce an idea of ‘D-line

index’ (see Section 3.1). The index is used to locally identify all the D-lines. Then, we have

only to consider the problem to detect the corresponding drawing order of D-lines. One of the

simplest approach for solving such a problem is the brute-fource method [11] which enumerate

all the possible drawing orders on D-lines. Such a method however faces the combinatorial

explosion problem. Hence, we may need more sophisticated method so that the writing order

is detected by analyzing globally the structure of graph G . We then develop the method for

transforming a graph with D-lines to a semi-Eulerian one by employing the so-called path

duplication method (see Section 3.2).

3.1 D-line Index

We here present ‘D-line index’ for identifying D-lines. As shown in Fig. 3, all the types of

D-line consist of an edge between two vertices with odd degree, where we suppose that the

length of edge is relatively small. Then, the edge between two vertices with odd degree may

be D-line candidate. Moreover, stroke may intersect with D-line as shown in Fig. 4. Thus,

representing D-line as an edge between two vertices with odd degree may be hardly adequate.

One of natural way is to represent a candidate of D-line as a path PD of G with length more

than or equal to 1. When the D-line is given as a path between two vertices vD1
, vD2

∈ V (G),

we thus express the candidate path PD as

PD = 〈(vD1
, vk1

), (vk1
, vk2

), · · · , (vkl
, vD2

)〉 (1)
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vD1 vk1
vD2

Fig. 4. D-line with PD = 〈(vD1
, vk1

), (vk1
, vD2

)〉.

with vki
∈ V (G), i = 1, 2, · · · , l. Here, (vp, vq) denotes an edge between two adjacent vertices

vp and vq and two terminals vD1
and vD2

of PD has odd degree.

Example 1 In Fig. 4, stroke intersects with an edge (vD1
, vD2

) corresponding to D-line at

vertex vk1
. Hence, the candidate path PD in (1) is expressed as PD = 〈(vD1

, vk1
), (vkl

, vD2
)〉.

In order to determine whether a candidate PD in (1) is a D-line, we introduce D-line index

as follows. D-line index is based on the straightness of PD and the smoothness between PD

and the incident edges to terminals of PD. Letting DLI(PD) ∈ [0, 1] be ‘D-line index’ for a

candidate PD, we define DLI(PD) as

DLI(PD) = λST (PD) + (1− λ)SM(PD), (2)

where λ ∈ [0, 1] is a weighted parameter, and ST (PD) and SM(PD) denote the ratios on

straightness and smoothness for PD defined as follows.

First, the straightness ratio ST (PD) is evaluated by

ST (PD) =
d(vD1

, vD2
)

l(PD)
, (3)

where d(vD1
, vD2

) is Euclidean distance between two vertices vD1
and vD2

, and l(PD) is the

length of PD defined as

l(PD) =
∑

1≤i≤l−1

d(vki
, vki+1

) + d(vD1
, vk1

) + d(vkl
, vD2

). (4)

It then holds that ST (PD) ≤ 1 with upper bound being achieved when PD becomes exactly

straight line. As the straightness of path PD decreases, ST (PD) approaches to 0.

Next, the smoothness ratio SM(PD) in (2) is defined by

SM(PD) = min







∑

i=1,2

S
(

eD1
, e

vD1

i

)

,
∑

i=1,2

S
(

eD2
, e

vD2

i

)







(5)

with

S(eDj
, e

vDj

i ) =

{

|α|
π

if α 6= 0
1 if α = 0

, i, j = 1, 2. (6)

Here, eD1
= (vD1

, vk1
) and eD2

= (vD2
, vkl

), and e
vDj

i denote an edge (vDj
, v

Dj

i ) for i, j = 1, 2,

where v
Dj

i is an adjacent vertex to vDj
. |α| ∈ [0, π] is a difference angle between the edges
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eDj

vDj

e1
vDj

e2
vDj

lβ

lw

Fig. 5. Computation of angle.

eDj
and e

vDj

i around vDj
. It then holds that S(eDj

, e
vDj

i ) approaches to 1 as |α| approaches

to π. Also, when α = 0, we set S(eDj
, e

vDj

i ) = 1. The case of α = 0 may not usually occur,

but this expression will be used for constructing a continuity graph for the case where D-line

in Fig. 2 (a) includes (see Section 4.1 for detail.)

On the other hand, it is difficult to estimate α precisely since the segments around the

intersection between eDj
and e

vDj

i may be distorted due to the sensitivities of thinning al-

gorithm to noises. Thus, we estimate α from the stroke part near the vertex vDj
as follows:

Suppose that two edges eDj
and e

vDj

i are connected as shown in Fig. 5. From the edges eDj

and e
vDj

i , we first pick out two segments ~eDj
and ~e

vDj

i with length lβ from a point which is

length lw away from vDj
. Then, by employing such segments ~eDj

and ~e
vDj

i , we compute α as

α = cos−1 ~eDj
• ~e

vDj

i

l2β
, (7)

where • denotes inner product. We empirically set lβ and lw as lβ = 2lw = 2w(I), where

w(I) ∈ R denote the average stroke width of input I defined by

w(I) =
2a(I)

c(I)
(8)

where a(I) denotes the area of stroke (i.e. total number of pixels in stroke area) in input I

and c(I) is the contour length of stroke area in I.

Remark 1 If a candidate PD is D-line corresponding to Fig. 2 (a), the degree for either of

vDj
, j = 1, 2 may be 1, i.e. deg(vDj

) = 1. Then, there exists no incident vertices for such

a vertex vDj
with deg(vDj

) = 1. Thus, if deg(vDk
) = 1 on PD is satisfied for k ∈ {1, 2}, we

have only to evaluate SM(PD) in (5) as

SM(PD) =
∑

i=1,2

S
(

eDk
, e

vDk

i

)

. (9)

3.2 Constructing Semi-Eulerian Graph

We are now in the position to develop a method to transform the undirected graph G with

D-lines to a semi-Eulerian graph. It is known that undirected graph G is a semi-Eulerian if

and only if G has exactly two vertices of odd degree. Thus, our task is to identify D-lines
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by employing D-line index in Section 3.1 and transform the odd degree vertices on D-lines to

even degree ones.

When there exist some D-lines on the stroke, the odd degree vertices may consist of those

of D-line or terminal points of stroke (i.e. the start and end points) in G. Now, let V1 ⊆ V (G)

be a set of vertex with degree one defined as

V1 = {vi | deg(vi) = 1, i = 1, 2, · · · , n}. (10)

Each vertex vi ∈ V1 must be either a terminal point of stroke or a degree one vertex of a

D-line as shown in Fig. 2 (a). In other words, there exist exactly two vertices, denoted by

vs, vt ∈ V1, which correspond to start and end points of stroke. We then identify vs and vt
by using DLI in (2) as follows.

Letting Vodd ⊆ V (G) be a set of vertex with odd degree defined as

Vodd = {vi ∈ V (G) | deg(vi) is odd}, (11)

we find the odd degree vertex vj ∈ Vodd(j 6= i) for each vi ∈ V1. Then we evaluate an index

TI(vi), vi ∈ V1 defined by

TI(vi) = max
vj∈Vodd

{DLI(PS(vi, vj))}, (12)

where PS(vi, vj) is the shortest path between vi and vj . Note here that the length of D-line

is generally short. Thus, the vertex vi with large TI(vi) may be a terminal of D-line. Hence,

two vertices with smallest TI(vi) can be identified as the terminal vertices vs and vt, say the

start and end points of drawing.

Next, let VD be a set of odd degree vertices of G defined as

VD = Vodd\{vs, vt}. (13)

We then see that VD is a set of odd vertex corresponding to both end vertices of D-lines,

hence |VD| is even. According to the fact that any D-line does not connect two vertices with

degree one, all the D-lines are identified as follows. Let GD be an edge weighted graph with

a set of vertex VD in (13) and a set of edges E(GD) defined as

E(GD) = (VD × VD)\{(vi, vj)|deg(vi) = deg(vj) = 1}, (14)

where A × A is the Cartesian product of A with itself. Moreover, we introduce the weight

function w : E(GD)→ R+ defined as

w(vi, vj) = DLI(PS(vi, vj)) (15)

for each (vi, vj) ∈ E(GD). Then, the detection of D-lines can be regarded as the maximum

weight matching problem on GD. As is well known, the maximum weight matching problem

can be solved in polynomial time (see, e.g. [12, 13]). Letting M be a maximum weighted

matching of GD, we identify the shortest paths corresponding to edges of M as D-lines.

After identifying the terminal vertices of stroke and D-lines, we readily transform the

graph G into a semi-Eulerian graph Geul by employing the path duplication method as follows.



80 Recovering Drawing Order of Single-Stroke Handwritten Images Using Probabilistic Tabu Search

Supposing that a D-line is given as PD = 〈(vD1
, vk1

), (vk1
, vk2

), · · · , (vkl
, vD2

)〉, all the edges

in PD are removed and vD1
is connected with vD2

by two new edges. Then, the degree of

vertex vki
, i = 1, 2, . . . , l may reduced to two. Since there is no more branch of stroke at such

vertex vki
, we can remove vki

by merging two edges adjacent to vki
to an edge (see Fig. 6).

Hence, we get the following lemma.

Lemma 1 Geul is a semi-Eulerian graph. Furthermore, the Euler paths of Geul corresponds

one-to-one with possible strokes of input image.

Proof of Lemma 1: Let G be an arbitrary graph obtained by the method in Section 2.

Also, let Geul be a graph obtained from G by the path duplication method. We first prove

that Geul is a semi-Eulerian. As is well known, a graph is a semi-Eulerian if and only if the

graph is connected and has exactly two vertices of odd degree. Noting that Geul is obviously

connected, we here show that exactly two vertices of Geul have degree one and others have

even degree.

Now, letting vi be an arbitrary vertex of G with even degree, we consider the following

three cases:

(C1) vi is also in Geul and the degree of vi is same as that of vi in G.

(C2) vi is also in Geul and the degree of vi is smaller than that of vi in G by two.

(C3) vi is not in Geul.

In any cases of (C1)-(C3), vi has even degree in Geul. Let vi be an arbitrary vertex of G with

odd degree except ones corresponding to start and end points of stroke, i.e. vs and vt. That

is, vi is a vertex corresponding to terminal of D-line in G, which is shown in Fig. 3. By the

path duplication, the degree of such vertices vi may be increased by one. Thus, vi has even

degree in Geul. Since the path duplication does not change the degree of vs and vt, then the

degree of vs and vt is also one in Geul. Thus, exactly two vertices (i.e. vs and vt) of Geul have

degree one and others even degree.

Next we prove that Euler paths of Geul corresponds one-to-one with possible paths on G.

Letting S be an arbitrary possible path of G, then S may traverse the edge corresponding to D-

line twice, but other edges exactly once. However, as described above, the edge corresponding

to D-line is replaced as two edges by the path duplication, and then S becomes an Euler path

of Geul. Thus, S corresponds to an Euler path of Geul.

Conversely, letting PE be arbitrary semi-Eulerian path of Geul, PE traverse each edge of

Geul exactly once. Since each D-line of G is replaced by two edges in Geul, then PE is regarded

as a path of G that traverse each D-line twice as well as other edge exactly once. Hence, PE

is a stroke of G. This completes the proof of Lemma 1.

The above method for constructing semi-Eulerian graph Geul from G with D-lines is sum-

marized in Algorithm 1 and Algorithm 2, where Algorithm 2 is the procedure of path dupli-

cation method.

Example 2 When a handwritten image in Fig. 7 (a) is given as input image I, we get

semi-Eulerian graph Geul as shown in Fig. 7 (b) by Algorithm 1.
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Fig. 6. The path duplication method. The upper figure is an example of a path PD =
〈(vD1

, vk1
), (vk1

, vD2
)〉 that represents a D-line. The lower figure is the result of the path du-

plication method. The vertex vk1
is removed and PD is replaced by multiple-edges between vD1

and vD2
.

Algorithm 1 SemiEulerian(G)

Require: an undirected graph G.
Ensure: convert G to its semi-Eulerian Geul.
1: for all vertex vi ∈ V1 do
2: Compute TI(vi) by (2).
3: end for
4: Select two vertices vs, vt ∈ V1 with the smallest TI.
5: Construct edge weighted graph GD.
6: Compute the maximum weighted matching M in GD.
7: for all e ∈M do
8: PathDuplication(G, PS) where PS is the shortest path corresponding to e.
9: end for

Algorithm 2 PathDuplication(G, PD)

Require: an undirected graph G and a path PD.
Ensure: dupulicate the path PD.
1: Let PD = 〈(vD1

, vk1
), (vk1

, vk2
), . . . , (vkl

, vD2
)〉.

2: Remove the edges (vD1
, vk1

), (vk1
, vk2

), . . . , and (vkl
, vD2

).
3: Add new multiple-edges those connect vD1

and vD2
.

4: for j = 1→ l do
5: if deg(vkj

) = 2 then
6: Let e1 = (vkj

, vp), e2 = (vkj
, vq) be two adjacent edges of vkj

which are not in PD.
7: Remove e1 and e2, and add new edge (vp, vq).
8: end if
9: end for

4 Recovering The Smoothest Drawing Order

Our concern is to recovery the smoothest writing order, which is normally produced by humans

(see e.g. [14]), from input image I. From Lemma 1, we see that the possible strokes on

handwritten character image corresponds to Euler paths of Geul. Thus, our task is to find

the most suitable Euler path corresponding to the smoothest writing order from Geul. For

achieving such a task, we first construct continuity graph from Geul (Section 4.1). Then,

the smoothest Euler path is approximated by employing the method using probabilistic tabu
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vi vj

vl vk

(a) given handwritten image I (b) corresponding semi-Eulerian graph Geul

Fig. 7. An example of handwritten image input I and the corresponding semi-Eulerian graph Geul.

search algorithm (Section 4.2).

4.1 Constructing Continuity Graph

We construct a continuity graph Gcon from a semi-Eulerian path Geul. Let vi be even degree

vertex of Geul and let {e1, . . . , ed} be a set of adjacent edges of vi (see e.g. Fig. 7 (b)). For

each vi, we create a complete graph Cvi
whose vertices are {ve1 , . . . , ved}. Then, we replace

vi with Cvi
and connect vei to ei for i = 1, . . . , d. Moreover, the weight S(ei, ej) is assigned

for each edge (vei , vej ).

Note that the graph Gcon is no longer Eulerian path. However, by using a perfect matching

of Cvi
, we can readily reduce the graph Gcon to a path corresponding to an Euler path of

Geul as follows. LetM be a set of perfect matchings defined as

M = {Mvi
}vi∈V (Geul), (16)

where Mvi
∈M is a perfect matching of Cvi

. Then, the graph GM
con defined by

GM
con =



V (Gcon),



E(Gcon)−
⋃

vi∈V (Geul)

E(Cvi
)



 ∪M



 (17)

is a path corresponding to an Euler path of Geul whenever GM
con is connected. Thus the

following Lemma 2 holds. Moreover, by Lemmas 1 and 2, we get a main theorem in Theorem

1.

Lemma 2 For a collection of perfect matchings M in (16), the graph GM
con in (17) is a

path corresponding to an Euler path of Geul whenever GM
con is connected. Conversely, for

every Euler path PE of Geul, there exists a collection of perfect matchings M such that GM
con

corresponds to PE. Furthermore, total weight of M indicates smoothness of corresponding

Euler path.

Theorem 1 Corrections of perfect matchingsM on a continuity graph Gcon corresponds one-

to-one with possible strokes of a given image. Furthermore, the total weight of M indicates

the smoothness of corresponding stroke.
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Algorithm 3 ContinuityGraph(Geul)

Require: an undirected semi-Eulerian graph Geul.
Ensure: construct a continuity graph Gcon from Geul.
1: Create a copy Gcon of Geul.
2: for all vi ∈ V (Gcon) do
3: Let {e1, . . . , ed} be the set of incident edges of vi.
4: Replace vi by a complete graph Cvi

with vertices set {ve1 , . . . , ved} and connect veh
to eh for each h = 1, . . . , d.

5: Assign the weight S(ei, ej) to each edge (vei , vej ).
6: end for
7: return Gcon.

Fig. 8. Continuity graph Gcon constructed from semi-Eulerian graph Geul in Fig. 7 (b).

The above procedure for constructing continuity graph Gcon from Geul is summarized in

Algorithm 3.

Example 3 Using Algorithm 3, the semi-Eulerian graph Geul in Fig. 7 (b) is converted to

the continuity graph Gcon as shown in Fig. 8.

4.2 Probabilistic Tabu Search

By Theorem 1, we see that the problem of computing the smoothest drawing order of hand-

written image reduces to the problem of computing the maximum weight collection of perfect

matchings M = {Mvi
}vi∈V (Geul), where Mvi

is a perfect matching of Cvi
such that GM

con

is connected. For computing such a maximum weight collection, we here employ a prob-

abilistic tabu search algorithm which is a meta-heuristic local search algorithm for solving

combinatorial optimization problems..

For this purpose, we first compute an Euler path PE of Geul. Then, a set of perfect

matchings of complete graph {Cvi
}vi∈V (Geul) corresponding to PE is given as M in (16).

Thus,M is set as initial feasible solution of probabilistic tabu search. In the probabilistic tabu

search, an optimal solution is obtained by iteratively modifying the initial feasible solution

to better one. Then, a tabu list T of feasible solutions is used to avoid modifying to feasible

solution that have been visited in the recent past. An initial setting of T is set as T = {M}.

Then, the algorithm may find better feasible solutionM′ of which the weight is larger than

that of previously visited feasible solutions by repeating the following local change: First,
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Algorithm 4 TabuSearch(Geul, Gcon)

Require: an undirected semi-Eulerian graph Geul and a continuity graph Gcon.
Ensure: compute an approximation of the maximum collection of perfect matchings.
1: Compute an arbitrary Euler path PE of Geul.
2: Compute the collection of perfect matchingsM corresponding to PE .
3: Set a tabu list T = {M}.
4: for i = 1→ N do
5: Choose Cvi

randomly from {Cvi
}vi∈V (Geul) with probability inversely proportional to

the weight of Mvi
∈M .

6: Choose two edges e1 = (v1, v2) and e2 = (v3, v4) from Mvi
uniformly at random.

7: Set E1 = {(v1, v2), (v3, v4)}, E2 = {(v1, v3), (v2, v4)} and E3 = {(v1, v4), (v2, v3)}.
8: if there exists i ∈ {2, 3} such that w(Ei) ≥ w(E1) andM

′ =M\{Mvi
} ∪ {Mvi

\E1 ∪
Ei} is a feasible solution such thatM′ is unlisted in T and GM′

con is connected then
9: Set T = T ∪M′.

10: SetM =M′.
11: end if
12: end for
13: return the best feasible solution GM

con that was found so far.

Algorithm 5 StrokeRecover(G)

Require: an undirected graph G.
Ensure: recover a stroke order of G.
1: Geul ← SemiEulerian(G).
2: Gcon ← ContinuityGraph(Geul).
3: return TabuSearch(Geul, Gcon).

we choose Cvi
randomly from {Cvi

}vi∈V (Geul) with probability inversely proportional to the

weight of Mvi
∈ M. Then, two edges e1 = (v1, v2) and e2 = (v3, v4) of Mvi

are chosen

uniformly at random. In addition, we set E1 = {(v1, v2), (v3, v4)}, E2 = {(v1, v3), (v2, v4)},

and E3 = {(v1, v4), (v2, v3)}. If there exists i ∈ {2, 3} such that w(Ei) ≥ w(E1) and M′ =

M\E1 ∪ Ei is a feasible solution unlisted in T , then we update T and M as T = T ∪ {M′}

and M =M′ respectively. This process is iteratively carried out for new M and T until a

predefined time limit N is exceeded. TheM is finally given as the best feasible solution, i.e.

the desired drawing order of input handwritten image I.

The above method is summarized as Algorithm 4.

Example 4 Using Algorithm 4, we get the graph GM
con in Fig. 9 from the continuity graph

Gcon in Fig. 8.

Hence, by using Algorithm 1 – Algorithm 4, the algorithm for recovering a drawing order

of an input handwritten image I is given by Algorithm 5

5 Experimental Studies

We examine the effectiveness and usefulness of our proposed method by some experiments.

Here, the algorithm is implemented in Java and the time limit N in tabu search algorithm is

set as N = n2, where n is the number of vertices on the graph G constructed from handwritten
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Fig. 9. The resulting graph GM
con obtained from continuity graph Gcon in Fig. 8.

image I. Also, we set λ in (2) as λ = 3/5.

The recovered results for 8 handwritten images are illustrated in Fig. 10. Here, the

original input images in black lines are stored by employing a pen-tablet device with 4 pixels

width. Also, green lines are paths on the corresponding graph G. Moreover, the arrow marks

denote the drawing order, where the arrow-head direction has been chosen by employing the

heuristic rule based on natural writing behavior of top-to-bottom and left-to-right. Note that

the handwritten images in Fig. 10 (a)-(c) have no D-lines, but have complex structures. Also,

the handwritten images in Fig. 10 (d)-(h) include some D-lines. From these results, we may

observe that our proposed method works quite well and can correctly recover the drawing

order of handwritten character image even when D-lines are included.

6 Concluding Remarks

In this paper, we developed a new method for recovering a drawing order from static hand-

writing images with single stroke. The problem was analyzed and solved by employing the

so-called graph theoretic approach. Then the central issue was to obtain the smoothest

path of stroke from a graph model of input handwriting image. First, the graph model was

constructed from the input handwritten image by employing thinning algorithm. We then

analyze the structure of graph at each vertex. In particular, the method to identify double-

traced lines (D-lines) was developed by introducing the D-line index. The method enables us

to transform any graph models including D-lines to semi-Eulerian graph models. Then, the

restoration problem reduced to maximum weight perfect matching problem of graph, thus

a probabilistic tabu search algorithm was developed to solve the problem. The effectiveness

and usefulness were experimentally demonstrated.
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